Interpreter.c 32.3 KB
Newer Older
1
/* -----------------------------------------------------------------------------
2
 * Bytecode interpreter
3
 *
4
 * Copyright (c) The GHC Team, 1994-2002.
5
6
 * ---------------------------------------------------------------------------*/

7
#include "PosixSource.h"
8
9
#include "Rts.h"
#include "RtsAPI.h"
10
#include "RtsUtils.h"
11
12
13
14
#include "Closures.h"
#include "TSO.h"
#include "Schedule.h"
#include "RtsFlags.h"
15
#include "Storage.h"
16
#include "LdvProfile.h"
17
#include "Updates.h"
18
#include "Sanity.h"
19
#include "Liveness.h"
20

21
#include "Bytecodes.h"
22
23
#include "Printer.h"
#include "Disassembler.h"
24
#include "Interpreter.h"
25

26
27
28
29
30
#include <string.h>     /* for memcpy */
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif

andy's avatar
andy committed
31

32
/* --------------------------------------------------------------------------
33
 * The bytecode interpreter
34
35
 * ------------------------------------------------------------------------*/

36
37
38
39
40
41
/* Gather stats about entry, opcode, opcode-pair frequencies.  For
   tuning the interpreter. */

/* #define INTERP_STATS */


42
/* Sp points to the lowest live word on the stack. */
43

44
45
#define BCO_NEXT      instrs[bciPtr++]
#define BCO_PTR(n)    (W_)ptrs[n]
46
#define BCO_LIT(n)    literals[n]
47
#define BCO_ITBL(n)   itbls[n]
48

49
50
51
52
#define LOAD_STACK_POINTERS					\
    Sp = cap->r.rCurrentTSO->sp;				\
    /* We don't change this ... */				\
    SpLim = cap->r.rCurrentTSO->stack + RESERVED_STACK_WORDS;
53

54
55
#define SAVE_STACK_POINTERS			\
    cap->r.rCurrentTSO->sp = Sp
56

57
#define RETURN_TO_SCHEDULER(todo,retcode)	\
58
59
60
61
62
63
64
65
   SAVE_STACK_POINTERS;				\
   cap->r.rCurrentTSO->what_next = (todo);	\
   threadPaused(cap->r.rCurrentTSO);		\
   return (retcode);

#define RETURN_TO_SCHEDULER_NO_PAUSE(todo,retcode)	\
   SAVE_STACK_POINTERS;				\
   cap->r.rCurrentTSO->what_next = (todo);	\
66
   return (retcode);
67
68


sof's avatar
sof committed
69
STATIC_INLINE StgPtr
70
allocate_UPD (int n_words)
71
{
72
   return allocate(stg_max(sizeofW(StgHeader)+MIN_UPD_SIZE, n_words));
73
74
}

sof's avatar
sof committed
75
STATIC_INLINE StgPtr
76
allocate_NONUPD (int n_words)
77
{
78
    return allocate(stg_max(sizeofW(StgHeader)+MIN_NONUPD_SIZE, n_words));
79
80
81
}


82
#ifdef INTERP_STATS
83

84
85
86
87
88
89
90
91
92
93
94
95
96
/* Hacky stats, for tuning the interpreter ... */
int it_unknown_entries[N_CLOSURE_TYPES];
int it_total_unknown_entries;
int it_total_entries;

int it_retto_BCO;
int it_retto_UPDATE;
int it_retto_other;

int it_slides;
int it_insns;
int it_BCO_entries;

97
98
int it_ofreq[27];
int it_oofreq[27][27];
99
100
int it_lastopc;

101
102
#define INTERP_TICK(n) (n)++

103
104
105
106
107
108
109
110
void interp_startup ( void )
{
   int i, j;
   it_retto_BCO = it_retto_UPDATE = it_retto_other = 0;
   it_total_entries = it_total_unknown_entries = 0;
   for (i = 0; i < N_CLOSURE_TYPES; i++)
      it_unknown_entries[i] = 0;
   it_slides = it_insns = it_BCO_entries = 0;
111
112
113
   for (i = 0; i < 27; i++) it_ofreq[i] = 0;
   for (i = 0; i < 27; i++) 
     for (j = 0; j < 27; j++)
114
115
116
117
118
119
120
        it_oofreq[i][j] = 0;
   it_lastopc = 0;
}

void interp_shutdown ( void )
{
   int i, j, k, o_max, i_max, j_max;
121
   debugBelch("%d constrs entered -> (%d BCO, %d UPD, %d ??? )\n",
122
123
                   it_retto_BCO + it_retto_UPDATE + it_retto_other,
                   it_retto_BCO, it_retto_UPDATE, it_retto_other );
124
   debugBelch("%d total entries, %d unknown entries \n", 
125
126
127
                   it_total_entries, it_total_unknown_entries);
   for (i = 0; i < N_CLOSURE_TYPES; i++) {
     if (it_unknown_entries[i] == 0) continue;
128
     debugBelch("   type %2d: unknown entries (%4.1f%%) == %d\n",
129
130
131
132
	     i, 100.0 * ((double)it_unknown_entries[i]) / 
                        ((double)it_total_unknown_entries),
             it_unknown_entries[i]);
   }
133
   debugBelch("%d insns, %d slides, %d BCO_entries\n", 
134
                   it_insns, it_slides, it_BCO_entries);
135
   for (i = 0; i < 27; i++) 
136
      debugBelch("opcode %2d got %d\n", i, it_ofreq[i] );
137
138
139
140

