
System FC, as implemented in GHC1

21 November, 2013

1 Introduction

This document presents the typing system of System FC, very closely to how it is implemented in GHC. Care
is taken to include only those checks that are actually written in the GHC code. It should be maintained
along with any changes to this type system.

Who will use this? Any implementer of GHC who wants to understand more about the type system can look
here to see the relationships among constructors and the different types used in the implementation of the
type system. Note that the type system here is quite different from that of Haskell—these are the details of
the internal language, only.

At the end of this document is a hypothetical operational semantics for GHC. It is hypothetical because
GHC does not strictly implement a concrete operational semantics anywhere in its code. While all the
typing rules can be traced back to lines of real code, the operational semantics do not, in general, have as
clear a provenance.

There are a number of details elided from this presentation. The goal of the formalism is to aid in reasoning
about type safety, and checks that do not work toward this goal were omitted. For example, various scoping
checks (other than basic context inclusion) appear in the GHC code but not here.

2 Grammar

2.1 Metavariables

We will use the following metavariables:

x Term-level variable names
α, β Type-level variable names
N Type-level constructor names
K Term-level data constructor names
M Axiom rule names
i , j , k, a, b, c Indices to be used in lists

2.2 Literals

Literals do not play a major role, so we leave them abstract:

lit ::= Literals, basicTypes/Literal.lhs:Literal

We also leave abstract the function basicTypes/Literal.lhs:literalType and the judgment coreSyn/CoreLint.lhs:lintTyLit
(written Γ t̀ylit lit : κ).

2.3 Variables

GHC uses the same datatype to represent term-level variables and type-level variables:

1This document was originally prepared by Richard Eisenberg (eir@cis.upenn.edu), but it should be maintained by anyone
who edits the functions or data structures mentioned in this file. Please feel free to contact Richard for more information.

1

z ::= Term or type name

2

| α Type-level name
| x Term-level name

n, m ::= Variable names, basicTypes/Var.lhs:Var
| z τ Name, labeled with type/kind

2.4 Expressions

The datatype that represents expressions:

e, u ::= Expressions, coreSyn/CoreSyn.lhs:Expr
| n Variable
| lit Literal
| e1 e2 Application
| λn.e Abstraction
| let binding in e Variable binding

| case e asn return τ of alti
i

Pattern match
| e . γ Cast
| e{tick} Internal note
| τ Type
| γ Coercion

There are a few key invariants about expressions:

• The right-hand sides of all top-level and recursive lets must be of lifted type.

• The right-hand side of a non-recursive let and the argument of an application may be of unlifted type,
but only if the expression is ok-for-speculation. See #let_app_invariant# in coreSyn/CoreSyn.lhs.

• We allow a non-recursive let for bind a type variable.

• The case for a case must come first.

• The list of case alternatives must be exhaustive.

• Types and coercions can only appear on the right-hand-side of an application.

Bindings for let statements:

binding ::= Let-bindings, coreSyn/CoreSyn.lhs:Bind
| n = e Non-recursive binding
| recni = ei

i Recursive binding

Case alternatives:

alt ::= Case alternative, coreSyn/CoreSyn.lhs:Alt
| Kni

i → e Constructor applied to fresh names

Constructors as used in patterns:

K ::= Constructors used in patterns, coreSyn/CoreSyn.lhs:AltCon
| K Data constructor
| lit Literal (such as an integer or character)
| Wildcard

Notes that can be inserted into the AST. We leave these abstract:

tick ::= Internal notes, coreSyn/CoreSyn.lhs:Tickish

3

A program is just a list of bindings:

program ::= A System FC program, coreSyn/CoreSyn.lhs:CoreProgram

| bindingi
i

List of bindings

2.5 Types

τ, κ, σ ::= Types/kinds, types/TypeRep.lhs:Type
| n Variable
| τ1 τ2 Application
| T τi

i Application of type constructor
| τ1 → τ2 Function
| ∀n.τ Polymorphism
| lit Type-level literal

There are some invariants on types:

• The type τ1 in the form τ1 τ2 must not be a type constructor T . It should be another application or a
type variable.

• The form T τi
i (TyConApp) does not need to be saturated.

• A saturated application of (→) τ1 τ2 should be represented as τ1 → τ2. This is a different point in the
grammar, not just pretty-printing. The constructor for a saturated (→) is FunTy.

• A type-level literal is represented in GHC with a different datatype than a term-level literal, but we
are ignoring this distinction here.

