Interpreter.c 41.8 KB
Newer Older
1
/* -----------------------------------------------------------------------------
2
 * Bytecode interpreter
3
 *
4
 * Copyright (c) The GHC Team, 1994-2002.
5
6
 * ---------------------------------------------------------------------------*/

7
#include "PosixSource.h"
8
9
#include "Rts.h"
#include "RtsAPI.h"
10
#include "RtsUtils.h"
11
12
13
14
#include "Closures.h"
#include "TSO.h"
#include "Schedule.h"
#include "RtsFlags.h"
15
#include "LdvProfile.h"
16
#include "Updates.h"
17
#include "Sanity.h"
18
#include "Liveness.h"
19
#include "Prelude.h"
20

21
#include "Bytecodes.h"
22
23
#include "Printer.h"
#include "Disassembler.h"
24
#include "Interpreter.h"
25

26
27
28
29
30
#include <string.h>     /* for memcpy */
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif

31
#include "ffi.h"
andy's avatar
andy committed
32

33
/* --------------------------------------------------------------------------
34
 * The bytecode interpreter
35
36
 * ------------------------------------------------------------------------*/

37
38
39
40
41
42
/* Gather stats about entry, opcode, opcode-pair frequencies.  For
   tuning the interpreter. */

/* #define INTERP_STATS */


43
/* Sp points to the lowest live word on the stack. */
44

45
#define BCO_NEXT      instrs[bciPtr++]
46
47
48
49
50
51
52
#define BCO_NEXT_32   (bciPtr += 2, (((StgWord) instrs[bciPtr-2]) << 16) + ((StgWord) instrs[bciPtr-1]))
#define BCO_NEXT_64   (bciPtr += 4, (((StgWord) instrs[bciPtr-4]) << 48) + (((StgWord) instrs[bciPtr-3]) << 32) + (((StgWord) instrs[bciPtr-2]) << 16) + ((StgWord) instrs[bciPtr-1]))
#if WORD_SIZE_IN_BITS == 32
#define BCO_NEXT_WORD BCO_NEXT_32
#elif WORD_SIZE_IN_BITS == 64
#define BCO_NEXT_WORD BCO_NEXT_64
#else
Ian Lynagh's avatar
Ian Lynagh committed
53
#error Cannot cope with WORD_SIZE_IN_BITS being nether 32 nor 64
54
55
56
#endif
#define BCO_GET_LARGE_ARG ((bci & bci_FLAG_LARGE_ARGS) ? BCO_NEXT_WORD : BCO_NEXT)

57
#define BCO_PTR(n)    (W_)ptrs[n]
58
#define BCO_LIT(n)    literals[n]
59

60
61
62
63
#define LOAD_STACK_POINTERS					\
    Sp = cap->r.rCurrentTSO->sp;				\
    /* We don't change this ... */				\
    SpLim = cap->r.rCurrentTSO->stack + RESERVED_STACK_WORDS;
64

65
66
#define SAVE_STACK_POINTERS			\
    cap->r.rCurrentTSO->sp = Sp
67

68
#define RETURN_TO_SCHEDULER(todo,retcode)	\
69
70
   SAVE_STACK_POINTERS;				\
   cap->r.rCurrentTSO->what_next = (todo);	\
71
   threadPaused(cap,cap->r.rCurrentTSO);		\
72
73
   cap->r.rRet = (retcode);			\
   return cap;
74
75

#define RETURN_TO_SCHEDULER_NO_PAUSE(todo,retcode)	\
76
77
78
79
   SAVE_STACK_POINTERS;					\
   cap->r.rCurrentTSO->what_next = (todo);		\
   cap->r.rRet = (retcode);				\
   return cap;
80
81


sof's avatar
sof committed
82
STATIC_INLINE StgPtr
83
allocate_NONUPD (int n_words)
84
{
85
    return allocate(stg_max(sizeofW(StgHeader)+MIN_PAYLOAD_SIZE, n_words));
86
87
}

88
89
int rts_stop_next_breakpoint = 0;
int rts_stop_on_exception = 0;
90

91
#ifdef INTERP_STATS
92

93
94
95
96
97
98
99
100
101
102
103
104
105
/* Hacky stats, for tuning the interpreter ... */
int it_unknown_entries[N_CLOSURE_TYPES];
int it_total_unknown_entries;
int it_total_entries;

int it_retto_BCO;
int it_retto_UPDATE;
int it_retto_other;

int it_slides;
int it_insns;
int it_BCO_entries;

106
107
int it_ofreq[27];
int it_oofreq[27][27];
108
109
int it_lastopc;

110

111
112
#define INTERP_TICK(n) (n)++

113
114
115
116
117
118
119
120
void interp_startup ( void )
{
   int i, j;
   it_retto_BCO = it_retto_UPDATE = it_retto_other = 0;
   it_total_entries = it_total_unknown_entries = 0;
   for (i = 0; i < N_CLOSURE_TYPES; i++)
      it_unknown_entries[i] = 0;
   it_slides = it_insns = it_BCO_entries = 0;
121
122
123
   for (i = 0; i < 27; i++) it_ofreq[i] = 0;
   for (i = 0; i < 27; i++) 
     for (j = 0; j < 27; j++)
124
125
126
127
128
129
130
        it_oofreq[i][j] = 0;
   it_lastopc = 0;
}

void interp_shutdown ( void )
{
   int i, j, k, o_max, i_max, j_max;
131
   debugBelch("%d constrs entered -> (%d BCO, %d UPD, %d ??? )\n",
132
133
                   it_retto_BCO + it_retto_UPDATE + it_retto_other,
                   it_retto_BCO, it_retto_UPDATE, it_retto_other );
134
   debugBelch("%d total entries, %d unknown entries \n", 
135
136
137
                   it_total_entries, it_total_unknown_entries);
   for (i = 0; i < N_CLOSURE_TYPES; i++) {
     if (it_unknown_entries[i] == 0) continue;
138
     debugBelch("   type %2d: unknown entries (%4.1f%%) == %d\n",
139
140
141
142
	     i, 100.0 * ((double)it_unknown_entries[i]) / 
                        ((double)it_total_unknown_entries),
             it_unknown_entries[i]);
   }
143
   debugBelch("%d insns, %d slides, %d BCO_entries\n", 
144
                   it_insns, it_slides, it_BCO_entries);
145
   for (i = 0; i < 27; i++) 
146
      debugBelch("opcode %2d got %d\n", i, it_ofreq[i] );
147
148
149
150

   for (k = 1; k < 20; k++) {
      o_max = 0;
      i_max = j_max = 0;
151
152
      for (i = 0; i < 27; i++) {
         for (j = 0; j < 27; j++) {
153
154
155
156
157
158
159
	    if (it_oofreq[i][j] > o_max) {
               o_max = it_oofreq[i][j];
	       i_max = i; j_max = j;
	    }
	 }
      }
      
