Parser.y.pp 63.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13
14
15
16
17
18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20
21
22
23
24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26
27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29
30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31
32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
34
import StaticFlags	( opt_SccProfilingOn )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39
40
41
import HaddockParse
import {-# SOURCE #-} HaddockLex hiding ( Token )
import HaddockUtils
42
43
44
45

import FastString
import Maybes		( orElse )
import Outputable
46

Simon Marlow's avatar
Simon Marlow committed
47
48
import Control.Monad    ( when )
import GHC.Exts
49
50
import Data.Char
import Control.Monad    ( mplus )
51
52
53
}

{-
54
55
56
57
58
59
60
61
62
63
64
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

65
-----------------------------------------------------------------------------
66
Conflicts: 38 shift/reduce (1.25)
67

68
10 for abiguity in 'if x then y else z + 1'		[State 178]
69
70
71
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

72
1 for ambiguity in 'if x then y else z :: T'		[State 178]
73
74
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

75
4 for ambiguity in 'if x then y else z -< e'		[State 178]
ross's avatar
ross committed
76
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
77
78
79
80
81
82
83
84
85
86
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
ross's avatar
ross committed
87

88
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
89
90
	(e::a) `b` c, or 
	(e :: (a `b` c))
91
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
92
    Same duplication between states 11 and 253 as the previous case
93

94
1 for ambiguity in 'let ?x ...'				[State 329]
95
96
97
98
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

99
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
100
101
102
103
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

104
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
105
106
107
108
109
110
111
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

112
113
114
115
1 for ambiguity when the source file starts with "-- | doc". We need another
  token of lookahead to determine if a top declaration or the 'module' keyword
  follows. Shift parses as if the 'module' keyword follows.   

116
117
118
119
120
121
122
123
124
125
126
-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
127
     -- This doesn't seem to work anymore -=chak
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
172
 'for' 	        { L _ ITfor }
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

191
 'forall'	{ L _ ITforall }		-- GHC extension keywords
192
193
194
195
196
197
198
199
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
200
 'iso'		{ L _ ITiso }
201
 'family'	{ L _ ITfamily }
202
203
204
205
206
207
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

208
209
210
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
280
281
282
283
284
285
286

 DOCNEXT	{ L _ (ITdocCommentNext _) }
 DOCPREV	{ L _ (ITdocCommentPrev _) }
 DOCNAMED	{ L _ (ITdocCommentNamed _) }
 DOCSECTION	{ L _ (ITdocSection _ _) }
 DOCOPTIONS	{ L _ (ITdocOptions _) }

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
303
%name parseType ctype
304
%partial parseHeader header
305
%tokentype { (Located Token) }
306
307
%%

308
309
310
311
312
313
314
315
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

316
317
318
319
320
321
322
323
324
325
326
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
327
328
329
330
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 (fst $7) (snd $7) $4 
                          opt info doc) )}}
331
332
333
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
334
335
336
337
338
339
340
341
342
                          (fst $2) (snd $2) Nothing Nothing emptyHaddockModInfo 
                          Nothing)) }

optdoc :: { (Maybe String, HaddockModInfo RdrName, Maybe (HsDoc RdrName)) }                             
        : moduleheader            { (Nothing, fst $1, snd $1) }
        | docoptions              { (Just $1, emptyHaddockModInfo, Nothing)} 
        | docoptions moduleheader { (Just $1, fst $2, snd $2) } 
        | moduleheader docoptions { (Just $2, fst $1, snd $1) } 
        | {- empty -}             { (Nothing, emptyHaddockModInfo, Nothing) }  
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

363
364
365
366
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
367
368
369
370
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 $7 [] $4 
                   opt info doc))}}
371
372
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
373
374
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing 
                   Nothing emptyHaddockModInfo Nothing)) }
375
376
377
378
379

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

380
381
382
383
384
385
386
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