2.6 Coercions

γ ::= Coercions, types/Coercion.lhs:Coercion
| 〈τ〉ρ Reflexivity

| Tρ γi
i Type constructor application

| γ1 γ2 Application
| ∀n.γ Polymorphism
| n Variable
| C ind γj

j Axiom application
| τ1 �! ρ τ2 Universal coercion
| sym γ Symmetry
| γ1 # γ2 Transitivity
| µ τi

i γj
j Axiom-rule application (for type-nats)

| nthi γ Projection (0-indexed)
| LorR γ Left/right projection
| γ τ Type application
| sub γ Sub-role — convert nominal to representational

Invariants on coercions:

• 〈τ1 τ2〉ρ is used; never 〈τ1〉ρ 〈τ2〉N.

• If 〈T 〉ρ is applied to some coercions, at least one of which is not reflexive, use Tρ γi
i , never 〈T 〉ρ γ1 γ2

• The T in Tρ γi
i is never a type synonym, though it could be a type function.

4

Roles label what equality relation a coercion is a witness of. Nominal equality means that two types are
identical (have the same name); representational equality means that two types have the same representation
(introduced by newtypes); and phantom equality includes all types. See http://ghc.haskell.org/trac/

ghc/wiki/Roles for more background.

ρ ::= Roles, types/CoAxiom.lhs:Role
| N Nominal
| R Representational
| P Phantom

Is it a left projection or a right projection?

LorR ::= left or right deconstructor, types/Coercion.lhs:LeftOrRight
| left Left projection
| right Right projection

Axioms:

C ::= Axioms, types/TyCon.lhs:CoAxiom

| Tρ axBranchi
i

Axiom

axBranch, b ::= Axiom branches, types/TyCon.lhs:CoAxBranch
| ∀niρi

i .(τj
j σ) Axiom branch

The definition for axBranch above does not include the list of incompatible branches (field cab incomps of
CoAxBranch), as that would unduly clutter this presentation. Instead, as the list of incompatible branches
can be computed at any time, it is checked for in the judgment no conflict. See Section 4.16.

Axiom rules, produced by the type-nats solver:

µ ::= CoAxiomRules, types/CoAxiom.lhs:CoAxiomRule
| M(i,ρjj ,ρ′) Named rule, with parameter info

An axiom rule µ = M(i,ρjj ,ρ′) is an axiom name M , with a type arity i, a list of roles ρj
j for its coercion

parameters, and an output role ρ′. The definition within GHC also includes a field named coaxrProves which
computes the output coercion from a list of types and a list of coercions. This is elided in this presentation,
as we simply identify axiom rules by their names M . See also typecheck/TcTypeNats.lhs:mkBinAxiom and
typecheck/TcTypeNats.lhs:mkAxiom1.

2.7 Type constructors

Type constructors in GHC contain lots of information. We leave most of it out for this formalism:

T ::= Type constructors, types/TyCon.lhs:TyCon
| (→) Arrow
| N κ Named tycon: algebraic, tuples, and synonyms
| H Primitive tycon
| ′K Promoted data constructor
| ′T Promoted type constructor

We include some representative primitive type constructors. There are many more in prelude/TysPrim.lhs.

H ::= Primitive type constructors, prelude/TysPrim.lhs:
| Int# Unboxed Int (intPrimTyCon)
| (∼#) Unboxed equality (eqPrimTyCon)
| (∼R#) Unboxed representational equality (eqReprPrimTyCon)
| � Sort of kinds (superKindTyCon)

5

| ∗ Kind of lifted types (liftedTypeKindTyCon)
| # Kind of unlifted types (unliftedTypeKindTyCon)
| OpenKind Either ∗ or # (openTypeKindTyCon)
| Constraint Constraint (constraintTyCon)

3 Contexts

The functions in coreSyn/CoreLint.lhs use the LintM monad. This monad contains a context with a set of
bound variables Γ. The formalism treats Γ as an ordered list, but GHC uses a set as its representation.

Γ ::= List of bindings, coreSyn/CoreLint.lhs:LintM
| n Single binding

| Γi
i

Context concatenation

We assume the Barendregt variable convention that all new variables are fresh in the context. In the
implementation, of course, some work is done to guarantee this freshness. In particular, adding a new
type variable to the context sometimes requires creating a new, fresh variable name and then applying a
substitution. We elide these details in this formalism, but see types/Type.lhs:substTyVarBndr for details.