   for (k = 1; k < 20; k++) {
      o_max = 0;
      i_max = j_max = 0;
141
142
      for (i = 0; i < 27; i++) {
         for (j = 0; j < 27; j++) {
143
144
145
146
147
148
149
	    if (it_oofreq[i][j] > o_max) {
               o_max = it_oofreq[i][j];
	       i_max = i; j_max = j;
	    }
	 }
      }
      
150
      debugBelch("%d:  count (%4.1f%%) %6d   is %d then %d\n",
151
152
153
154
155
156
157
                k, ((double)o_max) * 100.0 / ((double)it_insns), o_max,
                   i_max, j_max );
      it_oofreq[i_max][j_max] = 0;

   }
}

158
159
160
161
162
#else // !INTERP_STATS

#define INTERP_TICK(n) /* nothing */

#endif
163

164
165
166
167
168
169
170
171
172
173
174
static StgWord app_ptrs_itbl[] = {
    (W_)&stg_ap_p_info,
    (W_)&stg_ap_pp_info,
    (W_)&stg_ap_ppp_info,
    (W_)&stg_ap_pppp_info,
    (W_)&stg_ap_ppppp_info,
    (W_)&stg_ap_pppppp_info,
};

StgThreadReturnCode
interpretBCO (Capability* cap)
175
{
176
177
178
179
180
181
    // Use of register here is primarily to make it clear to compilers
    // that these entities are non-aliasable.
    register StgPtr       Sp;    // local state -- stack pointer
    register StgPtr       SpLim; // local state -- stack lim pointer
    register StgClosure*  obj;
    nat n, m;
182

183
184
    LOAD_STACK_POINTERS;

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    // ------------------------------------------------------------------------
    // Case 1:
    // 
    //       We have a closure to evaluate.  Stack looks like:
    //       
    //      	|   XXXX_info   |
    //      	+---------------+
    //       Sp |      -------------------> closure
    //      	+---------------+
    //       
    if (Sp[0] == (W_)&stg_enter_info) {
	Sp++;
	goto eval;
    }

    // ------------------------------------------------------------------------
    // Case 2:
    // 
    //       We have a BCO application to perform.  Stack looks like:
    //
    //      	|     ....      |
    //      	+---------------+
    //      	|     arg1      |
    //      	+---------------+
    //      	|     BCO       |
    //      	+---------------+
    //       Sp |   RET_BCO     |
    //      	+---------------+
    //       
    else if (Sp[0] == (W_)&stg_apply_interp_info) {
	obj = (StgClosure *)Sp[1];
	Sp += 2;
	goto run_BCO_fun;
    }

    // ------------------------------------------------------------------------
    // Case 3:
    //
    //       We have an unboxed value to return.  See comment before
    //       do_return_unboxed, below.
    //
    else {
	goto do_return_unboxed;
    }

    // Evaluate the object on top of the stack.
eval:
    obj = (StgClosure*)Sp[0]; Sp++;

eval_obj:
    INTERP_TICK(it_total_evals);

    IF_DEBUG(interpreter,
238
             debugBelch(
239
             "\n---------------------------------------------------------------\n");
240
241
242
             debugBelch("Evaluating: "); printObj(obj);
             debugBelch("Sp = %p\n", Sp);
             debugBelch("\n" );
243

244
             printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
245
             debugBelch("\n\n");
246
            );
247

248
    IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));
249

250
    switch ( get_itbl(obj)->type ) {
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    case IND:
    case IND_OLDGEN:
    case IND_PERM:
    case IND_OLDGEN_PERM:
    case IND_STATIC:
    { 
	obj = ((StgInd*)obj)->indirectee;
	goto eval_obj;
    }
    
    case CONSTR:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_2_0:
    case CONSTR_1_1:
    case CONSTR_0_2:
    case CONSTR_INTLIKE:
    case CONSTR_CHARLIKE:
    case CONSTR_STATIC:
    case CONSTR_NOCAF_STATIC:
    case FUN:
    case FUN_1_0:
    case FUN_0_1:
    case FUN_2_0:
    case FUN_1_1:
    case FUN_0_2:
    case FUN_STATIC:
    case PAP:
	// already in WHNF
	break;
	
    case BCO:
284
	ASSERT(((StgBCO *)obj)->arity > 0);
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
	break;

    case AP:	/* Copied from stg_AP_entry. */
    {
	nat i, words;
	StgAP *ap;
	
	ap = (StgAP*)obj;
	words = ap->n_args;
	