387
388
exportlist :: { [LIE RdrName] }
	: expdoclist ',' expdoclist		{ $1 ++ $3 }
389
390
391
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
392
393
394
395
396
397
398
399
400
401
402
403
404
        : expdoclist export expdoclist ',' exportlist  { $1 ++ ($2 : $3) ++ $5 }
 	| expdoclist export expdoclist	               { $1 ++ ($2 : $3) }
	| expdoclist				       { $1 }

expdoclist :: { [LIE RdrName] }
        : exp_doc expdoclist                           { $1 : $2 }
        | {- empty -}                                  { [] }

exp_doc :: { LIE RdrName }                                                   
        : docsection    { L1 (case (unLoc $1) of (n, doc) -> IEGroup n doc) }
        | docnamed      { L1 (IEDocNamed ((fst . unLoc) $1)) } 
        | docnext       { L1 (IEDoc (unLoc $1)) }       
                       
405
406
407
408
409
410
411
412
413
414
415
   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
416
417
	:  qcnames ',' qcname_ext	{ unLoc $3 : $1 }
	|  qcname_ext			{ [unLoc $1]  }
418

419
420
421
422
423
424
425
426
qcname_ext :: { Located RdrName }	-- Variable or data constructor
					-- or tagged type constructor
	:  qcname			{ $1 }
	|  'type' qcon			{ sL (comb2 $1 $2) 
					     (setRdrNameSpace (unLoc $2) 
							      tcClsName)  }

-- Cannot pull into qcname_ext, as qcname is also used in expression.
427
qcname 	:: { Located RdrName }	-- Variable or data constructor
428
429
	:  qvar				{ $1 }
	|  qcon				{ $1 }
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
455
maybeas :: { Located (Maybe ModuleName) }
456
457
458
459
460
461
462
463
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
464
465
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

486
topdecls :: { OrdList (LHsDecl RdrName) }
487
488
489
        : topdecls ';' topdecl		        { $1 `appOL` $3 }
        | topdecls ';'			        { $1 }
	| topdecl			        { $1 }
490

491
topdecl :: { OrdList (LHsDecl RdrName) }
492
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
493
  	| ty_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
494
495
496
	  | 'instance' inst_type where
		{ let (binds, sigs, ats, _) = cvBindsAndSigs (unLoc $3)
		  in unitOL (L (comb3 $1 $2 $3) (InstD (InstDecl $2 binds sigs ats))) }
497
        | stand_alone_deriving                  { unitOL (LL (DerivD (unLoc $1))) }
498
499
500
501
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
502
503
      	| decl					{ unLoc $1 }

504
505
506
507
508
509
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

510
511
512
513
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
	: 'class' tycl_hdr fds where
514
		{% do { let { (binds, sigs, ats, docs)           = 
515
			        cvBindsAndSigs (unLoc $4)
516
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
517
                      ; checkTyVars tparms      -- only type vars allowed
518
		      ; checkKindSigs ats
519
520
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
521
					        (unLoc $3) sigs binds ats docs) } }
522

523
-- Type declarations (toplevel)
524
525
--
ty_decl :: { LTyClDecl RdrName }
526
527
528
529
530
531
           -- ordinary type synonyms
        : 'type' type '=' ctype
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
532
533
	        --
		-- Note the use of type for the head; this allows
534
535
536
537
538
539
540
		-- infix type constructors to be declared 
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs Nothing $4)) 
                      } }

           -- type family declarations
541
        | 'type' 'family' type opt_kind_sig 
542
543
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
544
		--
545
546
547
548
549
550
 		{% do { (tc, tvs, _) <- checkSynHdr $3 False
		      ; let kind = case unLoc $4 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
		      ; return (L (comb3 $1 $3 $4) 
				  (TyFunction tc tvs False kind))
551
552
553
554
555
556
557
558
559
560
561
		      } }

           -- type instance declarations
        | 'type' 'instance' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $3 True
		      ; return (L (comb2 $1 $5) 
				  (TySynonym tc tvs (Just typats) $5)) 
                      } }
562

563
          -- ordinary data type or newtype declaration
564
	| data_or_newtype tycl_hdr constrs deriving
565
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
566
                      ; checkTyVars tparms    -- no type pattern
567
568
569
570
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
571
572
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			       Nothing (reverse (unLoc $3)) (unLoc $4)) } }
573

574
          -- ordinary GADT declaration
575
        | data_or_newtype tycl_hdr opt_kind_sig 
576
		 'where' gadt_constrlist
577
		 deriving
578
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
579
                      ; checkTyVars tparms    -- can have type pats
580
581
		      ; return $
			  L (comb4 $1 $2 $4 $5)
582
583
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
584

