This project is mirrored from https://gitlab.haskell.org/ghc/ghc.git. Pull mirroring failed .
Repository mirroring has been paused due to too many failed attempts. It can be resumed by a project maintainer.
Last successful update .
  1. 06 Aug, 2018 1 commit
  2. 18 May, 2018 1 commit
    • Simon Peyton Jones's avatar
      Orient TyVar/TyVar equalities with deepest on the left · 2bbdd00c
      Simon Peyton Jones authored
      Trac #15009 showed that, for Given TyVar/TyVar equalities, we really
      want to orient them with the deepest-bound skolem on the left. As it
      happens, we also want to do the same for Wanteds, but for a different
      reason (more likely to be touchable).  Either way, deepest wins:
      see TcUnify Note [Deeper level on the left].
      
      This observation led me to some significant changes:
      
      * A SkolemTv already had a TcLevel, but the level wasn't really being
        used.   Now it is!
      
      * I updated added invariant (SkolInf) to TcType
        Note [TcLevel and untouchable type variables], documenting that
        the level number of all the ic_skols should be the same as the
        ic_tclvl of the implication
      
      * FlatSkolTvs and FlatMetaTvs previously had a dummy level-number of
        zero, which messed the scheme up.   Now they get a level number the
        same way as all other TcTyVars, instead of being a special case.
      
      * To make sure that FlatSkolTvs and FlatMetaTvs are untouchable (which
        was previously done via their magic zero level) isTouchableMetaTyVar
        just tests for those two cases.
      
      * TcUnify.swapOverTyVars is the crucial orientation function; see the
        new Note [TyVar/TyVar orientation].  I completely rewrote this function,
        and it's now much much easier to understand.
      
      I ended up doing some related refactoring, of course
      
      * I noticed that tcImplicitTKBndrsX and tcExplicitTKBndrsX were doing
        a lot of useless work in the case where there are no skolems; I
        added a fast-patch
      
      * Elminate the un-used tcExplicitTKBndrsSig; and thereby get rid of
        the higher-order parameter to tcExpliciTKBndrsX.
      
      * Replace TcHsType.emitTvImplication with TcUnify.checkTvConstraints,
        by analogy with TcUnify.checkConstraints.
      
      * Inline TcUnify.buildImplication into its only call-site in
        TcUnify.checkConstraints
      
      * TcS.buildImplication becomes TcS.CheckConstraintsTcS, with a
        simpler API
      
      * Now that we have NoEvBindsVar we have no need of termEvidenceAllowed;
        nuke the latter, adding Note [No evidence bindings] to TcEvidence.
      2bbdd00c
  3. 10 Mar, 2017 1 commit
    • Simon Peyton Jones's avatar
      Fix TcSimplify.decideQuantification for kind variables · 7e96526a
      Simon Peyton Jones authored
      TcSimplify.decideQuantification was doing the Wrong Thing when
      "growing" the type variables to quantify over. We were trying to do
      this on a tyvar set where we'd split off the dependent type varaibles;
      and we just got it wrong.  A kind variable wasn't being generalised
      properly, with confusing knock on consequences.
      
      All this led to Trac #13371 and Trac #13393.
      
      This commit tidies it all up:
      
      * The type TcDepVars is renamed as CandidateQTvs;
        and splitDepVarsOfType to candidateQTyVarsOfType
      
      * The code in TcSimplify.decideQuantification is simpler.
        It no longer does the tricky "grow" stuff over TcDepVars.
        Instead it use ordinary VarSets (thereby eliminating the
        nasty growThetaTyVarsDSet) and uses that to filter the
        result of candidateQTyVarsOfType.
      
      * I documented that candidateQTyVarsOfType returns the type
        variables in a good order in which to quantify, and rewrote
        it to use an accumulator pattern, so that we would predicatably
        get left-to-right ordering.
      
      In doing all this I also made UniqDFM behave a little more nicely:
      
      * When inserting an element that is there already, keep the old tag,
        while still overwriting with the new value.
      
      * This means that when doing udfmToList we get back elements in the
        order they were originally inserted, rather than in reverse order.
      
      It's not a big deal, but in a subsequent commit I use it to improve
      the order of type variables in inferred types.
      
      All this led to a lot of error message wibbles:
       - changing the order of quantified variables
       - changing the order in which instances are listed in GHCi
       - changing the tidying of variables in typechecker erors
      
      There's a submodule update for 'array' because one of its tests
      has an error-message change.
      