	// Stack check
	if (Sp - (words+sizeofW(StgUpdateFrame)) < SpLim) {
	    Sp -= 2;
	    Sp[1] = (W_)obj;
	    Sp[0] = (W_)&stg_enter_info;
	    RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
	}
	
	/* Ok; we're safe.  Party on.  Push an update frame. */
	Sp -= sizeofW(StgUpdateFrame);
	{
	    StgUpdateFrame *__frame;
	    __frame = (StgUpdateFrame *)Sp;
	    SET_INFO(__frame, (StgInfoTable *)&stg_upd_frame_info);
	    __frame->updatee = (StgClosure *)(ap);
	}
	
	/* Reload the stack */
	Sp -= words;
	for (i=0; i < words; i++) {
	    Sp[i] = (W_)ap->payload[i];
	}

	obj = (StgClosure*)ap->fun;
	ASSERT(get_itbl(obj)->type == BCO);
	goto run_BCO_fun;
    }

    default:
#ifdef INTERP_STATS
    { 
	int j;
	
	j = get_itbl(obj)->type;
	ASSERT(j >= 0 && j < N_CLOSURE_TYPES);
	it_unknown_entries[j]++;
	it_total_unknown_entries++;
    }
#endif
    {
	// Can't handle this object; yield to scheduler
	IF_DEBUG(interpreter,
337
		 debugBelch("evaluating unknown closure -- yielding to sched\n"); 
338
339
340
341
342
		 printObj(obj);
	    );
	Sp -= 2;
	Sp[1] = (W_)obj;
	Sp[0] = (W_)&stg_enter_info;
343
	RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
344
345
346
347
348
349
350
351
352
353
    }
    }

    // ------------------------------------------------------------------------
    // We now have an evaluated object (obj).  The next thing to
    // do is return it to the stack frame on top of the stack.
do_return:
    ASSERT(closure_HNF(obj));

    IF_DEBUG(interpreter,
354
             debugBelch(
355
             "\n---------------------------------------------------------------\n");
356
357
358
             debugBelch("Returning: "); printObj(obj);
             debugBelch("Sp = %p\n", Sp);
             debugBelch("\n" );
359
             printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
360
             debugBelch("\n\n");
361
            );
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));

    switch (get_itbl((StgClosure *)Sp)->type) {

    case RET_SMALL: {
	const StgInfoTable *info;

	// NOTE: not using get_itbl().
	info = ((StgClosure *)Sp)->header.info;
	if (info == (StgInfoTable *)&stg_ap_v_info) {
	    n = 1; m = 0; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_f_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_d_info) {
	    n = 1; m = sizeofW(StgDouble); goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_l_info) {
	    n = 1; m = sizeofW(StgInt64); goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_n_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_p_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pp_info) {
	    n = 2; m = 2; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_ppp_info) {
	    n = 3; m = 3; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pppp_info) {
	    n = 4; m = 4; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_ppppp_info) {
	    n = 5; m = 5; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pppppp_info) {
	    n = 6; m = 6; goto do_apply;
	}
	goto do_return_unrecognised;
    }

    case UPDATE_FRAME:
	// Returning to an update frame: do the update, pop the update
	// frame, and continue with the next stack frame.
	INTERP_TICK(it_retto_UPDATE);
	UPD_IND(((StgUpdateFrame *)Sp)->updatee, obj); 
	Sp += sizeofW(StgUpdateFrame);
	goto do_return;

    case RET_BCO:
	// Returning to an interpreted continuation: put the object on
	// the stack, and start executing the BCO.
	INTERP_TICK(it_retto_BCO);
	Sp--;
	Sp[0] = (W_)obj;
	obj = (StgClosure*)Sp[2];
	ASSERT(get_itbl(obj)->type == BCO);
	goto run_BCO_return;

    default:
    do_return_unrecognised:
    {
	// Can't handle this return address; yield to scheduler
	INTERP_TICK(it_retto_other);
	IF_DEBUG(interpreter,
432
		 debugBelch("returning to unknown frame -- yielding to sched\n"); 
433
434
435
436
437
		 printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
	    );
	Sp -= 2;
	Sp[1] = (W_)obj;
	Sp[0] = (W_)&stg_enter_info;
438
	RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    }
    }

    // -------------------------------------------------------------------------
    // Returning an unboxed value.  The stack looks like this:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     fv2       |
    // 	  +---------------+
    // 	  |     fv1       |
    // 	  +---------------+
    // 	  |     BCO       |
    // 	  +---------------+
    // 	  | stg_ctoi_ret_ |
    // 	  +---------------+
    // 	  |    retval     |
    // 	  +---------------+
    // 	  |   XXXX_info   |
    // 	  +---------------+
    //
    // where XXXX_info is one of the stg_gc_unbx_r1_info family.
    //
    // We're only interested in the case when the real return address
    // is a BCO; otherwise we'll return to the scheduler.

do_return_unboxed:
    { 
	int offset;
	