585
          -- data/newtype family
586
        | data_or_newtype 'family' tycl_hdr opt_kind_sig
587
588
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                      ; checkTyVars tparms    -- no type pattern
589
590
591
		      ; let kind = case unLoc $4 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
592
		      ; return $
593
			  L (comb3 $1 $2 $4)
594
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
595
			      (Just kind) [] Nothing) } }
596

597
          -- data/newtype instance declaration
598
599
600
601
602
603
604
605
606
607
	| data_or_newtype 'instance' tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $4 $5)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $4)) (unLoc $5)) } }

608
          -- GADT instance declaration
609
610
611
612
613
614
615
616
        | data_or_newtype 'instance' tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $6 $7)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
617
			       (unLoc $4) (reverse (unLoc $6)) (unLoc $7)) } }
618

619
620
621
622
-- Associate type declarations
--
at_decl :: { LTyClDecl RdrName }
           -- type family declarations
623
        : 'type' type opt_kind_sig
624
625
626
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
		--
627
628
629
630
631
632
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; let kind = case unLoc $3 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
		      ; return (L (comb3 $1 $2 $3) 
				  (TyFunction tc tvs False kind))
633
634
635
		      } }

           -- type instance declarations
636
        | 'type' type '=' ctype
637
638
639
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
640
641
642
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
                      } }

          -- data/newtype family
        | data_or_newtype tycl_hdr '::' kind
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                      ; checkTyVars tparms    -- no type pattern
		      ; return $
			  L (comb3 $1 $2 $4)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (Just (unLoc $4)) [] Nothing) } }

        -- data/newtype instance declaration
	| data_or_newtype tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $3)) (unLoc $4)) } }

        -- GADT instance declaration
        | data_or_newtype tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $5 $6)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
674
			     (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
675

676
677
678
679
opt_iso :: { Bool }
	:       { False }
	| 'iso'	{ True  }

680
681
682
683
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

684
685
686
opt_kind_sig :: { Located (Maybe Kind) }
	: 				{ noLoc Nothing }
	| '::' kind			{ LL (Just (unLoc $2)) }
687

688
-- tycl_hdr parses the header of a class or data type decl,
689
690
691
692
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
693
--      T Int [a]			-- for associated types
694
-- Rather a lot of inlining here, else we get reduce/reduce errors
695
696
697
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
698
		       [LHsType RdrName]) }
699
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
700
701
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

702
703
704
705
706
707
708
709
710
711
-----------------------------------------------------------------------------
-- Stand-alone deriving

-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
  	: 'deriving' qtycon            'for' qtycon  {% do { p <- checkInstType (fmap HsTyVar $2)
				                           ; checkDerivDecl (LL (DerivDecl p $4)) } }

        | 'deriving' '(' inst_type ')' 'for' qtycon  {% checkDerivDecl (LL (DerivDecl $3 $6)) }

712
713
714
-----------------------------------------------------------------------------
-- Nested declarations

715
716
717
-- Type declaration or value declaration
--
tydecl  :: { Located (OrdList (LHsDecl RdrName)) }
718
tydecl  : at_decl		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
	| decl                          { $1 }

tydecls	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: tydecls ';' tydecl		{ LL (unLoc $1 `appOL` unLoc $3) }
	| tydecls ';'			{ LL (unLoc $1) }
	| tydecl			{ $1 }
	| {- empty -}			{ noLoc nilOL }


tydecllist 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'            tydecls '}'	{ LL (unLoc $2) }
	|     vocurly    tydecls close	{ $2 }

-- Form of the body of class and instance declarations
--
where 	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' tydecllist		{ LL (unLoc $2) }
	| {- empty -}			{ noLoc nilOL }

741
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
742
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
743
	| decls ';'			{ LL (unLoc $1) }
744
	| decl				{ $1 }
745
	| {- empty -}			{ noLoc nilOL }
746

747
decllist :: { Located (OrdList (LHsDecl RdrName)) }
748
749
750
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

751
752
-- Binding groups other than those of class and instance declarations
--
753
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
754
						-- No type declarations
755
756
757
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
758

759
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
760
						-- No type declarations
761
	: 'where' binds			{ LL (unLoc $2) }
762
	| {- empty -}			{ noLoc emptyLocalBinds }
763
764
765
766
767