160
      debugBelch("%d:  count (%4.1f%%) %6d   is %d then %d\n",
161
162
163
164
165
166
167
                k, ((double)o_max) * 100.0 / ((double)it_insns), o_max,
                   i_max, j_max );
      it_oofreq[i_max][j_max] = 0;

   }
}

168
169
170
171
172
#else // !INTERP_STATS

#define INTERP_TICK(n) /* nothing */

#endif
173

174
175
176
177
178
179
180
181
182
static StgWord app_ptrs_itbl[] = {
    (W_)&stg_ap_p_info,
    (W_)&stg_ap_pp_info,
    (W_)&stg_ap_ppp_info,
    (W_)&stg_ap_pppp_info,
    (W_)&stg_ap_ppppp_info,
    (W_)&stg_ap_pppppp_info,
};

183
HsStablePtr rts_breakpoint_io_action; // points to the IO action which is executed on a breakpoint
184
185
                                // it is set in main/GHC.hs:runStmt

186
Capability *
187
interpretBCO (Capability* cap)
188
{
189
190
191
192
    // Use of register here is primarily to make it clear to compilers
    // that these entities are non-aliasable.
    register StgPtr       Sp;    // local state -- stack pointer
    register StgPtr       SpLim; // local state -- stack lim pointer
193
    register StgClosure   *tagged_obj = 0, *obj;
194
    nat n, m;
195

196
197
    LOAD_STACK_POINTERS;

198
199
200
201
202
203
204
205
206
207
208
    // ------------------------------------------------------------------------
    // Case 1:
    // 
    //       We have a closure to evaluate.  Stack looks like:
    //       
    //      	|   XXXX_info   |
    //      	+---------------+
    //       Sp |      -------------------> closure
    //      	+---------------+
    //       
    if (Sp[0] == (W_)&stg_enter_info) {
209
210
       Sp++;
       goto eval;
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    }

    // ------------------------------------------------------------------------
    // Case 2:
    // 
    //       We have a BCO application to perform.  Stack looks like:
    //
    //      	|     ....      |
    //      	+---------------+
    //      	|     arg1      |
    //      	+---------------+
    //      	|     BCO       |
    //      	+---------------+
    //       Sp |   RET_BCO     |
    //      	+---------------+
    //       
    else if (Sp[0] == (W_)&stg_apply_interp_info) {
Simon Marlow's avatar
Simon Marlow committed
228
	obj = UNTAG_CLOSURE((StgClosure *)Sp[1]);
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
	Sp += 2;
	goto run_BCO_fun;
    }

    // ------------------------------------------------------------------------
    // Case 3:
    //
    //       We have an unboxed value to return.  See comment before
    //       do_return_unboxed, below.
    //
    else {
	goto do_return_unboxed;
    }

    // Evaluate the object on top of the stack.
eval:
245
    tagged_obj = (StgClosure*)Sp[0]; Sp++;
246
247

eval_obj:
248
    obj = UNTAG_CLOSURE(tagged_obj);
249
250
251
    INTERP_TICK(it_total_evals);

    IF_DEBUG(interpreter,
252
             debugBelch(
253
             "\n---------------------------------------------------------------\n");
254
255
256
             debugBelch("Evaluating: "); printObj(obj);
             debugBelch("Sp = %p\n", Sp);
             debugBelch("\n" );
257

258
             printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
259
             debugBelch("\n\n");
260
            );
261

262
    IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));
263

264
    switch ( get_itbl(obj)->type ) {
265

266
267
268
269
270
271
    case IND:
    case IND_OLDGEN:
    case IND_PERM:
    case IND_OLDGEN_PERM:
    case IND_STATIC:
    { 
272
	tagged_obj = ((StgInd*)obj)->indirectee;
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
	goto eval_obj;
    }
    
    case CONSTR:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_2_0:
    case CONSTR_1_1:
    case CONSTR_0_2:
    case CONSTR_STATIC:
    case CONSTR_NOCAF_STATIC:
    case FUN:
    case FUN_1_0:
    case FUN_0_1:
    case FUN_2_0:
    case FUN_1_1:
    case FUN_0_2:
    case FUN_STATIC:
    case PAP:
	// already in WHNF
	break;
	
    case BCO:
296
    {
297
	ASSERT(((StgBCO *)obj)->arity > 0);
298
	break;
299
    }
300
301
302
303
304
305
306
307
308
309
310
311

    case AP:	/* Copied from stg_AP_entry. */
    {
	nat i, words;
	StgAP *ap;
	
	ap = (StgAP*)obj;
	words = ap->n_args;
	
	// Stack check
	if (Sp - (words+sizeofW(StgUpdateFrame)) < SpLim) {
	    Sp -= 2;
312
	    Sp[1] = (W_)tagged_obj;
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
	    Sp[0] = (W_)&stg_enter_info;
	    RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
	}
	
	/* Ok; we're safe.  Party on.  Push an update frame. */
	Sp -= sizeofW(StgUpdateFrame);
	{
	    StgUpdateFrame *__frame;
	    __frame = (StgUpdateFrame *)Sp;
	    SET_INFO(__frame, (StgInfoTable *)&stg_upd_frame_info);
	    __frame->updatee = (StgClosure *)(ap);
	}
	
	/* Reload the stack */
	Sp -= words;
	for (i=0; i < words; i++) {
	    Sp[i] = (W_)ap->payload[i];
	}

Simon Marlow's avatar
Simon Marlow committed
332
	obj = UNTAG_CLOSURE((StgClosure*)ap->fun);
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
	ASSERT(get_itbl(obj)->type == BCO);
	goto run_BCO_fun;
    }

    default:
#ifdef INTERP_STATS
    { 
	int j;
	
	j = get_itbl(obj)->type;
	ASSERT(j >= 0 && j < N_CLOSURE_TYPES);
	it_unknown_entries[j]++;
	it_total_unknown_entries++;
    }
#endif
    {
	// Can't handle this object; yield to scheduler
	IF_DEBUG(interpreter,
351
		 debugBelch("evaluating unknown closure -- yielding to sched\n"); 
352
353
354
		 printObj(obj);
	    );
	Sp -= 2;
355
	Sp[1] = (W_)tagged_obj;
356
	Sp[0] = (W_)&stg_enter_info;
357
	RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
358
359
360
361
    }
    }