	ASSERT( Sp[0] == (W_)&stg_gc_unbx_r1_info
		|| Sp[0] == (W_)&stg_gc_unpt_r1_info
		|| Sp[0] == (W_)&stg_gc_f1_info
		|| Sp[0] == (W_)&stg_gc_d1_info
		|| Sp[0] == (W_)&stg_gc_l1_info
		|| Sp[0] == (W_)&stg_gc_void_info // VoidRep
	    );

	// get the offset of the stg_ctoi_ret_XXX itbl
	offset = stack_frame_sizeW((StgClosure *)Sp);

	switch (get_itbl((StgClosure *)Sp+offset)->type) {

	case RET_BCO:
	    // Returning to an interpreted continuation: put the object on
	    // the stack, and start executing the BCO.
	    INTERP_TICK(it_retto_BCO);
	    obj = (StgClosure*)Sp[offset+1];
	    ASSERT(get_itbl(obj)->type == BCO);
	    goto run_BCO_return_unboxed;

	default:
	{
	    // Can't handle this return address; yield to scheduler
	    INTERP_TICK(it_retto_other);
	    IF_DEBUG(interpreter,
495
		     debugBelch("returning to unknown frame -- yielding to sched\n"); 
496
497
		     printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
		);
498
	    RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
	}
	}
    }
    // not reached.


    // -------------------------------------------------------------------------
    // Application...

do_apply:
    // we have a function to apply (obj), and n arguments taking up m
    // words on the stack.  The info table (stg_ap_pp_info or whatever)
    // is on top of the arguments on the stack.
    {
	switch (get_itbl(obj)->type) {

	case PAP: {
	    StgPAP *pap;
	    nat arity, i;

	    pap = (StgPAP *)obj;

	    // we only cope with PAPs whose function is a BCO
	    if (get_itbl(pap->fun)->type != BCO) {
		goto defer_apply_to_sched;
	    }
525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
	    Sp++;
	    arity = pap->arity;
	    ASSERT(arity > 0);
	    if (arity < n) {
		// n must be greater than 1, and the only kinds of
		// application we support with more than one argument
		// are all pointers...
		//
		// Shuffle the args for this function down, and put
		// the appropriate info table in the gap.
		for (i = 0; i < arity; i++) {
		    Sp[i-1] = Sp[i];
		}
		Sp[arity-1] = app_ptrs_itbl[n-arity-1];
		Sp--;
		// unpack the PAP's arguments onto the stack
		Sp -= pap->n_args;
		for (i = 0; i < pap->n_args; i++) {
		    Sp[i] = (W_)pap->payload[i];
		}
		obj = pap->fun;
		goto run_BCO_fun;
	    } 
	    else if (arity == n) {
		Sp -= pap->n_args;
		for (i = 0; i < pap->n_args; i++) {
		    Sp[i] = (W_)pap->payload[i];
		}
		obj = pap->fun;
		goto run_BCO_fun;
	    } 
	    else /* arity > n */ {
		// build a new PAP and return it.
		StgPAP *new_pap;
		nat size;
		size = PAP_sizeW(pap->n_args + m);
		new_pap = (StgPAP *)allocate(size);
		SET_HDR(new_pap,&stg_PAP_info,CCCS);
		new_pap->arity = pap->arity - n;
		new_pap->n_args = pap->n_args + m;
		new_pap->fun = pap->fun;
		for (i = 0; i < pap->n_args; i++) {
		    new_pap->payload[i] = pap->payload[i];
		}
		for (i = 0; i < m; i++) {
		    new_pap->payload[pap->n_args + i] = (StgClosure *)Sp[i];
		}
		obj = (StgClosure *)new_pap;
		Sp += m;
		goto do_return;
	    }
	}	    

	case BCO: {
580
581
	    nat arity;
	    int i; // arithmetic involving i might go negative below
582
583

	    Sp++;
584
	    arity = ((StgBCO *)obj)->arity;
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
	    ASSERT(arity > 0);
	    if (arity < n) {
		// n must be greater than 1, and the only kinds of
		// application we support with more than one argument
		// are all pointers...
		//
		// Shuffle the args for this function down, and put
		// the appropriate info table in the gap.
		for (i = 0; i < arity; i++) {
		    Sp[i-1] = Sp[i];
		}
		Sp[arity-1] = app_ptrs_itbl[n-arity-1];
		Sp--;
		goto run_BCO_fun;
	    } 
	    else if (arity == n) {
		goto run_BCO_fun;
	    }
	    else /* arity > n */ {
		// build a PAP and return it.
		StgPAP *pap;
		nat size, i;
		size = PAP_sizeW(m);
		pap = (StgPAP *)allocate(size);
		SET_HDR(pap, &stg_PAP_info,CCCS);
		pap->arity = arity - n;
		pap->fun = obj;
		pap->n_args = m;
		for (i = 0; i < m; i++) {
		    pap->payload[i] = (StgClosure *)Sp[i];
		}
		obj = (StgClosure *)pap;
		Sp += m;
		goto do_return;
	    }
	}