-----------------------------------------------------------------------------
-- Transformation Rules

768
rules	:: { OrdList (LHsDecl RdrName) }
769
	:  rules ';' rule			{ $1 `snocOL` $3 }
770
        |  rules ';'				{ $1 }
771
772
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
773

774
rule  	:: { LHsDecl RdrName }
775
	: STRING activation rule_forall infixexp '=' exp
776
777
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
778
				  $3 $4 placeHolderNames $6 placeHolderNames) }
779

780
781
782
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

803
deprecations :: { OrdList (LHsDecl RdrName) }
804
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
805
	| deprecations ';' 			{ $1 }
806
807
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
808
809

-- SUP: TEMPORARY HACK, not checking for `module Foo'
810
deprecation :: { OrdList (LHsDecl RdrName) }
811
	: depreclist STRING
812
813
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
814
815
816
817
818
819


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
820
fdecl : 'import' callconv safety fspec
821
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
822
      | 'import' callconv        fspec		
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
839
840
       : STRING var '::' sigtypedoc     { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtypedoc     { LL (noLoc nilFS, $1, $3) }
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

856
sigtypes1 :: { [LHsType RdrName] }
857
	: sigtype			{ [ $1 ] }
858
	| sigtype ',' sigtypes1		{ $1 : $3 }
859
860
861
862
863

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

864
865
866
867
sigtypedoc :: { LHsType RdrName }
	: ctypedoc			{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

868
869
870
871
872
873
874
sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
infixtype :: { LHsType RdrName }
	: btype qtyconop gentype         { LL $ HsOpTy $1 $2 $3 }
        | btype tyvarop  gentype  	 { LL $ HsOpTy $1 $2 $3 }

infixtypedoc :: { LHsType RdrName }
        : infixtype                      { $1 }
	| infixtype docprev              { LL $ HsDocTy $1 $2 }

gentypedoc :: { LHsType RdrName }
        : btype                          { $1 }
        | btypedoc                       { $1 }
        | infixtypedoc                   { $1 }
        | btype '->' ctypedoc            { LL $ HsFunTy $1 $3 }
        | btypedoc '->' ctypedoc         { LL $ HsFunTy $1 $3 }

ctypedoc  :: { LHsType RdrName }
        : 'forall' tv_bndrs '.' ctypedoc { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
        | context '=>' gentypedoc        { LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| gentypedoc			 { $1 }
	
896
897
898
899
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
context :: { LHsContext RdrName }
	: btype 			{% checkContext $1 }

type :: { LHsType RdrName }
915
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
916
917
918
919
920
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
921
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
922
 	| btype '->' ctype		{ LL $ HsFunTy $1 $3 }
923
924
925
926
927

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

928
929
930
931
btypedoc :: { LHsType RdrName }
	: btype atype docprev		{ LL $ HsDocTy (L (comb2 $1 $2) (HsAppTy $1 $2)) $3 }
        | atype docprev                 { LL $ HsDocTy $1 $2 }

932
933
atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
934
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
935
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
936
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
937
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
938
939
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
940
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
941
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
942
943
944
945
946
947
948
949
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
950
	: sigtype			{% checkInstType $1 }
951

952
953
954
955
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

956
957
958
959
960
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
961
962
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
963
964
965
966
967
968
969

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
970
971
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

992
kind	:: { Located Kind }
993
	: akind			{ $1 }
994
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
995

996
997
998
999
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
1000
1001
1002
1003
1004


-----------------------------------------------------------------------------
-- Datatype declarations

1005
1006
1007
1008
1009
1010
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
1011
        | gadt_constrs ';' 		{ $1 }
1012
1013
        | gadt_constr                   { L1 [$1] } 

1014
1015
1016
1017
1018
1019
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

1020
gadt_constr :: { LConDecl RdrName }
1021
        : con '::' sigtype
1022
1023
1024
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
1025
        -- XXX revisit audreyt
1026
1027
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
1028
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3) Nothing) }
1029
1030
1031
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
1032
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6) Nothing ) }
1033
1034
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
1035
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4) Nothing) }
1036
1037
-}

