DsBinds.hs 47.8 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import Digraph
39

40
import PrelNames
41
import TysPrim ( mkProxyPrimTy )
42
import TyCon
43
import TcEvidence
44
import TcType
45
import Type
46 47
import Coercion
import TysWiredIn ( mkListTy, mkBoxedTupleTy, charTy
48
                  , typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
49
import Id
50
import MkId(proxyHashId)
51
import Class
52
import DataCon  ( dataConTyCon )
53
import Name
54
import IdInfo   ( IdDetails(..) )
55
import VarSet
Simon Marlow's avatar
Simon Marlow committed
56
import Rules
57
import VarEnv
58
import Outputable
59
import Module
Simon Marlow's avatar
Simon Marlow committed
60 61
import SrcLoc
import Maybes
62
import OrdList
Simon Marlow's avatar
Simon Marlow committed
63 64
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
65
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
66
import FastString
67
import Util
68
import MonadUtils
69
import Control.Monad
70

71
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
72
*                                                                      *
73
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
74
*                                                                      *
75
**********************************************************************-}
76

77 78
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
79
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
80
dsTopLHsBinds binds = fmap (toOL . snd) (ds_lhs_binds binds)
81

82 83 84 85 86 87
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding gorup body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds Id
           -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds = do { (force_vars, binds') <- ds_lhs_binds binds
                      ; return (force_vars, binds') }
88 89

------------------------
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
ds_lhs_binds :: LHsBinds Id -> DsM ([Id], [(Id,CoreExpr)])

ds_lhs_binds binds
  = do { ds_bs <- mapBagM dsLHsBind binds
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

dsLHsBind :: LHsBind Id
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
         -> HsBind Id
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
116 117
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
118
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
119
                   | otherwise         = var
120 121 122 123 124 125 126 127
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
              force_var = if xopt Opt_Strict dflags
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
128
                  , fun_co_fn = co_fn, fun_tick = tick })
129
 = do   { (args, body) <- matchWrapper (FunRhs (idName fun)) Nothing matches
130
        ; let body' = mkOptTickBox tick body
131
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
132 133 134 135 136 137
        ; let core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
              force_var =
                if xopt Opt_Strict dflags
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
138
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
139
           return (force_var, [core_binds]) }
140

141 142
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
143
                  , pat_ticks = (rhs_tick, var_ticks) })
144
  = do  { body_expr <- dsGuarded grhss ty
145
        ; let body' = mkOptTickBox rhs_tick body_expr
146 147 148
              (is_strict,pat') = getUnBangedLPat dflags pat
        ; (force_var,sel_binds) <-
            mkSelectorBinds is_strict var_ticks pat' body'
149 150
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
151 152 153 154
        ; let force_var' = if is_strict
                           then maybe [] (\v -> [v]) force_var
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
155

156
        -- A common case: one exported variable, only non-strict binds
157 158 159
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
160 161
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
162 163
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
164 165
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
166 167
  , not (xopt Opt_Strict dflags)                 -- handle strict binds
  , not (anyBag (isBangedPatBind . unLoc) binds) -- in the next case
168 169 170
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (_, bind_prs) <- ds_lhs_binds binds
171
        ; let core_bind = Rec bind_prs
172
        ; ds_binds <- dsTcEvBinds_s ev_binds
173
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
174 175 176 177
                 mkLams tyvars $ mkLams dicts $
                 mkCoreLets ds_binds $
                 Let core_bind $
                 Var local
178

179 180
        ; (spec_binds, rules) <- dsSpecs rhs prags

181
        ; let   global'  = addIdSpecialisations global rules
182 183 184
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

185
        ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
186

187 188
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
189 190
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
191
         -- See Note [Desugaring AbsBinds]
192 193 194
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (local_force_vars, bind_prs) <- ds_lhs_binds binds
195
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
196
                              | (lcl_id, rhs) <- bind_prs ]
197
                -- Monomorphic recursion possible, hence Rec
198
              new_force_vars = get_new_force_vars local_force_vars
199
              locals       = map abe_mono exports
200 201
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
202
              tup_ty       = exprType tup_expr
203
        ; ds_binds <- dsTcEvBinds_s ev_binds
204 205 206 207
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
208