    // ------------------------------------------------------------------------
362
    // We now have an evaluated object (tagged_obj).  The next thing to
363
364
    // do is return it to the stack frame on top of the stack.
do_return:
365
    obj = UNTAG_CLOSURE(tagged_obj);
366
367
368
    ASSERT(closure_HNF(obj));

    IF_DEBUG(interpreter,
369
             debugBelch(
370
             "\n---------------------------------------------------------------\n");
371
372
373
             debugBelch("Returning: "); printObj(obj);
             debugBelch("Sp = %p\n", Sp);
             debugBelch("\n" );
374
             printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
375
             debugBelch("\n\n");
376
            );
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));

    switch (get_itbl((StgClosure *)Sp)->type) {

    case RET_SMALL: {
	const StgInfoTable *info;

	// NOTE: not using get_itbl().
	info = ((StgClosure *)Sp)->header.info;
	if (info == (StgInfoTable *)&stg_ap_v_info) {
	    n = 1; m = 0; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_f_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_d_info) {
	    n = 1; m = sizeofW(StgDouble); goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_l_info) {
	    n = 1; m = sizeofW(StgInt64); goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_n_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_p_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pp_info) {
	    n = 2; m = 2; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_ppp_info) {
	    n = 3; m = 3; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pppp_info) {
	    n = 4; m = 4; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_ppppp_info) {
	    n = 5; m = 5; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pppppp_info) {
	    n = 6; m = 6; goto do_apply;
	}
	goto do_return_unrecognised;
    }

    case UPDATE_FRAME:
	// Returning to an update frame: do the update, pop the update
	// frame, and continue with the next stack frame.
426
427
428
429
430
431
432
433
        //
        // NB. we must update with the *tagged* pointer.  Some tags
        // are not optional, and if we omit the tag bits when updating
        // then bad things can happen (albeit very rarely).  See #1925.
        // What happened was an indirection was created with an
        // untagged pointer, and this untagged pointer was propagated
        // to a PAP by the GC, violating the invariant that PAPs
        // always contain a tagged pointer to the function.
434
	INTERP_TICK(it_retto_UPDATE);
435
	UPD_IND(((StgUpdateFrame *)Sp)->updatee, tagged_obj); 
436
437
438
439
440
441
442
443
444
	Sp += sizeofW(StgUpdateFrame);
	goto do_return;

    case RET_BCO:
	// Returning to an interpreted continuation: put the object on
	// the stack, and start executing the BCO.
	INTERP_TICK(it_retto_BCO);
	Sp--;
	Sp[0] = (W_)obj;
445
446
        // NB. return the untagged object; the bytecode expects it to
        // be untagged.  XXX this doesn't seem right.
447
448
449
450
451
452
453
454
455
456
	obj = (StgClosure*)Sp[2];
	ASSERT(get_itbl(obj)->type == BCO);
	goto run_BCO_return;

    default:
    do_return_unrecognised:
    {
	// Can't handle this return address; yield to scheduler
	INTERP_TICK(it_retto_other);
	IF_DEBUG(interpreter,
457
		 debugBelch("returning to unknown frame -- yielding to sched\n"); 
458
459
460
		 printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
	    );
	Sp -= 2;
461
	Sp[1] = (W_)tagged_obj;
462
	Sp[0] = (W_)&stg_enter_info;
463
	RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    }
    }

    // -------------------------------------------------------------------------
    // Returning an unboxed value.  The stack looks like this:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     fv2       |
    // 	  +---------------+
    // 	  |     fv1       |
    // 	  +---------------+
    // 	  |     BCO       |
    // 	  +---------------+
    // 	  | stg_ctoi_ret_ |
    // 	  +---------------+
    // 	  |    retval     |
    // 	  +---------------+
    // 	  |   XXXX_info   |
    // 	  +---------------+
    //
    // where XXXX_info is one of the stg_gc_unbx_r1_info family.
    //
    // We're only interested in the case when the real return address
    // is a BCO; otherwise we'll return to the scheduler.

do_return_unboxed:
    { 
	int offset;
	
	ASSERT( Sp[0] == (W_)&stg_gc_unbx_r1_info
		|| Sp[0] == (W_)&stg_gc_unpt_r1_info
		|| Sp[0] == (W_)&stg_gc_f1_info
		|| Sp[0] == (W_)&stg_gc_d1_info
		|| Sp[0] == (W_)&stg_gc_l1_info
		|| Sp[0] == (W_)&stg_gc_void_info // VoidRep
	    );

	// get the offset of the stg_ctoi_ret_XXX itbl
	offset = stack_frame_sizeW((StgClosure *)Sp);

	switch (get_itbl((StgClosure *)Sp+offset)->type) {

	case RET_BCO:
	    // Returning to an interpreted continuation: put the object on
	    // the stack, and start executing the BCO.
	    INTERP_TICK(it_retto_BCO);
	    obj = (StgClosure*)Sp[offset+1];
	    ASSERT(get_itbl(obj)->type == BCO);
	    goto run_BCO_return_unboxed;

	default:
	{
	    // Can't handle this return address; yield to scheduler
	    INTERP_TICK(it_retto_other);
	    IF_DEBUG(interpreter,
520
		     debugBelch("returning to unknown frame -- yielding to sched\n"); 
521
522
		     printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
		);
523
	    RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
524
525
526
527
528
529
530
531
532
533
	}
	}
    }
    // not reached.