	// No point in us applying machine-code functions
	default:
	defer_apply_to_sched:
	    Sp -= 2;
	    Sp[1] = (W_)obj;
	    Sp[0] = (W_)&stg_enter_info;
628
	    RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    }

    // ------------------------------------------------------------------------
    // Ok, we now have a bco (obj), and its arguments are all on the
    // stack.  We can start executing the byte codes.
    //
    // The stack is in one of two states.  First, if this BCO is a
    // function:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     arg2      |
    // 	  +---------------+
    // 	  |     arg1      |
    // 	  +---------------+
    //
    // Second, if this BCO is a continuation:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     fv2       |
    // 	  +---------------+
    // 	  |     fv1       |
    // 	  +---------------+
    // 	  |     BCO       |
    // 	  +---------------+
    // 	  | stg_ctoi_ret_ |
    // 	  +---------------+
    // 	  |    retval     |
    // 	  +---------------+
    // 
    // where retval is the value being returned to this continuation.
    // In the event of a stack check, heap check, or context switch,
    // we need to leave the stack in a sane state so the garbage
    // collector can find all the pointers.
    //
    //  (1) BCO is a function:  the BCO's bitmap describes the
    //      pointerhood of the arguments.
    //
    //  (2) BCO is a continuation: BCO's bitmap describes the
    //      pointerhood of the free variables.
    //
    // Sadly we have three different kinds of stack/heap/cswitch check
    // to do:

run_BCO_return:
    // Heap check
    if (doYouWantToGC()) {
	Sp--; Sp[0] = (W_)&stg_enter_info;
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
680
681
    // Stack checks aren't necessary at return points, the stack use
    // is aggregated into the enclosing function entry point.
682
683
684
685
686
687
688
    goto run_BCO;
    
run_BCO_return_unboxed:
    // Heap check
    if (doYouWantToGC()) {
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
689
690
    // Stack checks aren't necessary at return points, the stack use
    // is aggregated into the enclosing function entry point.
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    goto run_BCO;
    
run_BCO_fun:
    IF_DEBUG(sanity,
	     Sp -= 2; 
	     Sp[1] = (W_)obj; 
	     Sp[0] = (W_)&stg_apply_interp_info;
	     checkStackChunk(Sp,SpLim);
	     Sp += 2;
	);

    // Heap check
    if (doYouWantToGC()) {
	Sp -= 2; 
	Sp[1] = (W_)obj; 
	Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
    
710
711
    // Stack check
    if (Sp - INTERP_STACK_CHECK_THRESH < SpLim) {
712
713
714
715
716
717
718
719
720
721
722
723
724
725
	Sp -= 2; 
	Sp[1] = (W_)obj; 
	Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
	RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
    }
    goto run_BCO;
    
    // Now, actually interpret the BCO... (no returning to the
    // scheduler again until the stack is in an orderly state).
run_BCO:
    INTERP_TICK(it_BCO_entries);
    {
	register int       bciPtr     = 1; /* instruction pointer */
	register StgBCO*   bco        = (StgBCO*)obj;
726
	register StgWord16* instrs    = (StgWord16*)(bco->instrs->payload);
727
728
729
730
	register StgWord*  literals   = (StgWord*)(&bco->literals->payload[0]);
	register StgPtr*   ptrs       = (StgPtr*)(&bco->ptrs->payload[0]);
	register StgInfoTable** itbls = (StgInfoTable**)
	    (&bco->itbls->payload[0]);
731

732
733
734
#ifdef INTERP_STATS
	it_lastopc = 0; /* no opcode */
#endif
735

736
737
738
739
    nextInsn:
	ASSERT(bciPtr <= instrs[0]);
	IF_DEBUG(interpreter,
		 //if (do_print_stack) {
740
		 //debugBelch("\n-- BEGIN stack\n");
741
		 //printStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
742
		 //debugBelch("-- END stack\n\n");
743
		 //}
744
		 debugBelch("Sp = %p   pc = %d      ", Sp, bciPtr);
745
746
		 disInstr(bco,bciPtr);
		 if (0) { int i;
747
		 debugBelch("\n");
748
		 for (i = 8; i >= 0; i--) {
749
		     debugBelch("%d  %p\n", i, (StgPtr)(*(Sp+i)));
750
		 }
751
		 debugBelch("\n");
752
		 }
753
754
		 //if (do_print_stack) checkStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
	    );
755

756
757
758
759
760
761
762
763
764
765
766
	INTERP_TICK(it_insns);