1038
1039
1040

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
1041
        | maybe_docnext '=' constrs1    { L (comb2 $2 $3) (addConDocs (unLoc $3) $1) }
1042
1043

constrs1 :: { Located [LConDecl RdrName] }
1044
1045
	: constrs1 maybe_docnext '|' maybe_docprev constr { LL (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4) }
	| constr			                  { L1 [$1] }
1046
1047

constr :: { LConDecl RdrName }
1048
1049
1050
1051
1052
1053
	: maybe_docnext forall context '=>' constr_stuff maybe_docprev	
		{ let (con,details) = unLoc $5 in 
		  L (comb4 $2 $3 $4 $5) (ConDecl con Explicit (unLoc $2) $3 details ResTyH98 ($1 `mplus` $6)) }
	| maybe_docnext forall constr_stuff maybe_docprev
		{ let (con,details) = unLoc $3 in 
		  L (comb2 $2 $3) (ConDecl con Explicit (unLoc $2) (noLoc []) details ResTyH98 ($1 `mplus` $4)) }
1054
1055
1056
1057
1058
1059

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
1060
1061
1062
1063
1064
1065
1066
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
1067
1068
1069
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
1070
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
1071

1072
1073
1074
1075
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

1076
1077
1078
fielddecls :: { [([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName))] }
	: fielddecl maybe_docnext ',' maybe_docprev fielddecls { addFieldDoc (unLoc $1) $4 : addFieldDocs $5 $2 }
	| fielddecl			                       { [unLoc $1] }
1079

1080
1081
fielddecl :: { Located ([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName)) }
	: maybe_docnext sig_vars '::' ctype maybe_docprev      { L (comb3 $2 $3 $4) (reverse (unLoc $2), $4, $1 `mplus` $5) }
1082

1083
1084
1085
1086
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
1087
1088
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
1089
1090
1091
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
1092
1093
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

1120
1121
1122
1123
1124
1125
1126
1127
1128
docdecl :: { LHsDecl RdrName }
        : docdecld { L1 (DocD (unLoc $1)) }

docdecld :: { LDocDecl RdrName }
        : docnext                               { L1 (DocCommentNext (unLoc $1)) }
        | docprev                               { L1 (DocCommentPrev (unLoc $1)) }
        | docnamed                              { L1 (case (unLoc $1) of (n, doc) -> DocCommentNamed n doc) }
        | docsection                            { L1 (case (unLoc $1) of (n, doc) -> DocGroup n doc) }

1129
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
1130
	: sigdecl			{ $1 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1131
	| '!' infixexp rhs		{% do { pat <- checkPattern $2;
1132
					        return (LL $ unitOL $ LL $ ValD ( 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1133
							PatBind (LL $ BangPat pat) (unLoc $3)
1134
								placeHolderType placeHolderNames)) } }
1135
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
1136
						return (LL $ unitOL (LL $ ValD r)) } }
1137
        | docdecl                       { LL $ unitOL $1 }
1138
1139

rhs	:: { Located (GRHSs RdrName) }
1140
1141
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
1142
1143
1144
1145
1146
1147

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
1148
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1149

1150
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
1151
	: infixexp '::' sigtypedoc
1152
				{% do s <- checkValSig $1 $3; 
1153
				      return (LL $ unitOL (LL $ SigD s)) }
1154
		-- See the above notes for why we need infixexp here
1155
	| var ',' sig_vars '::' sigtypedoc
1156
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
1157
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
1158
1159
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
1160
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
1161
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
1162
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec) 
1163
					    | t <- $4] }
1164
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
1165
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
1166
					    | t <- $5] }
1167
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
1168
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
1169
1170
1171
1172
1173
1174

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
ross's avatar
ross committed
1175
1176
1177
1178
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
1179
1180
1181
1182
1183
1184
1185
1186
1187
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
	: '\\' aexp aexps opt_asig '->' exp	
			{% checkPatterns ($2 : reverse $3) >>= \ ps -> 
1188
			   return (LL $ HsLam (mkMatchGroup [LL $ Match ps $4
1189
1190
							    	  (unguardedGRHSs $6)
							    ])) }
1191
1192
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
1193
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
1194
1195
1196
	| '-' fexp				{ LL $ mkHsNegApp $2 }