      I may not have associated all of them with the correct commit.
      7e96526a
  4. 21 Oct, 2016 1 commit
    • Simon Peyton Jones's avatar
      A collection of type-inference refactorings. · 3f5673f3
      Simon Peyton Jones authored
      This patch does a raft of useful tidy-ups in the type checker.
      I've been meaning to do this for some time, and finally made
      time to do it en route to ICFP.
      
      1. Modify TcType.ExpType to make a distinct data type,
         InferResult for the Infer case, and consequential
         refactoring.
      
      2. Define a new function TcUnify.fillInferResult, to fill in
         an InferResult. It uses TcMType.promoteTcType to promote
         the type to the level of the InferResult.
         See TcMType Note [Promoting a type]
         This refactoring is in preparation for an improvement
         to typechecking pattern bindings, coming next.
      
         I flirted with an elaborate scheme to give better
         higher rank inference, but it was just too complicated.
         See TcMType Note [Promotion and higher rank types]
      
      3. Add to InferResult a new field ir_inst :: Bool to say
         whether or not the type used to fill in the
         InferResult should be deeply instantiated.  See
         TcUnify Note [Deep instantiation of InferResult].
      
      4. Add a TcLevel to SkolemTvs. This will be useful generally
      
          - it's a fast way to see if the type
            variable escapes when floating (not used yet)
      
          - it provides a good consistency check when updating a
            unification variable (TcMType.writeMetaTyVarRef, the
            level_check_ok check)
      
         I originally had another reason (related to the flirting
         in (2), but I left it in because it seems like a step in
         the right direction.
      
      5. Reduce and simplify the plethora of uExpType,
         tcSubType and related functions in TcUnify.  It was
         such an opaque mess and it's still not great, but it's
         better.
      
      6. Simplify the uo_expected field of TypeEqOrigin.  Richard
         had generatlised it to a ExpType, but it was almost always
         a Check type.  Now it's back to being a plain TcType which
         is much, much easier.
      
      7. Improve error messages by refraining from skolemisation when
         it's clear that there's an error: see
         TcUnify Note [Don't skolemise unnecessarily]
      
      8. Type.isPiTy and isForAllTy seem to be missing a coreView check,
         so I added it
      
      9. Kill off tcs_used_tcvs.  Its purpose is to track the
         givens used by wanted constraints.  For dictionaries etc
         we do that via the free vars of the /bindings/ in the
         implication constraint ic_binds.  But for coercions we
         just do update-in-place in the type, rather than
         generating a binding.  So we need something analogous to
         bindings, to track what coercions we have added.
      
         That was the purpose of tcs_used_tcvs.  But it only
         worked for a /single/ iteration, whereas we may have
         multiple iterations of solving an implication.  Look
         at (the old) 'setImplicationStatus'.  If the constraint
         is unsolved, it just drops the used_tvs on the floor.
         If it becomes solved next time round, we'll pick up
         coercions used in that round, but ignore ones used in
         the first round.
      
         There was an outright bug.  Result = (potentialy) bogus
         unused-constraint errors.  Constructing a case where this
         actually happens seems quite trick so I did not do so.
      
         Solution: expand EvBindsVar to include the (free vars of
         the) coercions, so that the coercions are tracked in
         essentially the same way as the bindings.
      
         This turned out to be much simpler.  Less code, more
         correct.
      
      10. Make the ic_binds field in an implication have type
            ic_binds :: EvBindsVar
          instead of (as previously)
             ic_binds :: Maybe EvBindsVar
          This is notably simpler, and faster to use -- less
          testing of the Maybe.  But in the occaional situation
          where we don't have anywhere to put the bindings, the
          belt-and-braces error check is lost.  So I put it back
          as an ASSERT in 'setImplicationStatus' (see the use of
          'termEvidenceAllowed')
      
      All these changes led to quite bit of error message wibbling
      3f5673f3
  5. 30 Sep, 2016 1 commit
    • Simon Peyton Jones's avatar
      Fix a bug in occurs checking · 66a8c194
      Simon Peyton Jones authored
      1. Trac #12593 exposed a long-standing bug in the occurs
         checking machinery.  When unifying two type variables
                a ~ b
         where a /= b, we were assuming that there could be
         no occurs-check error.  But there can: 'a' can occur
         in b's kind!  When the RHS was a non-tyvar we used
         occurCheckExpand, which /did/ look in kinds, but not
         when the RHS was a tyvar.
      