#ifdef INTERP_STATS
	ASSERT( (int)instrs[bciPtr] >= 0 && (int)instrs[bciPtr] < 27 );
	it_ofreq[ (int)instrs[bciPtr] ] ++;
	it_oofreq[ it_lastopc ][ (int)instrs[bciPtr] ] ++;
	it_lastopc = (int)instrs[bciPtr];
#endif

	switch (BCO_NEXT) {

767
768
769
770
	case bci_STKCHECK: {
	    // Explicit stack check at the beginning of a function
	    // *only* (stack checks in case alternatives are
	    // propagated to the enclosing function).
771
772
	    int stk_words_reqd = BCO_NEXT + 1;
	    if (Sp - stk_words_reqd < SpLim) {
773
774
775
		Sp -= 2; 
		Sp[1] = (W_)obj; 
		Sp[0] = (W_)&stg_apply_interp_info;
776
		RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
777
778
	    } else {
		goto nextInsn;
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
	    }
	}

	case bci_PUSH_L: {
	    int o1 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp--;
	    goto nextInsn;
	}

	case bci_PUSH_LL: {
	    int o1 = BCO_NEXT;
	    int o2 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp[-2] = Sp[o2];
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_LLL: {
	    int o1 = BCO_NEXT;
	    int o2 = BCO_NEXT;
	    int o3 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp[-2] = Sp[o2];
	    Sp[-3] = Sp[o3];
	    Sp -= 3;
	    goto nextInsn;
	}

	case bci_PUSH_G: {
	    int o1 = BCO_NEXT;
	    Sp[-1] = BCO_PTR(o1);
	    Sp -= 1;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS: {
	    int o_bco  = BCO_NEXT;
818
	    Sp[-2] = (W_)&stg_ctoi_R1p_info;
819
820
821
822
823
824
825
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_P: {
	    int o_bco  = BCO_NEXT;
826
	    Sp[-2] = (W_)&stg_ctoi_R1unpt_info;
827
828
829
830
831
832
833
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_N: {
	    int o_bco  = BCO_NEXT;
834
	    Sp[-2] = (W_)&stg_ctoi_R1n_info;
835
836
837
838
839
840
841
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_F: {
	    int o_bco  = BCO_NEXT;
842
	    Sp[-2] = (W_)&stg_ctoi_F1_info;
843
844
845
846
847
848
849
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_D: {
	    int o_bco  = BCO_NEXT;
850
	    Sp[-2] = (W_)&stg_ctoi_D1_info;
851
852
853
854
855
856
857
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_L: {
	    int o_bco  = BCO_NEXT;
858
	    Sp[-2] = (W_)&stg_ctoi_L1_info;
859
860
861
862
863
864
865
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_V: {
	    int o_bco  = BCO_NEXT;
866
	    Sp[-2] = (W_)&stg_ctoi_V_info;
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_APPLY_N:
	    Sp--; Sp[0] = (W_)&stg_ap_n_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_V:
	    Sp--; Sp[0] = (W_)&stg_ap_v_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_F:
	    Sp--; Sp[0] = (W_)&stg_ap_f_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_D:
	    Sp--; Sp[0] = (W_)&stg_ap_d_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_L:
	    Sp--; Sp[0] = (W_)&stg_ap_l_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_P:
	    Sp--; Sp[0] = (W_)&stg_ap_p_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PP:
	    Sp--; Sp[0] = (W_)&stg_ap_pp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPP:
	    Sp--; Sp[0] = (W_)&stg_ap_ppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_pppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_ppppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_pppppp_info;
	    goto nextInsn;
	    
	case bci_PUSH_UBX: {
	    int i;
	    int o_lits = BCO_NEXT;
	    int n_words = BCO_NEXT;
	    Sp -= n_words;
	    for (i = 0; i < n_words; i++) {
912
		Sp[i] = (W_)BCO_LIT(o_lits+i);
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
	    }
	    goto nextInsn;
	}

	case bci_SLIDE: {
	    int n  = BCO_NEXT;
	    int by = BCO_NEXT;
	    /* a_1, .. a_n, b_1, .. b_by, s => a_1, .. a_n, s */
	    while(--n >= 0) {
		Sp[n+by] = Sp[n];
	    }
	    Sp += by;
	    INTERP_TICK(it_slides);
	    goto nextInsn;
	}

	case bci_ALLOC_AP: {
	    StgAP* ap; 
sof's avatar
sof committed
931
	    int n_payload = BCO_NEXT;
932
933
934
935
936
937
938
939
940
941
942
943
	    int request   = PAP_sizeW(n_payload);
	    ap = (StgAP*)allocate_UPD(request);
	    Sp[-1] = (W_)ap;
	    ap->n_args = n_payload;
	    SET_HDR(ap, &stg_AP_info, CCS_SYSTEM/*ToDo*/)
	    Sp --;
	    goto nextInsn;
	}

	case bci_ALLOC_PAP: {
	    StgPAP* pap; 
	    int arity = BCO_NEXT;
sof's avatar
sof committed
944
	    int n_payload = BCO_NEXT;
945
946
947
948
949
950
951
952
953
954
955
956
957
	    int request   = PAP_sizeW(n_payload);
	    pap = (StgPAP*)allocate_NONUPD(request);
	    Sp[-1] = (W_)pap;
	    pap->n_args = n_payload;
	    pap->arity = arity;
	    SET_HDR(pap, &stg_PAP_info, CCS_SYSTEM/*ToDo*/)
	    Sp --;
	    goto nextInsn;
	}

	case bci_MKAP: {
	    int i;
	    int stkoff = BCO_NEXT;
sof's avatar
sof committed
958
	    int n_payload = BCO_NEXT;
959
960
961
962
963
964
965
966
967
968
969
970
971
972
	    StgAP* ap = (StgAP*)Sp[stkoff];
	    ASSERT((int)ap->n_args == n_payload);
	    ap->fun = (StgClosure*)Sp[0];