    // -------------------------------------------------------------------------
    // Application...

do_apply:
534
    ASSERT(obj == UNTAG_CLOSURE(tagged_obj));
535
536
537
538
539
540
541
542
    // we have a function to apply (obj), and n arguments taking up m
    // words on the stack.  The info table (stg_ap_pp_info or whatever)
    // is on top of the arguments on the stack.
    {
	switch (get_itbl(obj)->type) {

	case PAP: {
	    StgPAP *pap;
543
	    nat i, arity;
544
545
546
547

	    pap = (StgPAP *)obj;

	    // we only cope with PAPs whose function is a BCO
Simon Marlow's avatar
Simon Marlow committed
548
	    if (get_itbl(UNTAG_CLOSURE(pap->fun))->type != BCO) {
549
550
		goto defer_apply_to_sched;
	    }
551

552
553
554
555
556
557
558
559
560
561
562
	    Sp++;
	    arity = pap->arity;
	    ASSERT(arity > 0);
	    if (arity < n) {
		// n must be greater than 1, and the only kinds of
		// application we support with more than one argument
		// are all pointers...
		//
		// Shuffle the args for this function down, and put
		// the appropriate info table in the gap.
		for (i = 0; i < arity; i++) {
563
564
		    Sp[(int)i-1] = Sp[i];
		    // ^^^^^ careful, i-1 might be negative, but i in unsigned
565
566
567
568
569
570
571
572
		}
		Sp[arity-1] = app_ptrs_itbl[n-arity-1];
		Sp--;
		// unpack the PAP's arguments onto the stack
		Sp -= pap->n_args;
		for (i = 0; i < pap->n_args; i++) {
		    Sp[i] = (W_)pap->payload[i];
		}
Simon Marlow's avatar
Simon Marlow committed
573
		obj = UNTAG_CLOSURE(pap->fun);
574
575
576
577
578
579
580
		goto run_BCO_fun;
	    } 
	    else if (arity == n) {
		Sp -= pap->n_args;
		for (i = 0; i < pap->n_args; i++) {
		    Sp[i] = (W_)pap->payload[i];
		}
Simon Marlow's avatar
Simon Marlow committed
581
		obj = UNTAG_CLOSURE(pap->fun);
582
583
584
585
586
		goto run_BCO_fun;
	    } 
	    else /* arity > n */ {
		// build a new PAP and return it.
		StgPAP *new_pap;
587
		new_pap = (StgPAP *)allocate(PAP_sizeW(pap->n_args + m));
588
589
590
591
592
593
594
595
596
597
		SET_HDR(new_pap,&stg_PAP_info,CCCS);
		new_pap->arity = pap->arity - n;
		new_pap->n_args = pap->n_args + m;
		new_pap->fun = pap->fun;
		for (i = 0; i < pap->n_args; i++) {
		    new_pap->payload[i] = pap->payload[i];
		}
		for (i = 0; i < m; i++) {
		    new_pap->payload[pap->n_args + i] = (StgClosure *)Sp[i];
		}
598
		tagged_obj = (StgClosure *)new_pap;
599
600
601
602
603
604
		Sp += m;
		goto do_return;
	    }
	}	    

	case BCO: {
605
	    nat arity, i;
606
607

	    Sp++;
608
	    arity = ((StgBCO *)obj)->arity;
609
610
611
612
613
614
615
616
617
	    ASSERT(arity > 0);
	    if (arity < n) {
		// n must be greater than 1, and the only kinds of
		// application we support with more than one argument
		// are all pointers...
		//
		// Shuffle the args for this function down, and put
		// the appropriate info table in the gap.
		for (i = 0; i < arity; i++) {
618
619
		    Sp[(int)i-1] = Sp[i];
		    // ^^^^^ careful, i-1 might be negative, but i in unsigned
620
621
622
623
624
625
626
627
628
629
630
		}
		Sp[arity-1] = app_ptrs_itbl[n-arity-1];
		Sp--;
		goto run_BCO_fun;
	    } 
	    else if (arity == n) {
		goto run_BCO_fun;
	    }
	    else /* arity > n */ {
		// build a PAP and return it.
		StgPAP *pap;
631
632
		nat i;
		pap = (StgPAP *)allocate(PAP_sizeW(m));
633
634
635
636
637
638
639
		SET_HDR(pap, &stg_PAP_info,CCCS);
		pap->arity = arity - n;
		pap->fun = obj;
		pap->n_args = m;
		for (i = 0; i < m; i++) {
		    pap->payload[i] = (StgClosure *)Sp[i];
		}
640
		tagged_obj = (StgClosure *)pap;
641
642
643
644
645
646
647
648
649
		Sp += m;
		goto do_return;
	    }
	}

	// No point in us applying machine-code functions
	default:
	defer_apply_to_sched:
	    Sp -= 2;
650
	    Sp[1] = (W_)tagged_obj;
651
	    Sp[0] = (W_)&stg_enter_info;
652
	    RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    }

    // ------------------------------------------------------------------------
    // Ok, we now have a bco (obj), and its arguments are all on the
    // stack.  We can start executing the byte codes.
    //
    // The stack is in one of two states.  First, if this BCO is a
    // function:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     arg2      |
    // 	  +---------------+
    // 	  |     arg1      |
    // 	  +---------------+
    //
    // Second, if this BCO is a continuation:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     fv2       |
    // 	  +---------------+
    // 	  |     fv1       |
    // 	  +---------------+
    // 	  |     BCO       |
    // 	  +---------------+
    // 	  | stg_ctoi_ret_ |
    // 	  +---------------+
    // 	  |    retval     |
    // 	  +---------------+
    // 
    // where retval is the value being returned to this continuation.
    // In the event of a stack check, heap check, or context switch,
    // we need to leave the stack in a sane state so the garbage
    // collector can find all the pointers.
    //
    //  (1) BCO is a function:  the BCO's bitmap describes the
    //      pointerhood of the arguments.
    //
    //  (2) BCO is a continuation: BCO's bitmap describes the
    //      pointerhood of the free variables.
    //
    // Sadly we have three different kinds of stack/heap/cswitch check
    // to do:

698

699
700
701
702
703
704
run_BCO_return:
    // Heap check
    if (doYouWantToGC()) {
	Sp--; Sp[0] = (W_)&stg_enter_info;
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
705
706
    // Stack checks aren't necessary at return points, the stack use
    // is aggregated into the enclosing function entry point.
707

708
709
710
711
712
713
714
    goto run_BCO;
    
run_BCO_return_unboxed:
    // Heap check
    if (doYouWantToGC()) {
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
715
716
    // Stack checks aren't necessary at return points, the stack use
    // is aggregated into the enclosing function entry point.
717

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
    goto run_BCO;
    
run_BCO_fun:
    IF_DEBUG(sanity,
	     Sp -= 2; 
	     Sp[1] = (W_)obj; 
	     Sp[0] = (W_)&stg_apply_interp_info;
	     checkStackChunk(Sp,SpLim);
	     Sp += 2;
	);

    // Heap check
    if (doYouWantToGC()) {
	Sp -= 2; 
	Sp[1] = (W_)obj; 
	Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
    