209
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
210

211 212 213 214 215
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

216
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
217
                           , abe_mono = local, abe_prags = spec_prags })
218 219
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
220
                                 mkLams tyvars $ mkLams dicts $
221
                                 mkTupleSelector all_locals local tup_id $
222
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
223
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
224 225
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
226 227 228
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
229
                           -- Id is just the selector.  Hmm.
230
                     ; return ((global', rhs) : fromOL spec_binds) }
231

232
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
233

234 235 236
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
237 238 239 240 241
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
242 243 244 245
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
246 247

    add_inline :: Id -> Id    -- tran
248 249
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
    get_exports :: [Id] -> DsM ([Id], [ABExport Id])
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
                     ,abe_prags = SpecPrags []})

dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

Gergő Érdi's avatar
Gergő Érdi committed
285

286
------------------------
287 288
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
289
  | is_default_method                 -- Default methods are *always* inlined
290 291
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

292
  | DFunId is_newtype <- idDetails gbl_id
293 294
  = (mk_dfun_w_stuff is_newtype, rhs)

295 296
  | otherwise
  = case inlinePragmaSpec inline_prag of
297 298 299
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
300
          Inline          -> inline_pair
301

302 303
  where
    inline_prag   = idInlinePragma gbl_id
304
    inlinable_unf = mkInlinableUnfolding dflags rhs
305 306
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
307 308
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
309
       , let real_arity = dict_arity + arity
310
        -- NB: The arity in the InlineRule takes account of the dictionaries
311 312 313 314 315 316
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
317

318 319 320
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
321
       | is_newtype
322 323 324 325 326 327 328 329 330 331 332 333
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

334 335 336 337

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
338

Austin Seipp's avatar
Austin Seipp committed
339
{-
340 341
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
342 343 344 345 346 347 348 349
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

350 351 352 353 354
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
355 356
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
357
But we don't want that, because if M.f isn't exported,
358 359
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
360 361 362
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
363 364 365
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
366 367 368 369
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
370
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
371
Although I'm a bit worried about whether full laziness might
372
float the f_lcl binding out and then inline M.f at its call site
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

388
The top-level AbsBinds for $cround has no tyvars or dicts (because the
389 390 391 392 393 394 395
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

396 397 398 399 400
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
401 402 403

and desugar it to

404 405 406
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
407 408

where B is the *non-recursive* binding
409 410 411
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
412 413

Notice (a) g has a different number of type variables to f, so we must
414 415
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
416

417 418 419 420
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
421

422 423 424 425
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
426 427

Why got to this trouble?  It's a common case, and it removes the
428
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
429 430 431 432
compilation, especially in a case where there are a *lot* of
bindings.


433 434 435 436 437 438 439 440
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
441
happen as a result of method sharing), there's a danger that we never
442 443 444 445
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
446
has the arity with which it is declared in the source code.  In this
447
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
448
should mean that (foo d) is a PAP and we don't share it.
449 450 451

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
452 453 454 455 456 457 458 459 460 461 462 463 464 465
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
522
The simplest thing is to return it in the polymorphic
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Austin Seipp's avatar
Austin Seipp committed
540
-}
541

542
------------------------
543
dsSpecs :: CoreExpr     -- Its rhs
544
        -> TcSpecPrags
545 546
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
547
-- See Note [Handling SPECIALISE pragmas] in TcBinds
548 549 550 551 552 553
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

554 555 556
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
557 558 559
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
560
  | isJust (isClassOpId_maybe poly_id)
561 562
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
563 564
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
565 566
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
567

568 569
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
570 571 572
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
573
                            -- See Note [Activation pragmas for SPECIALISE]
574

575
  | otherwise
576
  = putSrcSpanDs loc $
577 578
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
579 580
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
581 582 583
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
584 585 586 587
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
588
           Left msg -> do { warnDs msg; return Nothing } ;
589
           Right (rule_bndrs, _fn, args) -> do
590

591
       { dflags <- getDynFlags
592
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
593 594 595 596
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
597 598 599
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
600
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
601
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
602 603 604
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
605