	    // The function should be a BCO, and its bitmap should
	    // cover the payload of the AP correctly.
	    ASSERT(get_itbl(ap->fun)->type == BCO
		   && (get_itbl(ap)->type == PAP || 
		       BCO_BITMAP_SIZE(ap->fun) == ap->n_args));

	    for (i = 0; i < n_payload; i++)
		ap->payload[i] = (StgClosure*)Sp[i+1];
	    Sp += n_payload+1;
	    IF_DEBUG(interpreter,
973
		     debugBelch("\tBuilt "); 
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
		     printObj((StgClosure*)ap);
		);
	    goto nextInsn;
	}

	case bci_UNPACK: {
	    /* Unpack N ptr words from t.o.s constructor */
	    int i;
	    int n_words = BCO_NEXT;
	    StgClosure* con = (StgClosure*)Sp[0];
	    Sp -= n_words;
	    for (i = 0; i < n_words; i++) {
		Sp[i] = (W_)con->payload[i];
	    }
	    goto nextInsn;
	}

	case bci_PACK: {
	    int i;
	    int o_itbl         = BCO_NEXT;
	    int n_words        = BCO_NEXT;
	    StgInfoTable* itbl = INFO_PTR_TO_STRUCT(BCO_ITBL(o_itbl));
	    int request        = CONSTR_sizeW( itbl->layout.payload.ptrs, 
					       itbl->layout.payload.nptrs );
	    StgClosure* con = (StgClosure*)allocate_NONUPD(request);
	    ASSERT( itbl->layout.payload.ptrs + itbl->layout.payload.nptrs > 0);
	    SET_HDR(con, BCO_ITBL(o_itbl), CCS_SYSTEM/*ToDo*/);
	    for (i = 0; i < n_words; i++) {
		con->payload[i] = (StgClosure*)Sp[i];
	    }
	    Sp += n_words;
	    Sp --;
	    Sp[0] = (W_)con;
	    IF_DEBUG(interpreter,
1008
		     debugBelch("\tBuilt "); 
1009
1010
1011
1012
1013
1014
		     printObj((StgClosure*)con);
		);
	    goto nextInsn;
	}

	case bci_TESTLT_P: {
1015
	    unsigned int discr  = BCO_NEXT;
1016
1017
	    int failto = BCO_NEXT;
	    StgClosure* con = (StgClosure*)Sp[0];
1018
	    if (GET_TAG(con) >= discr) {
1019
1020
1021
1022
1023
1024
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_P: {
1025
	    unsigned int discr  = BCO_NEXT;
1026
1027
	    int failto = BCO_NEXT;
	    StgClosure* con = (StgClosure*)Sp[0];
1028
	    if (GET_TAG(con) != discr) {
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTLT_I: {
	    // There should be an Int at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    I_ stackInt = (I_)Sp[1];
	    if (stackInt >= (I_)BCO_LIT(discr))
		bciPtr = failto;
	    goto nextInsn;
	}

	case bci_TESTEQ_I: {
	    // There should be an Int at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    I_ stackInt = (I_)Sp[1];
	    if (stackInt != (I_)BCO_LIT(discr)) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTLT_D: {
	    // There should be a Double at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    StgDouble stackDbl, discrDbl;
	    stackDbl = PK_DBL( & Sp[1] );
	    discrDbl = PK_DBL( & BCO_LIT(discr) );
	    if (stackDbl >= discrDbl) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_D: {
	    // There should be a Double at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    StgDouble stackDbl, discrDbl;
	    stackDbl = PK_DBL( & Sp[1] );
	    discrDbl = PK_DBL( & BCO_LIT(discr) );
	    if (stackDbl != discrDbl) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTLT_F: {
	    // There should be a Float at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    StgFloat stackFlt, discrFlt;
	    stackFlt = PK_FLT( & Sp[1] );
	    discrFlt = PK_FLT( & BCO_LIT(discr) );
	    if (stackFlt >= discrFlt) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_F: {
	    // There should be a Float at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    StgFloat stackFlt, discrFlt;
	    stackFlt = PK_FLT( & Sp[1] );
	    discrFlt = PK_FLT( & BCO_LIT(discr) );
	    if (stackFlt != discrFlt) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	// Control-flow ish things
	case bci_ENTER:
	    // Context-switch check.  We put it here to ensure that
	    // the interpreter has done at least *some* work before
	    // context switching: sometimes the scheduler can invoke
	    // the interpreter with context_switch == 1, particularly
	    // if the -C0 flag has been given on the cmd line.
	    if (context_switch) {
		Sp--; Sp[0] = (W_)&stg_enter_info;
		RETURN_TO_SCHEDULER(ThreadInterpret, ThreadYielding);
	    }
	    goto eval;