737
738
    // Stack check
    if (Sp - INTERP_STACK_CHECK_THRESH < SpLim) {
739
740
741
742
743
	Sp -= 2; 
	Sp[1] = (W_)obj; 
	Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
	RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
    }
744

745
746
747
748
749
750
751
752
    goto run_BCO;
    
    // Now, actually interpret the BCO... (no returning to the
    // scheduler again until the stack is in an orderly state).
run_BCO:
    INTERP_TICK(it_BCO_entries);
    {
	register int       bciPtr     = 1; /* instruction pointer */
753
        register StgWord16 bci;
754
	register StgBCO*   bco        = (StgBCO*)obj;
755
	register StgWord16* instrs    = (StgWord16*)(bco->instrs->payload);
756
757
	register StgWord*  literals   = (StgWord*)(&bco->literals->payload[0]);
	register StgPtr*   ptrs       = (StgPtr*)(&bco->ptrs->payload[0]);
758

759
760
761
#ifdef INTERP_STATS
	it_lastopc = 0; /* no opcode */
#endif
762

763
764
765
766
    nextInsn:
	ASSERT(bciPtr <= instrs[0]);
	IF_DEBUG(interpreter,
		 //if (do_print_stack) {
767
		 //debugBelch("\n-- BEGIN stack\n");
768
		 //printStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
769
		 //debugBelch("-- END stack\n\n");
770
		 //}
771
		 debugBelch("Sp = %p   pc = %d      ", Sp, bciPtr);
772
773
		 disInstr(bco,bciPtr);
		 if (0) { int i;
774
		 debugBelch("\n");
775
		 for (i = 8; i >= 0; i--) {
776
		     debugBelch("%d  %p\n", i, (StgPtr)(*(Sp+i)));
777
		 }
778
		 debugBelch("\n");
779
		 }
780
781
		 //if (do_print_stack) checkStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
	    );
782

783

784
785
786
787
788
789
790
791
792
	INTERP_TICK(it_insns);

#ifdef INTERP_STATS
	ASSERT( (int)instrs[bciPtr] >= 0 && (int)instrs[bciPtr] < 27 );
	it_ofreq[ (int)instrs[bciPtr] ] ++;
	it_oofreq[ it_lastopc ][ (int)instrs[bciPtr] ] ++;
	it_lastopc = (int)instrs[bciPtr];
#endif

793
794
795
796
797
798
	bci = BCO_NEXT;
    /* We use the high 8 bits for flags, only the highest of which is
     * currently allocated */
    ASSERT((bci & 0xFF00) == (bci & 0x8000));

    switch (bci & 0xFF) {
799

800
801
802
803
804
        /* check for a breakpoint on the beginning of a let binding */
        case bci_BRK_FUN: 
        {
            int arg1_brk_array, arg2_array_index, arg3_freeVars;
            StgArrWords *breakPoints;
805
806
            int returning_from_break;     // are we resuming execution from a breakpoint?
                                          //  if yes, then don't break this time around
807
808
809
810
811
812
            StgClosure *ioAction;         // the io action to run at a breakpoint

            StgAP_STACK *new_aps;         // a closure to save the top stack frame on the heap
            int i;
            int size_words;

813
814
815
            arg1_brk_array      = BCO_NEXT;  // 1st arg of break instruction
            arg2_array_index    = BCO_NEXT;  // 2nd arg of break instruction
            arg3_freeVars       = BCO_NEXT;  // 3rd arg of break instruction
816

817
818
            // check if we are returning from a breakpoint - this info
            // is stored in the flags field of the current TSO
819
820
            returning_from_break = cap->r.rCurrentTSO->flags & TSO_STOPPED_ON_BREAKPOINT; 

821
822
            // if we are returning from a break then skip this section
            // and continue executing
823
824
825
826
            if (!returning_from_break)
            {
               breakPoints = (StgArrWords *) BCO_PTR(arg1_brk_array);

827
               // stop the current thread if either the
828
               // "rts_stop_next_breakpoint" flag is true OR if the
829
830
               // breakpoint flag for this particular expression is
               // true
831
               if (rts_stop_next_breakpoint == rtsTrue || 
832
                   breakPoints->payload[arg2_array_index] == rtsTrue)
833
               {
834
835
                  // make sure we don't automatically stop at the
                  // next breakpoint
836
                  rts_stop_next_breakpoint = rtsFalse;
837
838
839
840
841

                  // allocate memory for a new AP_STACK, enough to
                  // store the top stack frame plus an
                  // stg_apply_interp_info pointer and a pointer to
                  // the BCO
842
843
844
845
846
847
848
                  size_words = BCO_BITMAP_SIZE(obj) + 2;
                  new_aps = (StgAP_STACK *) allocate (AP_STACK_sizeW(size_words));
                  SET_HDR(new_aps,&stg_AP_STACK_info,CCS_SYSTEM); 
                  new_aps->size = size_words;
                  new_aps->fun = &stg_dummy_ret_closure; 

                  // fill in the payload of the AP_STACK 
849
850
                  new_aps->payload[0] = (StgClosure *)&stg_apply_interp_info;
                  new_aps->payload[1] = (StgClosure *)obj;
851
852
853
854

                  // copy the contents of the top stack frame into the AP_STACK
                  for (i = 2; i < size_words; i++)
                  {
855
                     new_aps->payload[i] = (StgClosure *)Sp[i-2];
856
857
                  }

858
                  // prepare the stack so that we can call the
859
                  // rts_breakpoint_io_action and ensure that the stack is
860
861
                  // in a reasonable state for the GC and so that
                  // execution of this BCO can continue when we resume
862
                  ioAction = (StgClosure *) deRefStablePtr (rts_breakpoint_io_action);
863
864
865
866
                  Sp -= 9;
                  Sp[8] = (W_)obj;   
                  Sp[7] = (W_)&stg_apply_interp_info;
                  Sp[6] = (W_)&stg_noforceIO_info;     // see [unreg] below
867
868
869
870
                  Sp[5] = (W_)new_aps;                 // the AP_STACK
                  Sp[4] = (W_)BCO_PTR(arg3_freeVars);  // the info about local vars of the breakpoint
                  Sp[3] = (W_)False_closure;            // True <=> a breakpoint
                  Sp[2] = (W_)&stg_ap_pppv_info;
871
872
                  Sp[1] = (W_)ioAction;                // apply the IO action to its two arguments above
                  Sp[0] = (W_)&stg_enter_info;         // get ready to run the IO action
873
874
875
876
                  // Note [unreg]: in unregisterised mode, the return
                  // convention for IO is different.  The
                  // stg_noForceIO_info stack frame is necessary to
                  // account for this difference.
877