4 Typing judgments

The following functions are used from GHC. Their names are descriptive, and they are not formalized
here: types/TyCon.lhs:tyConKind, types/TyCon.lhs:tyConArity, basicTypes/DataCon.lhs:dataConTyCon,
types/TyCon.lhs:isNewTyCon, basicTypes/DataCon.lhs:dataConRepType.

4.1 Program consistency

Check the entire bindings list in a context including the whole list. We extract the actual variables (with
their types/kinds) from the bindings, check for duplicates, and then check each binding.

p̀rog program Program typing, coreSyn/CoreLint.lhs:lintCoreBindings

Γ = vars of bindingi
i

no duplicates bindingi
i

Γ b̀ind bindingi
i

p̀rog bindingi
i Prog CoreBindings

Here is the definition of vars of , taken from coreSyn/CoreSyn.lhs:bindersOf:

vars of n = e = n
vars of recni = ei

i = ni
i

4.2 Binding consistency

Γ b̀ind binding Binding typing, coreSyn/CoreLint.lhs:lint bind

Γ s̀bind n ← e

Γ b̀ind n = e
Binding NonRec

6

Γ s̀bind ni ← ei
i

Γ b̀ind recni = ei
i Binding Rec

Γ s̀bind n ← e Single binding typing, coreSyn/CoreLint.lhs:lintSingleBinding

Γ t̀m e : τ
Γ ǹ z

τ ok
mi

i = fv(τ)

mi ∈ Γ
i

Γ s̀bind z τ ← e
SBinding SingleBinding

In the GHC source, this function contains a number of other checks, such as for strictness and exportability.
See the source code for further information.

4.3 Expression typing

Γ t̀m e : τ Expression typing, coreSyn/CoreLint.lhs:lintCoreExpr

x τ ∈ Γ
¬ (∃γ s.t. τ = γ)

Γ t̀m x τ : τ
Tm Var

τ = literalType lit

Γ t̀m lit : τ
Tm Lit

Γ t̀m e : σ
Γ c̀o γ : σ∼κR τ
Γ t̀m e . γ : τ

Tm Cast

Γ t̀m e : τ

Γ t̀m e{tick} : τ
Tm Tick

Γ′ = Γ, ακ

Γ k̀ κ ok
Γ′ s̀ubst α

κ 7→ σ ok
Γ′ t̀m e [ακ 7→ σ] : τ

Γ t̀m letακ = σ in e : τ
Tm LetTyKi

7

Γ s̀bind x
σ ← u

Γ t̀y σ : κ
Γ, xσ t̀m e : τ

Γ t̀m let xσ = u in e : τ
Tm LetNonRec

Γ′i
i

= inits (ziσi
i
)

Γ,Γ′i t̀y σi : κi
i

no duplicates zi
i

Γ′ = Γ, ziσi
i

Γ′ s̀bind ziσi ← ui
i

Γ′ t̀m e : τ

Γ t̀m let rec ziσi = ui
i
in e : τ

Tm LetRec

Γ t̀m e1 : ∀ακ.τ
Γ s̀ubst α

κ 7→ σ ok

Γ t̀m e1 σ : τ [ακ 7→ σ]
Tm AppType

¬ (∃τ s.t. e2 = τ)
Γ t̀m e1 : τ1 → τ2
Γ t̀m e2 : τ1

Γ t̀m e1 e2 : τ2
Tm AppExpr

Γ t̀y τ : κ
Γ, x τ t̀m e : σ

Γ t̀m λx τ .e : τ → σ
Tm LamId

Γ′ = Γ, ακ

Γ k̀ κ ok
Γ′ t̀m e : τ

Γ t̀m λακ.e : ∀ακ.τ
Tm LamTy

Γ t̀m e : σ
Γ t̀y σ : κ1
Γ t̀y τ : κ2

Γ, zσ;σ àlt alti : τ
i

Γ t̀m case e as zσ return τ of alti
i

: τ
Tm Case

Γ c̀o γ : τ1∼κN τ2
Γ t̀m γ : τ1∼κ# τ2

Tm CoercionNom

8

Γ c̀o γ : τ1∼κR τ2
Γ t̀m γ : (∼R#)κ τ1 τ2

Tm CoercionRep

• Some explication of Tm LetRec is helpful: The idea behind the second premise (Γ,Γ′i t̀y σ′i : κi
i
)

is that we wish to check each substituted type σ′i in a context containing all the types that come
before it in the list of bindings. The Γ′i are contexts containing the names and kinds of all type
variables (and term variables, for that matter) up to the ith binding. This logic is extracted from
coreSyn/CoreLint.lhs:lintAndScopeIds.