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
1197
1198
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
1199
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
1200
1201
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexps 	:: { [LHsExpr RdrName] }
	: aexps aexp				{ $2 : $1 }
  	| {- empty -}				{ [] }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1231
--	| '!' aexp			{ LL $ EBangPat $2 }
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) 
							(reverse $3);
				        return (LL r) }}
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
 	| qcname '{|' gentype '|}'      { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
						     (sL (getLoc $3) (HsType $3)) }

aexp2	:: { LHsExpr RdrName }
	: ipvar				{ L1 (HsIPVar $! unLoc $1) }
	| qcname			{ L1 (HsVar   $! unLoc $1) }
	| literal			{ L1 (HsLit   $! unLoc $1) }
	| INTEGER			{ L1 (HsOverLit $! mkHsIntegral (getINTEGER $1)) }
	| RATIONAL			{ L1 (HsOverLit $! mkHsFractional (getRATIONAL $1)) }
	| '(' exp ')'			{ LL (HsPar $2) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1255
	| '(' texp ',' texps ')'	{ LL $ ExplicitTuple ($2 : reverse $4) Boxed }
1256
1257
1258
1259
1260
1261
1262
	| '(#' texps '#)'		{ LL $ ExplicitTuple (reverse $2)      Unboxed }
	| '[' list ']'                  { LL (unLoc $2) }
	| '[:' parr ':]'                { LL (unLoc $2) }
	| '(' infixexp qop ')'		{ LL $ SectionL $2 $3 }
	| '(' qopm infixexp ')'		{ LL $ SectionR $2 $3 }
	| '_'				{ L1 EWildPat }
	
1263
	-- Template Haskell Extension
1264
	| TH_ID_SPLICE          { L1 $ HsSpliceE (mkHsSplice 
1265
					(L1 $ HsVar (mkUnqual varName 
1266
1267
1268
							(getTH_ID_SPLICE $1)))) } -- $x
	| '$(' exp ')'   	{ LL $ HsSpliceE (mkHsSplice $2) }               -- $( exp )

1269
	| TH_VAR_QUOTE qvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1270
	| TH_VAR_QUOTE qcon 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
	| TH_TY_QUOTE tyvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
 	| TH_TY_QUOTE gtycon	{ LL $ HsBracket (VarBr (unLoc $2)) }
	| '[|' exp '|]'         { LL $ HsBracket (ExpBr $2) }                       
	| '[t|' ctype '|]'      { LL $ HsBracket (TypBr $2) }                       
	| '[p|' infixexp '|]'   {% checkPattern $2 >>= \p ->
					   return (LL $ HsBracket (PatBr p)) }
	| '[d|' cvtopbody '|]'	{ LL $ HsBracket (DecBr (mkGroup $2)) }

	-- arrow notation extension
	| '(|' aexp2 cmdargs '|)'	{ LL $ HsArrForm $2 Nothing (reverse $3) }

cmdargs	:: { [LHsCmdTop RdrName] }
	: cmdargs acmd			{ $2 : $1 }
  	| {- empty -}			{ [] }

acmd	:: { LHsCmdTop RdrName }
	: aexp2			{ L1 $ HsCmdTop $1 [] placeHolderType undefined }

cvtopbody :: { [LHsDecl RdrName] }
1290
1291
1292
1293
1294
1295
	:  '{'            cvtopdecls0 '}'		{ $2 }
	|      vocurly    cvtopdecls0 close		{ $2 }

cvtopdecls0 :: { [LHsDecl RdrName] }
	: {- empty -}		{ [] }
	| cvtopdecls		{ $1 }
1296

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1297
1298
1299
1300
1301
1302
texp :: { LHsExpr RdrName }
	: exp				{ $1 }
	| qopm infixexp			{ LL $ SectionR $1 $2 }
	-- The second production is really here only for bang patterns
	-- but 

1303
texps :: { [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1304
1305
	: texps ',' texp		{ $3 : $1 }
	| texp				{ [$1] }
1306
1307
1308
1309
1310
1311
1312
1313
1314


-----------------------------------------------------------------------------
-- List expressions

-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.

list :: { LHsExpr RdrName }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1315
	: texp			{ L1 $ ExplicitList placeHolderType [$1] }
1316
	| lexps 		{ L1 $ ExplicitList placeHolderType (reverse (unLoc $1)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1317
1318