878
879
880
881
                  // set the flag in the TSO to say that we are now
                  // stopping at a breakpoint so that when we resume
                  // we don't stop on the same breakpoint that we
                  // already stopped at just now
882
883
                  cap->r.rCurrentTSO->flags |= TSO_STOPPED_ON_BREAKPOINT;

884
885
886
                  // stop this thread and return to the scheduler -
                  // eventually we will come back and the IO action on
                  // the top of the stack will be executed
887
888
889
890
891
892
893
894
895
896
                  RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
               }
            }
            // record that this thread is not stopped at a breakpoint anymore
            cap->r.rCurrentTSO->flags &= ~TSO_STOPPED_ON_BREAKPOINT;

            // continue normal execution of the byte code instructions
	    goto nextInsn;
        }

897
898
899
900
	case bci_STKCHECK: {
	    // Explicit stack check at the beginning of a function
	    // *only* (stack checks in case alternatives are
	    // propagated to the enclosing function).
901
	    StgWord stk_words_reqd = BCO_GET_LARGE_ARG + 1;
902
	    if (Sp - stk_words_reqd < SpLim) {
903
904
905
		Sp -= 2; 
		Sp[1] = (W_)obj; 
		Sp[0] = (W_)&stg_apply_interp_info;
906
		RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
907
908
	    } else {
		goto nextInsn;
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
	    }
	}

	case bci_PUSH_L: {
	    int o1 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp--;
	    goto nextInsn;
	}

	case bci_PUSH_LL: {
	    int o1 = BCO_NEXT;
	    int o2 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp[-2] = Sp[o2];
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_LLL: {
	    int o1 = BCO_NEXT;
	    int o2 = BCO_NEXT;
	    int o3 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp[-2] = Sp[o2];
	    Sp[-3] = Sp[o3];
	    Sp -= 3;
	    goto nextInsn;
	}

	case bci_PUSH_G: {
	    int o1 = BCO_NEXT;
	    Sp[-1] = BCO_PTR(o1);
	    Sp -= 1;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS: {
	    int o_bco  = BCO_NEXT;
948
	    Sp[-2] = (W_)&stg_ctoi_R1p_info;
949
950
951
952
953
954
955
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_P: {
	    int o_bco  = BCO_NEXT;
956
	    Sp[-2] = (W_)&stg_ctoi_R1unpt_info;
957
958
959
960
961
962
963
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_N: {
	    int o_bco  = BCO_NEXT;
964
	    Sp[-2] = (W_)&stg_ctoi_R1n_info;
965
966
967
968
969
970
971
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_F: {
	    int o_bco  = BCO_NEXT;
972
	    Sp[-2] = (W_)&stg_ctoi_F1_info;
973
974
975
976
977
978
979
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_D: {
	    int o_bco  = BCO_NEXT;
980
	    Sp[-2] = (W_)&stg_ctoi_D1_info;
981
982
983
984
985
986
987
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_L: {
	    int o_bco  = BCO_NEXT;
988
	    Sp[-2] = (W_)&stg_ctoi_L1_info;
989
990
991
992
993
994
995
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_V: {
	    int o_bco  = BCO_NEXT;
996
	    Sp[-2] = (W_)&stg_ctoi_V_info;
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_APPLY_N:
	    Sp--; Sp[0] = (W_)&stg_ap_n_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_V:
	    Sp--; Sp[0] = (W_)&stg_ap_v_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_F:
	    Sp--; Sp[0] = (W_)&stg_ap_f_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_D:
	    Sp--; Sp[0] = (W_)&stg_ap_d_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_L:
	    Sp--; Sp[0] = (W_)&stg_ap_l_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_P:
	    Sp--; Sp[0] = (W_)&stg_ap_p_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PP:
	    Sp--; Sp[0] = (W_)&stg_ap_pp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPP:
	    Sp--; Sp[0] = (W_)&stg_ap_ppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_pppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_ppppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_pppppp_info;
	    goto nextInsn;
	    
	case bci_PUSH_UBX: {
	    int i;
	    int o_lits = BCO_NEXT;
	    int n_words = BCO_NEXT;
	    Sp -= n_words;
	    for (i = 0; i < n_words; i++) {
1042
		Sp[i] = (W_)BCO_LIT(o_lits+i);
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
	    }
	    goto nextInsn;
	}

	case bci_SLIDE: {
	    int n  = BCO_NEXT;
	    int by = BCO_NEXT;
	    /* a_1, .. a_n, b_1, .. b_by, s => a_1, .. a_n, s */
	    while(--n >= 0) {
		Sp[n+by] = Sp[n];
	    }
	    Sp += by;
	    INTERP_TICK(it_slides);
	    goto nextInsn;
	}

	case bci_ALLOC_AP: {
	    StgAP* ap; 
sof's avatar
sof committed
1061
	    int n_payload = BCO_NEXT;
1062
	    ap = (StgAP*)allocate(AP_sizeW(n_payload));
1063
1064
1065
1066
1067
1068
1069
	    Sp[-1] = (W_)ap;
	    ap->n_args = n_payload;
	    SET_HDR(ap, &stg_AP_info, CCS_SYSTEM/*ToDo*/)
	    Sp --;
	    goto nextInsn;
	}

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
	case bci_ALLOC_AP_NOUPD: {
	    StgAP* ap; 
	    int n_payload = BCO_NEXT;
	    ap = (StgAP*)allocate(AP_sizeW(n_payload));
	    Sp[-1] = (W_)ap;
	    ap->n_args = n_payload;
	    SET_HDR(ap, &stg_AP_NOUPD_info, CCS_SYSTEM/*ToDo*/)
	    Sp --;
	    goto nextInsn;
	}