• There is one more case for Γ t̀m e : τ , for type expressions. This is included in the GHC code but is
elided here because the case is never used in practice. Type expressions can only appear in arguments
to functions, and these are handled in Tm AppType.

• The GHC source code checks all arguments in an application expression all at once using coreSyn/CoreSyn.lhs:collectArgs
and coreSyn/CoreLint.lhs:lintCoreArgs. The operation has been unfolded for presentation here.

• If a tick contains breakpoints, the GHC source performs additional (scoping) checks.

• The rule for case statements also checks to make sure that the alternatives in the case are well-formed
with respect to the invariants listed above. These invariants do not affect the type or evaluation of the
expression, so the check is omitted here.

• The GHC source code for Tm Var contains checks for a dead id and for one-tuples. These checks are
omitted here.

4.4 Kinding

Γ t̀y τ : κ Kinding, coreSyn/CoreLint.lhs:lintType

zκ ∈ Γ

Γ t̀y zκ : κ
Ty TyVarTy

Γ t̀y τ1 : κ1
Γ t̀y τ2 : κ2
Γ àpp (τ2 : κ2) : κ1 κ

Γ t̀y τ1 τ2 : κ
Ty AppTy

Γ t̀y τ1 : κ1
Γ t̀y τ2 : κ2
Γ →̀ κ1 → κ2 : κ

Γ t̀y τ1 → τ2 : κ
Ty FunTy

¬ (isUnLiftedTyConT) ∨ length τi
i = tyConArityT

Γ t̀y τi : κi
i

Γ àpp (τi : κi)
i

: tyConKind T κ

Γ t̀y T τi
i : κ

Ty TyConApp

9

Γ k̀ κ1 ok
Γ, zκ1

t̀y τ : κ2

Γ t̀y ∀zκ1 .τ : κ2
Ty ForAllTy

Γ t̀ylit lit : κ

Γ t̀y lit : κ
Ty LitTy

4.5 Kind validity

Γ k̀ κ ok Kind validity, coreSyn/CoreLint.lhs:lintKind

Γ t̀y κ : �

Γ k̀ κ ok
K Box

4.6 Coercion typing

In the coercion typing judgment, the # marks are left off the equality operators to reduce clutter. This is
not actually inconsistent, because the GHC function that implements this check, lintCoercion, actually
returns four separate values (the kind, the two types, and the role), not a type with head (∼#) or (∼R#).
Note that the difference between these two forms of equality is interpreted in the rules Co CoVarCoNom
and Co CoVarCoRepr.

Γ c̀o γ : τ1∼κρ τ2 Coercion typing, coreSyn/CoreLint.lhs:lintCoercion

Γ t̀y τ : κ

Γ c̀o 〈τ〉ρ : τ ∼κρ τ
Co Refl

Γ c̀o γ1 : σ1∼κ1
ρ τ1

Γ c̀o γ2 : σ2∼κ2
ρ τ2

Γ →̀ κ1 → κ2 : κ

Γ c̀o (→)ρ γ1 γ2 : (σ1 → σ2)∼κρ(τ1 → τ2)
Co TyConAppCoFunTy

T 6= (→)
ρi

i = take(length γi
i , tyConRolesX ρT)

Γ c̀o γi : σi ∼κi
ρi τi

i

Γ àpp (σi : κi)
i

: tyConKind T κ

Γ c̀o Tρ γi
i : T σi

i ∼κρ T τi
i Co TyConAppCo

10

Γ c̀o γ1 : σ1∼κ1
ρ τ1

Γ c̀o γ2 : σ2∼κ2

N τ2
Γ àpp (σ2 : κ2) : κ1 κ

Γ c̀o γ1 γ2 : (σ1 σ2)∼κρ(τ1 τ2)
Co AppCo

Γ c̀o γ1 : σ1∼κ1

P τ1
Γ c̀o γ2 : σ2∼κ2

P τ2
Γ àpp (σ2 : κ2) : κ1 κ

Γ c̀o γ1 γ2 : (σ1 σ2)∼κP(τ1 τ2)
Co AppCoPhantom

Γ k̀ κ1 ok
Γ, zκ1

c̀o γ : σ∼κ2
ρ τ

Γ c̀o ∀zκ1 .γ : (∀zκ1 .σ)∼κ2
ρ (∀zκ1 .τ)