         This bug has been lurking ever since TypeInType, maybe
         longer.  And it was present both in TcUnify (the on-the-fly
         unifier), and in TcInteract.
      
         I ended up refactoring both so that the tyvar/tyvar
         path naturally goes through the same occurs-check as
         non-tyvar rhss.  It's simpler and more robust now.
      
         One good thing is that both unifiers now share
             TcType.swapOverVars
             TcType.canSolveByUnification
         previously they had different logic for the same goals
      
      2. Fixing this bug exposed another!  In T11635 we end
         up unifying
         (alpha :: forall k. k->*) ~ (beta :: forall k. k->*)
         Now that the occurs check is done for tyvars too, we
         look inside beta's kind.  And then reject the program
         becuase of the forall inside there.  But in fact that
         forall is fine -- it does not count as impredicative
         polymoprhism.   See Note [Checking for foralls]
         in TcType.
      
      3. All this fuss around occurrence checking forced me
         to look at TcUnify.checkTauTvUpdate
                and TcType.occurCheckExpand
         There's a lot of duplication there, and I managed
         to elminate quite a bit of it. For example,
         checkTauTvUpdate called a local 'defer_me'; and then
         called occurCheckExpand, which then used a very
         similar 'fast_check'.
      
         Things are better, but there is more to do.
      66a8c194
  6. 15 Jun, 2016 1 commit
    • Simon Peyton Jones's avatar
      Major patch to introduce TyConBinder · e368f326
      Simon Peyton Jones authored
      Before this patch, following the TypeInType innovations,
      each TyCon had two lists:
        - tyConBinders :: [TyBinder]
        - tyConTyVars  :: [TyVar]
      
      They were in 1-1 correspondence and contained
      overlapping information.  More broadly, there were many
      places where we had to pass around this pair of lists,
      instead of a single list.
      
      This commit tidies all that up, by having just one list of
      binders in a TyCon:
      
        - tyConBinders :: [TyConBinder]
      
      The new data types look like this:
      
        Var.hs:
           data TyVarBndr tyvar vis = TvBndr tyvar vis
           data VisibilityFlag = Visible | Specified | Invisible
           type TyVarBinder = TyVarBndr TyVar VisibilityFlag
      
        TyCon.hs:
           type TyConBinder = TyVarBndr TyVar TyConBndrVis
      
           data TyConBndrVis
             = NamedTCB VisibilityFlag
             | AnonTCB
      
        TyCoRep.hs:
           data TyBinder
             = Named TyVarBinder
             | Anon Type
      
      Note that Var.TyVarBdr has moved from TyCoRep and has been
      made polymorphic in the tyvar and visiblity fields:
      
           type TyVarBinder = TyVarBndr TyVar VisibilityFlag
              -- Used in ForAllTy
           type TyConBinder = TyVarBndr TyVar TyConBndrVis
              -- Used in TyCon
      
           type IfaceForAllBndr  = TyVarBndr IfaceTvBndr VisibilityFlag
           type IfaceTyConBinder = TyVarBndr IfaceTvBndr TyConBndrVis
               -- Ditto, in interface files
      
      There are a zillion knock-on changes, but everything
      arises from these types.  It was a bit fiddly to get the
      module loops to work out right!
      
      Some smaller points
      ~~~~~~~~~~~~~~~~~~~
      * Nice new functions
          TysPrim.mkTemplateKiTyVars
          TysPrim.mkTemplateTyConBinders
        which help you make the tyvar binders for dependently-typed
        TyCons.  See comments with their definition.
      
      * The change showed up a bug in TcGenGenerics.tc_mkRepTy, where the code
        was making an assumption about the order of the kind variables in the
        kind of GHC.Generics.(:.:).  I fixed this; see TcGenGenerics.mkComp.
      e368f326
  7. 13 Jun, 2016 1 commit
    • Simon Peyton Jones's avatar
      Improve typechecking of let-bindings · 15b9bf4b
      Simon Peyton Jones authored
      This major commit was initially triggered by #11339, but it spiraled
      into a major review of the way in which type signatures for bindings
      are handled, especially partial type signatures.  On the way I fixed a
      number of other bugs, namely
         #12069
         #12033
         #11700
         #11339
         #11670
      
      The main change is that I completely reorganised the way in which type
      signatures in bindings are handled. The new story is in TcSigs
      Note [Overview of type signatures].  Some specific:
      
      * Changes in the data types for signatures in TcRnTypes:
        TcIdSigInfo and new TcIdSigInst
      
      * New module TcSigs deals with typechecking type signatures
        and pragmas. It contains code mostly moved from TcBinds,
        which is already too big
      
      * HsTypes: I swapped the nesting of HsWildCardBndrs
        and HsImplicitBndsrs, so that the wildcards are on the
        oustide not the insidde in a LHsSigWcType.  This is just
        a matter of convenient, nothing deep.
      