1081
1082
1083
	case bci_ALLOC_PAP: {
	    StgPAP* pap; 
	    int arity = BCO_NEXT;
sof's avatar
sof committed
1084
	    int n_payload = BCO_NEXT;
1085
	    pap = (StgPAP*)allocate(PAP_sizeW(n_payload));
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
	    Sp[-1] = (W_)pap;
	    pap->n_args = n_payload;
	    pap->arity = arity;
	    SET_HDR(pap, &stg_PAP_info, CCS_SYSTEM/*ToDo*/)
	    Sp --;
	    goto nextInsn;
	}

	case bci_MKAP: {
	    int i;
	    int stkoff = BCO_NEXT;
sof's avatar
sof committed
1097
	    int n_payload = BCO_NEXT;
1098
1099
1100
	    StgAP* ap = (StgAP*)Sp[stkoff];
	    ASSERT((int)ap->n_args == n_payload);
	    ap->fun = (StgClosure*)Sp[0];
1101
	    
1102
1103
1104
	    // The function should be a BCO, and its bitmap should
	    // cover the payload of the AP correctly.
	    ASSERT(get_itbl(ap->fun)->type == BCO
1105
1106
		   && BCO_BITMAP_SIZE(ap->fun) == ap->n_args);
	    
1107
1108
1109
1110
	    for (i = 0; i < n_payload; i++)
		ap->payload[i] = (StgClosure*)Sp[i+1];
	    Sp += n_payload+1;
	    IF_DEBUG(interpreter,
1111
		     debugBelch("\tBuilt "); 
1112
1113
1114
1115
1116
		     printObj((StgClosure*)ap);
		);
	    goto nextInsn;
	}

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
	case bci_MKPAP: {
	    int i;
	    int stkoff = BCO_NEXT;
	    int n_payload = BCO_NEXT;
	    StgPAP* pap = (StgPAP*)Sp[stkoff];
	    ASSERT((int)pap->n_args == n_payload);
	    pap->fun = (StgClosure*)Sp[0];
	    
	    // The function should be a BCO
	    ASSERT(get_itbl(pap->fun)->type == BCO);
	    
	    for (i = 0; i < n_payload; i++)
		pap->payload[i] = (StgClosure*)Sp[i+1];
	    Sp += n_payload+1;
	    IF_DEBUG(interpreter,
		     debugBelch("\tBuilt "); 
		     printObj((StgClosure*)pap);
		);
	    goto nextInsn;
	}

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
	case bci_UNPACK: {
	    /* Unpack N ptr words from t.o.s constructor */
	    int i;
	    int n_words = BCO_NEXT;
	    StgClosure* con = (StgClosure*)Sp[0];
	    Sp -= n_words;
	    for (i = 0; i < n_words; i++) {
		Sp[i] = (W_)con->payload[i];
	    }
	    goto nextInsn;
	}

	case bci_PACK: {
	    int i;
	    int o_itbl         = BCO_NEXT;
	    int n_words        = BCO_NEXT;
1154
	    StgInfoTable* itbl = INFO_PTR_TO_STRUCT(BCO_LIT(o_itbl));
1155
1156
1157
1158
	    int request        = CONSTR_sizeW( itbl->layout.payload.ptrs, 
					       itbl->layout.payload.nptrs );
	    StgClosure* con = (StgClosure*)allocate_NONUPD(request);
	    ASSERT( itbl->layout.payload.ptrs + itbl->layout.payload.nptrs > 0);
1159
	    SET_HDR(con, (StgInfoTable*)BCO_LIT(o_itbl), CCS_SYSTEM/*ToDo*/);
1160
1161
1162
1163
1164
1165
1166
	    for (i = 0; i < n_words; i++) {
		con->payload[i] = (StgClosure*)Sp[i];
	    }
	    Sp += n_words;
	    Sp --;
	    Sp[0] = (W_)con;
	    IF_DEBUG(interpreter,
1167
		     debugBelch("\tBuilt "); 
1168
1169
1170
1171
1172
1173
		     printObj((StgClosure*)con);
		);
	    goto nextInsn;
	}

	case bci_TESTLT_P: {
1174
	    unsigned int discr  = BCO_NEXT;
1175
1176
	    int failto = BCO_NEXT;
	    StgClosure* con = (StgClosure*)Sp[0];
1177
	    if (GET_TAG(con) >= discr) {
1178
1179
1180
1181
1182
1183
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_P: {
1184
	    unsigned int discr  = BCO_NEXT;
1185
1186
	    int failto = BCO_NEXT;
	    StgClosure* con = (StgClosure*)Sp[0];
1187
	    if (GET_TAG(con) != discr) {
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTLT_I: {
	    // There should be an Int at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    I_ stackInt = (I_)Sp[1];
	    if (stackInt >= (I_)BCO_LIT(discr))
		bciPtr = failto;
	    goto nextInsn;
	}

	case bci_TESTEQ_I: {
	    // There should be an Int at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    I_ stackInt = (I_)Sp[1];
	    if (stackInt != (I_)BCO_LIT(discr)) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTLT_D: {
	    // There should be a Double at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    StgDouble stackDbl, discrDbl;
	    stackDbl = PK_DBL( & Sp[1] );
	    discrDbl = PK_DBL( & BCO_LIT(discr) );
	    if (stackDbl >= discrDbl) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_D: {
	    // There should be a Double at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    StgDouble stackDbl, discrDbl;
	    stackDbl = PK_DBL( & Sp[1] );
	    discrDbl = PK_DBL( & BCO_LIT(discr) );
	    if (stackDbl != discrDbl) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTLT_F: {
	    // There should be a Float at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    StgFloat stackFlt, discrFlt;
	    stackFlt = PK_FLT( & Sp[1] );
	    discrFlt = PK_FLT( & BCO_LIT(discr) );
	    if (stackFlt >= discrFlt) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_F: {
	    // There should be a Float at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_NEXT;
	    StgFloat stackFlt, discrFlt;
	    stackFlt = PK_FLT( & Sp[1] );
	    discrFlt = PK_FLT( & BCO_LIT(discr) );
	    if (stackFlt != discrFlt) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	// Control-flow ish things
	case bci_ENTER:
	    // Context-switch check.  We put it here to ensure that
	    // the interpreter has done at least *some* work before
	    // context switching: sometimes the scheduler can invoke
	    // the interpreter with context_switch == 1, particularly
	    // if the -C0 flag has been given on the cmd line.
	    if (context_switch) {
		Sp--; Sp[0] = (W_)&stg_enter_info;
		RETURN_TO_SCHEDULER(ThreadInterpret, ThreadYielding);
	    }
	    goto eval;

	case bci_RETURN:
1280
	    tagged_obj = (StgClosure *)Sp[0];
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
	    Sp++;
	    goto do_return;