606
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
607

608 609 610 611
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
--              (warnDs $ ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
612 613 614 615 616

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
617 618 619 620
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
621
             = rhs          -- Local Id; this is its rhs
622 623
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
624 625 626
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
627
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
628
                            -- The type checker has checked that it *has* an unfolding
629

630 631 632 633 634
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
635
                                 -- in OccurAnal
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


653 654 655 656 657 658 659 660 661 662 663
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
        warnDs (ruleOrphWarn rule)
    return rule

ruleOrphWarn :: CoreRule -> SDoc
ruleOrphWarn rule = ptext (sLit "Orphan rule:") <+> ppr rule
664

665 666 667 668 669 670 671 672 673 674 675 676 677
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

678 679 680 681 682 683 684 685
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

686
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
708
SPEC [n] f :: ty            [n]   INLINE [k]
709 710 711 712 713 714 715 716 717 718
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
719 720
************************************************************************
*                                                                      *
721
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
722 723 724
*                                                                      *
************************************************************************
-}
725

726
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
727 728
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
729
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
730
--
731
-- Returns Nothing if the LHS isn't of the expected shape
732 733 734 735 736 737
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

738 739
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
740 741 742
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
743 744
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
745
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
746
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
747

748
  | otherwise
749
  = Left bad_shape_msg
750
 where
751 752 753 754
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

755 756
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
757

758
   orig_bndr_set = mkVarSet orig_bndrs
759

760
        -- Add extra dict binders: Note [Free dictionaries]
761 762 763 764 765 766 767 768 769 770 771 772
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
773 774

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
775 776
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
777
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
778
                             , ptext (sLit "is not bound in RULE lhs")])
779 780 781
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
782
   pp_bndr bndr
783 784 785
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
786 787

   drop_dicts :: CoreExpr -> CoreExpr
788
   drop_dicts e
789 790 791
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
792
       (bnds, body) = split_lets (occurAnalyseExpr e)
793
           -- The occurAnalyseExpr drops dead bindings which is
794 795
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
796 797

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
798 799
   split_lets (Let (NonRec d r) body)
     | isDictId d
800
     = ((d,r):bs, body')
801 802 803 804 805 806 807 808 809
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
810 811 812 813

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
814
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
815 816 817 818
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
819

Austin Seipp's avatar
Austin Seipp committed
820
{-
821
Note [Decomposing the left-hand side of a RULE]
822
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
823
There are several things going on here.
824 825
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
826
* extra_dict_bndrs: see Note [Free dictionaries]
827 828 829

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
830
drop_dicts drops dictionary bindings on the LHS where possible.
831 832
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
833
   Reasoning here is that there is only one d:Eq [Int], and so we can
834 835 836 837
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
838
         one of the orig_bndrs, which we assume occur on RHS.
839 840 841 842 843 844
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
845
         to match, but there is no other way to get d:Eq a
846

847
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
848 849 850 851 852 853
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
854
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
855 856 857 858 859 860
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
861
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
862 863
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

864 865 866
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

867 868 869 870 871 872 873 874 875 876
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
877
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
878 879 880 881 882 883
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


884 885 886 887
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

888
   (a) Inline any remaining dictionary bindings (which hopefully
889 890 891
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
892
       Note that we substitute the function too; we might
893 894
       have this as a LHS:  let f71 = M.f Int in f71

895
   (c) Do eta reduction.  To see why, consider the fold/build rule,
896 897 898 899
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
900
         augment g (build h)
901
       we do not want to get
902
         augment (\a. g a) (build h)
903 904
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
905

906
Note [Matching seqId]
907 908
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
909
and this code turns it back into an application of seq!
910 911
See Note [Rules for seq] in MkId for the details.

912 913 914
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
915
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
916
        ... SPECIALISE f :: Eq a => a -> a ...
917 918
It's true that this *is* a more specialised type, but the rule
we get is something like this:
919 920
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
921 922
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
923 924 925 926
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

927 928
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
929 930
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
931 932 933
over it too.  *Any* dict with that type will do.

So for example when you have
934 935
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
936
        ... SPECIALISE f :: Int -> Int ...