      There are a host of other changes as knock-on effects, and
      it all took FAR longer than I anticipated :-).  But it is
      a significant improvement, I think.
      
      Lots of error messages changed slightly, some just variants but
      some modest improvements.
      
      New tests
      
      * typecheck/should_compile
          * SigTyVars: a scoped-tyvar test
          * ExPat, ExPatFail: existential pattern bindings
          * T12069
          * T11700
          * T11339
      
      * partial-sigs/should_compile
          * T12033
          * T11339a
          * T11670
      
      One thing to check:
      
      * Small change to output from ghc-api/landmines.
        Need to check with Alan Zimmerman
      15b9bf4b
  8. 26 Apr, 2016 1 commit
    • niteria's avatar
      Kill varSetElemsWellScoped in quantifyTyVars · c9bcaf31
      niteria authored
      varSetElemsWellScoped introduces unnecessary non-determinism in
      inferred type signatures.
      Removing this instance required changing the representation of
      TcDepVars to use deterministic sets.
      This is the last occurence of varSetElemsWellScoped, allowing me to
      finally remove it.
      
      Test Plan:
      ./validate
      I will update the expected outputs when commiting, some reordering
      of type variables in types is expected.
      
      Reviewers: goldfire, simonpj, austin, bgamari
      
      Reviewed By: simonpj
      
      Subscribers: thomie, simonmar
      
      Differential Revision: https://phabricator.haskell.org/D2135
      
      GHC Trac Issues: #4012
      c9bcaf31
  9. 27 Jan, 2016 1 commit
    • eir@cis.upenn.edu's avatar
      Refactor the typechecker to use ExpTypes. · 00cbbab3
      eir@cis.upenn.edu authored
      The idea here is described in [wiki:Typechecker]. Briefly,
      this refactor keeps solid track of "synthesis" mode vs
      "checking" in GHC's bidirectional type-checking algorithm.
      When in synthesis mode, the expected type is just an IORef
      to write to.
      
      In addition, this patch does a significant reworking of
      RebindableSyntax, allowing much more freedom in the types
      of the rebindable operators. For example, we can now have
      `negate :: Int -> Bool` and
      `(>>=) :: m a -> (forall x. a x -> m b) -> m b`. The magic
      is in tcSyntaxOp.
      
      This addresses tickets #11397, #11452, and #11458.
      
      Tests:
        typecheck/should_compile/{RebindHR,RebindNegate,T11397,T11458}
        th/T11452
      00cbbab3
  10. 24 Dec, 2015 1 commit
    • eir@cis.upenn.edu's avatar
      Visible type application · 2db18b81
      eir@cis.upenn.edu authored
      This re-working of the typechecker algorithm is based on
      the paper "Visible type application", by Richard Eisenberg,
      Stephanie Weirich, and Hamidhasan Ahmed, to be published at
      ESOP'16.
      
      This patch introduces -XTypeApplications, which allows users
      to say, for example `id @Int`, which has type `Int -> Int`. See
      the changes to the user manual for details.
      
      This patch addresses tickets #10619, #5296, #10589.
      2db18b81
  11. 11 Dec, 2015 1 commit
    • eir@cis.upenn.edu's avatar
      Add kind equalities to GHC. · 67465497
      eir@cis.upenn.edu authored
      This implements the ideas originally put forward in
      "System FC with Explicit Kind Equality" (ICFP'13).
      
      There are several noteworthy changes with this patch:
       * We now have casts in types. These change the kind
         of a type. See new constructor `CastTy`.
      
       * All types and all constructors can be promoted.
         This includes GADT constructors. GADT pattern matches
         take place in type family equations. In Core,
         types can now be applied to coercions via the
         `CoercionTy` constructor.
      