	case bci_RETURN_P:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_unpt_r1_info;
	    goto do_return_unboxed;
	case bci_RETURN_N:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_unbx_r1_info;
	    goto do_return_unboxed;
	case bci_RETURN_F:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_f1_info;
	    goto do_return_unboxed;
	case bci_RETURN_D:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_d1_info;
	    goto do_return_unboxed;
	case bci_RETURN_L:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_l1_info;
	    goto do_return_unboxed;
	case bci_RETURN_V:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_void_info;
	    goto do_return_unboxed;

	case bci_SWIZZLE: {
	    int stkoff = BCO_NEXT;
	    signed short n = (signed short)(BCO_NEXT);
	    Sp[stkoff] += (W_)n;
	    goto nextInsn;
	}

	case bci_CCALL: {
1317
	    void *tok;
1318
1319
1320
	    int stk_offset            = BCO_NEXT;
	    int o_itbl                = BCO_NEXT;
	    void(*marshall_fn)(void*) = (void (*)(void*))BCO_LIT(o_itbl);
1321
1322
1323
	    int ret_dyn_size = 
		RET_DYN_BITMAP_SIZE + RET_DYN_NONPTR_REGS_SIZE
		+ sizeofW(StgRetDyn);
1324

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
            /* the stack looks like this:
               
               |             |  <- Sp + stk_offset
               +-------------+  
               |             |
               |    args     |
               |             |  <- Sp + ret_size + 1
               +-------------+
               |    C fun    |  <- Sp + ret_size
               +-------------+
               |     ret     |  <- Sp
               +-------------+

               ret is a placeholder for the return address, and may be
               up to 2 words.

               We need to copy the args out of the TSO, because when
               we call suspendThread() we no longer own the TSO stack,
               and it may move at any time - indeed suspendThread()
               itself may do stack squeezing and move our args.
               So we make a copy of the argument block.
            */

#define ROUND_UP_WDS(p)  ((((StgWord)(p)) + sizeof(W_)-1)/sizeof(W_))

            ffi_cif *cif = (ffi_cif *)marshall_fn;
            nat nargs = cif->nargs;
            nat ret_size;
            nat i;
            StgPtr p;
            W_ ret[2];                  // max needed
	    W_ *arguments[stk_offset];  // max needed
            void *argptrs[nargs];
            void (*fn)(void);

            if (cif->rtype->type == FFI_TYPE_VOID) {
                // necessary because cif->rtype->size == 1 for void,
                // but the bytecode generator has not pushed a
                // placeholder in this case.
                ret_size = 0;
            } else {
                ret_size = ROUND_UP_WDS(cif->rtype->size);
            }

	    memcpy(arguments, Sp+ret_size+1, 
                   sizeof(W_) * (stk_offset-1-ret_size));
            
            // libffi expects the args as an array of pointers to
            // values, so we have to construct this array before making
            // the call.
            p = (StgPtr)arguments;
            for (i = 0; i < nargs; i++) {
                argptrs[i] = (void *)p;
                // get the size from the cif
                p += ROUND_UP_WDS(cif->arg_types[i]->size);
            }
1381

1382
1383
            // this is the function we're going to call
            fn = (void(*)(void))Sp[ret_size];
1384

1385
1386
1387
	    // Restore the Haskell thread's current value of errno
	    errno = cap->r.rCurrentTSO->saved_errno;

1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
	    // There are a bunch of non-ptr words on the stack (the
	    // ccall args, the ccall fun address and space for the
	    // result), which we need to cover with an info table
	    // since we might GC during this call.
	    //
	    // We know how many (non-ptr) words there are before the
	    // next valid stack frame: it is the stk_offset arg to the
	    // CCALL instruction.   So we build a RET_DYN stack frame
	    // on the stack frame to describe this chunk of stack.
	    //
1398
	    Sp -= ret_dyn_size;
1399
	    ((StgRetDyn *)Sp)->liveness = R1_PTR | N_NONPTRS(stk_offset);
1400
1401
	    ((StgRetDyn *)Sp)->info = (StgInfoTable *)&stg_gc_gen_info;

1402
1403
1404
1405
1406
            // save obj (pointer to the current BCO), since this
            // might move during the call.  We use the R1 slot in the
            // RET_DYN frame for this, hence R1_PTR above.
            ((StgRetDyn *)Sp)->payload[0] = (StgClosure *)obj;

1407
	    SAVE_STACK_POINTERS;
1408
	    tok = suspendThread(&cap->r);
1409

1410
	    // We already made a copy of the arguments above.
1411
            ffi_call(cif, fn, ret, argptrs);
1412

1413
	    // And restart the thread again, popping the RET_DYN frame.
1414
	    cap = (Capability *)((void *)((unsigned char*)resumeThread(tok) - sizeof(StgFunTable)));
1415
	    LOAD_STACK_POINTERS;
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

            // Re-load the pointer to the BCO from the RET_DYN frame,
            // it might have moved during the call.  Also reload the
            // pointers to the components of the BCO.
            obj        = ((StgRetDyn *)Sp)->payload[0];
            bco        = (StgBCO*)obj;
            instrs     = (StgWord16*)(bco->instrs->payload);
            literals   = (StgWord*)(&bco->literals->payload[0]);
            ptrs       = (StgPtr*)(&bco->ptrs->payload[0]);

1426
	    Sp += ret_dyn_size;
1427
	    
1428
1429
1430
	    // Save the Haskell thread's current value of errno
	    cap->r.rCurrentTSO->saved_errno = errno;
		
1431
1432
1433
	    // Copy the return value back to the TSO stack.  It is at
            // most 2 words large, and resides at arguments[0].
            memcpy(Sp, ret, sizeof(W_) * stg_min(stk_offset,ret_size));
1434

1435
1436
1437
1438
1439
1440
1441
1442
1443
	    goto nextInsn;
	}

	case bci_JMP: {
	    /* BCO_NEXT modifies bciPtr, so be conservative. */
	    int nextpc = BCO_NEXT;
	    bciPtr     = nextpc;
	    goto nextInsn;
	}
1444
 
1445
1446
1447
1448
1449
	case bci_CASEFAIL:
	    barf("interpretBCO: hit a CASEFAIL");
	    
	    // Errors
	default: 
1450
	    barf("interpretBCO: unknown or unimplemented opcode %d",
1451
                 (int)(bci & 0xFF));
1452
1453
1454
1455
1456
1457

	} /* switch on opcode */
    }
    }

    barf("interpretBCO: fell off end of the interpreter");