	case bci_RETURN:
	    obj = (StgClosure *)Sp[0];
	    Sp++;
	    goto do_return;

	case bci_RETURN_P:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_unpt_r1_info;
	    goto do_return_unboxed;
	case bci_RETURN_N:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_unbx_r1_info;
	    goto do_return_unboxed;
	case bci_RETURN_F:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_f1_info;
	    goto do_return_unboxed;
	case bci_RETURN_D:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_d1_info;
	    goto do_return_unboxed;
	case bci_RETURN_L:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_l1_info;
	    goto do_return_unboxed;
	case bci_RETURN_V:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_void_info;
	    goto do_return_unboxed;

	case bci_SWIZZLE: {
	    int stkoff = BCO_NEXT;
	    signed short n = (signed short)(BCO_NEXT);
	    Sp[stkoff] += (W_)n;
	    goto nextInsn;
	}

	case bci_CCALL: {
	    StgInt tok;
	    int stk_offset            = BCO_NEXT;
	    int o_itbl                = BCO_NEXT;
	    void(*marshall_fn)(void*) = (void (*)(void*))BCO_LIT(o_itbl);
1162
1163
1164
	    int ret_dyn_size = 
		RET_DYN_BITMAP_SIZE + RET_DYN_NONPTR_REGS_SIZE
		+ sizeofW(StgRetDyn);
1165

1166
1167
1168
1169
1170
1171
#ifdef RTS_SUPPORTS_THREADS
	    // Threaded RTS:
	    // Arguments on the TSO stack are not good, because garbage
	    // collection might move the TSO as soon as we call
	    // suspendThread below.

1172
	    W_ arguments[stk_offset];
1173
1174
1175
	    
	    memcpy(arguments, Sp, sizeof(W_) * stk_offset);
#endif
1176

1177
1178
1179
	    // Restore the Haskell thread's current value of errno
	    errno = cap->r.rCurrentTSO->saved_errno;

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
	    // There are a bunch of non-ptr words on the stack (the
	    // ccall args, the ccall fun address and space for the
	    // result), which we need to cover with an info table
	    // since we might GC during this call.
	    //
	    // We know how many (non-ptr) words there are before the
	    // next valid stack frame: it is the stk_offset arg to the
	    // CCALL instruction.   So we build a RET_DYN stack frame
	    // on the stack frame to describe this chunk of stack.
	    //
1190
	    Sp -= ret_dyn_size;
1191
	    ((StgRetDyn *)Sp)->liveness = NO_PTRS | N_NONPTRS(stk_offset);
1192
1193
	    ((StgRetDyn *)Sp)->info = (StgInfoTable *)&stg_gc_gen_info;

1194
	    SAVE_STACK_POINTERS;
1195
	    tok = suspendThread(&cap->r);
1196

1197
#ifndef RTS_SUPPORTS_THREADS
1198
1199
	    // Careful:
	    // suspendThread might have shifted the stack
1200
	    // around (stack squeezing), so we have to grab the real
1201
	    // Sp out of the TSO to find the ccall args again.
1202

1203
	    marshall_fn ( (void*)(cap->r.rCurrentTSO->sp + ret_dyn_size) );
1204
1205
#else
	    // Threaded RTS:
1206
	    // We already made a copy of the arguments above.
1207
1208
1209
1210

	    marshall_fn ( arguments );
#endif

1211
	    // And restart the thread again, popping the RET_DYN frame.
1212
	    cap = (Capability *)((void *)((unsigned char*)resumeThread(tok) - sizeof(StgFunTable)));
1213
	    LOAD_STACK_POINTERS;
1214
	    Sp += ret_dyn_size;
1215
	    
1216
1217
1218
	    // Save the Haskell thread's current value of errno
	    cap->r.rCurrentTSO->saved_errno = errno;
		
1219
1220
1221
1222
1223
1224
1225
1226
#ifdef RTS_SUPPORTS_THREADS
	    // Threaded RTS:
	    // Copy the "arguments", which might include a return value,
	    // back to the TSO stack. It would of course be enough to
	    // just copy the return value, but we don't know the offset.
	    memcpy(Sp, arguments, sizeof(W_) * stk_offset);
#endif

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
	    goto nextInsn;
	}

	case bci_JMP: {
	    /* BCO_NEXT modifies bciPtr, so be conservative. */
	    int nextpc = BCO_NEXT;
	    bciPtr     = nextpc;
	    goto nextInsn;
	}

	case bci_CASEFAIL:
	    barf("interpretBCO: hit a CASEFAIL");
	    
	    // Errors
	default: 
	    barf("interpretBCO: unknown or unimplemented opcode");

	} /* switch on opcode */
    }
    }

    barf("interpretBCO: fell off end of the interpreter");
1249
}