Co ForAllCo

z (τ ∼
�
τ) ∈ Γ

Γ c̀o z
(τ ∼�

τ) : τ ∼�
N τ

Co CoVarCoBox

z (σ∼
κ
τ) ∈ Γ

κ 6= �
Γ c̀o z

(σ∼κ# τ) : σ∼κN τ
Co CoVarCoNom

z (σ∼
κ
R# τ) ∈ Γ

κ 6= �
Γ c̀o z

(σ∼κR# τ) : σ∼κR τ
Co CoVarCoRepr

Γ t̀y τ1 : κ

Γ c̀o τ1 �! ρ τ2 : τ1∼κρ τ2
Co UnivCo

Γ c̀o γ : τ1∼κρ τ2
Γ c̀o sym γ : τ2∼κρ τ1

Co SymCo

Γ c̀o γ1 : τ1∼κρ τ2
Γ c̀o γ2 : τ2∼κρ τ3

Γ c̀o γ1 # γ2 : τ1∼κρ τ3
Co TransCo

Γ c̀o γ : (T σj
j)∼κρ(T τj

j)
lengthσj

j = length τj
j

i < lengthσj
j

Γ t̀y σi : κ
ρ′ = (tyConRolesX ρT)[i]

Γ c̀o nthi γ : σi ∼κρ′ τi
Co NthCo

11

Γ c̀o γ : (σ1 σ2)∼κ′

N (τ1 τ2)
Γ t̀y σ1 : κ

Γ c̀o left γ : σ1∼κN τ1
Co LRCoLeft

Γ c̀o γ : (σ1 σ2)∼κ′

N (τ1 τ2)
Γ t̀y σ2 : κ

Γ c̀o right γ : σ2∼κN τ2
Co LRCoRight

Γ c̀o γ : ∀m.σ∼κρ ∀n.τ
Γ t̀y τ0 : κ0
m = zκ1

κ0<: κ1

Γ c̀o γ τ0 : σ[m 7→ τ0]∼κρ τ [n 7→ τ0]
Co InstCo

C = Tρ0 axBranchk
k

0 ≤ ind < length axBranchk
k

∀niρi i .(σ1 j
j τ1) = (axBranchk

k
)[ind]

Γ c̀o γi : σ′i ∼
κ′
i
ρi τ
′
i

i

substi
i

= inits ([ni 7→ σ′i]
i
)

ni = ziκi
i

κ′i <: substi(κi)
i

no conflict(C , σ2 j
j , ind , ind − 1)

σ2 j = σ1 j [ni 7→ σ′i]
i
j

τ2 = τ1 [ni 7→ τ ′i]
i

Γ t̀y τ2 : κ

Γ c̀o C ind γi
i : T σ2 j

j ∼κρ0 τ2
Co AxiomInstCo

Γ c̀o γ : σ∼κN τ
Γ c̀o sub γ : σ∼κR τ

Co SubCo

µ = M(i,ρj j ,ρ′)

Γ t̀y τi : κi
i

Γ c̀o γj : σj ∼
κ′
j
ρj σ

′
j

j

Just (τ ′1, τ
′
2) = coaxrProvesµ τi

i (σj , σ′j)
j

Γ t̀y τ
′
1 : κ0

Γ t̀y τ
′
2 : κ0

Γ c̀o µ τi
i γj

j : τ ′1∼
κ0

ρ′ τ
′
2

Co AxiomRuleCo

12

In Co AxiomInstCo, the use of inits creates substitutions from the first i mappings in [ni 7→ σi]
i
. This

has the effect of folding the substitution over the kinds for kind-checking.

See Section 4.15 for more information about tyConRolesX, and see Section ?? for more information about
coaxrProves.

4.7 Name consistency

There are two very similar checks for names, one declared as a local function:

Γ ǹ n ok Name consistency check, coreSyn/CoreLint.lhs:lintSingleBinding#lintBinder

Γ t̀y τ : κ

Γ ǹ x τ ok
Name Id

Γ ǹ ακ ok
Name TyVar

Γ b̀nd n ok Binding consistency, coreSyn/CoreLint.lhs:lintBinder

Γ t̀y τ : κ

Γ b̀nd x τ ok
Binding Id

Γ k̀ κ ok

Γ b̀nd ακ ok
Binding TyVar

4.8 Substitution consistency

Γ s̀ubst n 7→ τ ok Substitution consistency, coreSyn/CoreLint.lhs:checkTyKind

Γ k̀ κ ok

Γ s̀ubst z� 7→ κ ok
Subst Kind

κ1 6= �
Γ t̀y τ : κ2
κ2<: κ1

Γ s̀ubst zκ1 7→ τ ok
Subst Type

13

4.9 Case alternative consistency

Γ;σ àlt alt : τ Case alternative consistency, coreSyn/CoreLint.lhs:lintCoreAlt

Γ t̀m e : τ

Γ;σ àlt → e : τ
Alt DEFAULT

σ = literalType lit
Γ t̀m e : τ

Γ;σ àlt lit → e : τ
Alt LitAlt

T = dataConTyConK
¬ (isNewTyConT)
τ1 = dataConRepTypeK
τ2 = τ1{σj j }
Γ b̀nd ni ok

i

Γ′ = Γ, ni
i

Γ′ àltbnd ni
i : τ2 T σj

j

Γ′ t̀m e : τ

Γ;T σj
j

àlt K ni
i → e : τ

Alt DataAlt

4.10 Telescope substitution

τ ′ = τ{σi i } Telescope substitution, types/Type.lhs:applyTys

τ = τ{ }
ApplyTys Empty

τ ′ = τ{σi i }
τ ′′ = τ ′[n 7→ σ]

τ ′′ = (∀n.τ){σ, σi i }
ApplyTys Ty

4.11 Case alternative binding consistency

Γ àltbnd vars : τ1 τ2 Case alternative binding consistency, coreSyn/CoreLint.lhs:lintAltBinders

Γ àltbnd · : τ τ
AltBinders Empty

Γ s̀ubst β
κ′ 7→ ακ ok

Γ àltbnd ni
i : τ [βκ

′ 7→ ακ] σ

Γ àltbnd ακ, ni
i : (∀βκ′ .τ) σ

AltBinders TyVar

14

Γ àltbnd ni
i : τ2 σ

Γ àltbnd x τ1 , ni
i : (τ1 → τ2) σ

AltBinders Id

4.12 Arrow kinding

Γ →̀ κ1 → κ2 : κ Arrow kinding, coreSyn/CoreLint.lhs:lintArrow

Γ →̀ � → κ2 : �
Arrow Box

κ1 ∈ {∗ ,# ,Constraint }
κ2 ∈ {∗ ,# ,Constraint }

Γ →̀ κ1 → κ2 : ∗
Arrow Kind

4.13 Type application kinding

Γ àpp (σi : κi)
i

: κ1 κ2 Type application kinding, coreSyn/CoreLint.lhs:lint app

Γ àpp · : κ κ
App Empty

κ<: κ1

Γ àpp (τi : κi)
i

: κ2 κ′

Γ àpp (τ : κ), (τi : κi)
i

: (κ1 → κ2) κ′
App FunTy

κ<: κ1

Γ àpp (τi : κi)
i

: κ2[zκ1 7→ τ] κ′

Γ àpp (τ : κ), (τi : κi)
i

: (∀zκ1 .κ2) κ′
App ForAllTy

4.14 Sub-kinding

κ1<: κ2 Sub-kinding, types/Kind.lhs:isSubKind

κ<: κ
SubKind Refl

15

<: OpenKind
SubKind UnliftedTypeKind

∗ <: OpenKind
SubKind LiftedTypeKind

Constraint <: OpenKind
SubKind Constraint

Constraint <: ∗
SubKind ConstraintLifted

∗ <: Constraint
SubKind LiftedConstraint

4.15 Roles

During type-checking, role inference is carried out, assigning roles to the arguments of every type constructor.
The function tyConRoles extracts these roles. Also used in other judgments is tyConRolesX, which is the same
as tyConRoles, but with an arbitrary number of N at the end, to account for potential oversaturation.

The checks encoded in the following judgments are run from typecheck/TcTyClsDecls.lhs:checkValidTyCon
when -dcore-lint is set.

validRolesT Type constructor role validity, typecheck/TcTyClsDecls.lhs:checkValidRoles

Ki
i

= tyConDataConsT
ρj

j = tyConRolesT

validDcRoles ρj
j Ki

i

validRolesT
Cvr DataCons

validDcRoles ρa
aK Data constructor role validity, typecheck/TcTyClsDecls.lhs:check dc roles

∀na a .∀mb
b .τc

c → T na
a = dataConRepTypeK

na : ρa
a,mb : N

b
c̀tr τc : R

c

validDcRoles ρa
aK

Cdr Args

In the following judgment, the role ρ is an input, not an output. The metavariable Ω denotes a role context,
as shown here:

Ω ::= Mapping from type variables to roles

16

| ni : ρi
i List of bindings

Ω c̀tr τ : ρ Type role validity, typecheck/TcTyClsDecls.lhs:check ty roles

Ω(n) = ρ′

ρ′ ≤ ρ
Ω c̀tr n : ρ

Ctr TyVarTy

ρi
i = tyConRolesT

ρi ∈ {N,R} =⇒ Ω c̀tr τi : ρi
i

Ω c̀tr T τi
i : R

Ctr TyConAppRep

Ω c̀tr τi : N
i

Ω c̀tr T τi
i : N

Ctr TyConAppNom

Ω c̀tr τ1 : ρ
Ω c̀tr τ2 : N

Ω c̀tr τ1 τ2 : ρ
Ctr AppTy

Ω c̀tr τ1 : ρ
Ω c̀tr τ2 : ρ

Ω c̀tr τ1 → τ2 : ρ
Ctr FunTy

Ω,n : N c̀tr τ : ρ

Ω c̀tr ∀n.τ : ρ
Ctr ForAllTy

Ω c̀tr lit : ρ
Ctr LitTy

These judgments depend on a sub-role relation:

ρ1 ≤ ρ2 Sub-role relation, types/Coercion.lhs:ltRole

N ≤ ρ
Rlt Nominal

ρ ≤ P
Rlt Phantom

ρ ≤ ρ
Rlt Refl

17

4.16 Branched axiom conflict checking

The following judgment is used within Co AxiomInstCo to make sure that a type family application cannot
unify with any previous branch in the axiom. The actual code scans through only those branches that are
flagged as incompatible. These branches are stored directly in the axBranch. However, it is cleaner in this
presentation to simply check for compatibility here.

no conflict(C , σj
j , ind1, ind2)

Branched axiom conflict checking, types/OptCoercion.lhs:checkAxInstCo
and types/FamInstEnv.lhs:compatibleBranches

no conflict(C , σi
i , ind ,−1)

NoConflict NoBranch

C = Tρ axBranchk
k

∀niρi i .(τj j τ ′) = (axBranchk
k

)[ind2]
apart (σj

j , τj
j)

no conflict(C , σj
j , ind1, ind2 − 1)

no conflict(C , σj
j , ind1, ind2)

NoConflict Incompat

C = Tρ axBranchk
k

∀niρi i .(τj j σ) = (axBranchk
k

)[ind1]

∀n ′iρ′i
i
.(τ ′j

j
 σ′) = (axBranchk

k
)[ind2]

apart (τj
j , τ ′j

j
)

no conflict(C , σj
j , ind1, ind2 − 1)

no conflict(C , σj
j , ind1, ind2)

NoConflict CompatApart

C = Tρ axBranchk
k

∀niρi i .(τj j σ) = (axBranchk
k

)[ind1]

∀n ′iρ′i
i
.(τ ′j

j
 σ′) = (axBranchk

k
)[ind2]

unify (τj
j , τ ′j

j
) = subst

subst(σ) = subst(σ′)

no conflict(C , σj
j , ind1, ind2)

NoConflict CompatCoincident

The judgment apart checks to see whether two lists of types are surely apart. apart (τi
i , σi

i), where τi
i

is a list of types and σi
i is a list of type patterns (as in a type family equation), first flattens the τi

i

using types/FamInstEnv.lhs:flattenTys and then checks to see if types/Unify.lhs:tcUnifyTysFG returns
SurelyApart. Flattening takes all type family applications and replaces them with fresh variables, taking
care to map identical type family applications to the same fresh variable.

The algorithm unify is implemented in types/Unify.lhs:tcUnifyTys. It performs a standard unification,
returning a substitution upon success.

18

5 Operational semantics

5.1 Disclaimer

GHC does not implement an operational semantics in any concrete form. Most of the rules below are implied
by algorithms in, for example, the simplifier and optimizer. Yet, there is no one place in GHC that states
these rules, analogously to CoreLint.lhs. Nevertheless, these rules are included in this document to help
the reader understand System FC.

5.2 The context Σ

We use a context Σ to keep track of the values of variables in a (mutually) recursive group. Its definition is
as follows:

Σ ::= · | Σ, [n 7→ e]

The presence of the context Σ is solely to deal with recursion. If your use of FC does not require modeling
recursion, you will not need to track Σ.

5.3 Operational semantics rules

Σ òp e −→ e ′ Single step semantics

Σ(n) = e

Σ òp n −→ e
S Var

Σ òp e1 −→ e ′1
Σ òp e1 e2 −→ e ′1 e2

S App

Σ òp (λn.e1) e2 −→ e1 [n 7→ e2]
S Beta

γ0 = sym (nth0 γ)
γ1 = nth1 γ
¬∃τ s.t. e2 = τ
¬∃γ s.t. e2 = γ

Σ òp ((λn.e1) . γ) e2 −→ (λn.e1 . γ1) (e2 . γ0)
S Push

Σ òp ((λn.e) . γ) τ −→ (λn.(e . γ n)) τ
S TPush

γ0 = nth1 (nth0 γ)
γ1 = sym (nth2 (nth0 γ))
γ2 = nth1 γ

Σ òp ((λn.e) . γ) γ′ −→ (λn.e . γ2) (γ0 # γ′ # γ1)
S CPush

19

Σ òp letn = e1 in e2 −→ e2 [n 7→ e1]
S LetNonRec

Σ, [ni 7→ ei]
i

òp u −→ u ′

Σ òp let recni = ei
i in u −→ let recni = ei

i in u ′
S LetRec

fv(u) ∩ ni
i = ·

Σ òp let recni = ei
i in u −→ u

S LetRecReturn

Σ òp e −→ e ′

Σ òp case e asn return τ of alti
i −→ case e ′ asn return τ of alti

i S Case

altj = K αb
κb
b
xcτc

c → u

u ′ = u [n 7→ e] [αb
κb 7→ σb]

b
[xcτc 7→ ec]

c

Σ òp caseK τ ′a
a
σb

b ec
c asn return τ of alti

i −→ u ′
S MatchData

altj = lit → u

Σ òp case litasn return τ of alti
i −→ u [n 7→ lit]

S MatchLit

altj = → u
no other case matches

Σ òp case e asn return τ of alti
i −→ u [n 7→ e]

S MatchDefault

T τa
a∼κ# T τ ′a

a
= coercionKind γ

∀αa
κa
a
.∀βbκ

′
b

b

.τ1 c
c → T αa

κa
a

= dataConRepTypeK

e ′c = ec . (τ1 c [αa
κa 7→ ntha γ]

a
[βb

κ′
b 7→ 〈σb〉N]

b

)

c

Σ òp case (K τa
a σb

b ec
c) . γ asn return τ2 of alti

i −→ caseK τ ′a
a
σb

b e ′c
c
asn return τ2 of alti

i S CasePush

Σ òp e −→ e ′

Σ òp e . γ −→ e ′ . γ
S Cast

Σ òp e −→ e ′

Σ òp e{tick} −→ e ′{tick}
S Tick

20

5.4 Notes

• The S LetRec and S LetRecReturn rules implement recursion. S LetRec adds to the context Σ
bindings for all of the mutually recursive equations. Then, after perhaps many steps, when the body
of the let rec contains no variables that are bound in the let rec, the context is popped.

• In the case rules, a constructor K is written taking three lists of arguments: two lists of types and a
list of terms. The types passed in are the universally and, respectively, existentially quantified type
variables to the constructor. The terms are the regular term arguments stored in an algebraic datatype.
Coercions (say, in a GADT) are considered term arguments.

• The rule S CasePush is the most complex rule.

– The logic in this rule is implemented in coreSyn/CoreSubst.lhs:exprIsConApp maybe.

– The coercionKind function (types/Coercion.lhs:coercionKind) extracts the two types (and their
kind) from a coercion. It does not require a typing context, as it does not check the coercion, just
extracts its types.

– The dataConRepType function (basicTypes/DataCon.lhs:dataConRepType) extracts the full type
of a data constructor. Following the notation for constructor expressions, the parameters to the
constructor are broken into three groups: universally quantified types, existentially quantified
types, and terms.

– The substitutions in the last premise to the rule are unusual: they replace type variables with co-
ercions. This substitution is called lifting and is implemented in types/Coercion.lhs:liftCoSubst.
The notation is essentially a pun on the fact that types and coercions have such similar structure.

– Note that the types σb
b—the existentially quantified types—do not change during this step.

21