       * Coercions can now be heterogeneous, relating types
         of different kinds. A coercion proving `t1 :: k1 ~ t2 :: k2`
         proves both that `t1` and `t2` are the same and also that
         `k1` and `k2` are the same.
      
       * The `Coercion` type has been significantly enhanced.
         The documentation in `docs/core-spec/core-spec.pdf` reflects
         the new reality.
      
       * The type of `*` is now `*`. No more `BOX`.
      
       * Users can write explicit kind variables in their code,
         anywhere they can write type variables. For backward compatibility,
         automatic inference of kind-variable binding is still permitted.
      
       * The new extension `TypeInType` turns on the new user-facing
         features.
      
       * Type families and synonyms are now promoted to kinds. This causes
         trouble with parsing `*`, leading to the somewhat awkward new
         `HsAppsTy` constructor for `HsType`. This is dispatched with in
         the renamer, where the kind `*` can be told apart from a
         type-level multiplication operator. Without `-XTypeInType` the
         old behavior persists. With `-XTypeInType`, you need to import
         `Data.Kind` to get `*`, also known as `Type`.
      
       * The kind-checking algorithms in TcHsType have been significantly
         rewritten to allow for enhanced kinds.
      
       * The new features are still quite experimental and may be in flux.
      
       * TODO: Several open tickets: #11195, #11196, #11197, #11198, #11203.
      
       * TODO: Update user manual.
      
      Tickets addressed: #9017, #9173, #7961, #10524, #8566, #11142.
      Updates Haddock submodule.
      67465497
  12. 01 Dec, 2015 1 commit
    • Simon Peyton Jones's avatar
      Refactor treatment of wildcards · 1e041b73
      Simon Peyton Jones authored
      This patch began as a modest refactoring of HsType and friends, to
      clarify and tidy up exactly where quantification takes place in types.
      Although initially driven by making the implementation of wildcards more
      tidy (and fixing a number of bugs), I gradually got drawn into a pretty
      big process, which I've been doing on and off for quite a long time.
      
      There is one compiler performance regression as a result of all
      this, in perf/compiler/T3064.  I still need to look into that.
      
      * The principal driving change is described in Note [HsType binders]
        in HsType.  Well worth reading!
      
      * Those data type changes drive almost everything else.  In particular
        we now statically know where
      
             (a) implicit quantification only (LHsSigType),
                 e.g. in instance declaratios and SPECIALISE signatures
      
             (b) implicit quantification and wildcards (LHsSigWcType)
                 can appear, e.g. in function type signatures
      
      * As part of this change, HsForAllTy is (a) simplified (no wildcards)
        and (b) split into HsForAllTy and HsQualTy.  The two contructors
        appear when and only when the correponding user-level construct
        appears.  Again see Note [HsType binders].
      
        HsExplicitFlag disappears altogether.
      
      * Other simplifications
      
           - ExprWithTySig no longer needs an ExprWithTySigOut variant
      
           - TypeSig no longer needs a PostRn name [name] field
             for wildcards
      
           - PatSynSig records a LHsSigType rather than the decomposed
             pieces
      
           - The mysterious 'GenericSig' is now 'ClassOpSig'
      
      * Renamed LHsTyVarBndrs to LHsQTyVars
      
      * There are some uninteresting knock-on changes in Haddock,
        because of the HsSyn changes
      
      I also did a bunch of loosely-related changes:
      
      * We already had type synonyms CoercionN/CoercionR for nominal and
        representational coercions.  I've added similar treatment for
      
            TcCoercionN/TcCoercionR
      
            mkWpCastN/mkWpCastN
      
        All just type synonyms but jolly useful.
      
      * I record-ised ForeignImport and ForeignExport
      
      * I improved the (poor) fix to Trac #10896, by making
        TcTyClsDecls.checkValidTyCl recover from errors, but adding a
        harmless, abstract TyCon to the envt if so.
      
      * I did some significant refactoring in RnEnv.lookupSubBndrOcc,
        for reasons that I have (embarrassingly) now totally forgotten.
        It had to do with something to do with import and export
      
      Updates haddock submodule.
      1e041b73
  13. 24 Nov, 2015 1 commit
    • elaforge's avatar
      Rearrange error msgs and add section markers (Trac #11014). · c05fddde
      elaforge authored
      This puts the "Relevant bindings" section at the end.
      
      It uses a TcErrors.Report Monoid to divide messages by importance and
      then mappends them together.  This is not the most efficient way since
      there are various intermediate Reports and list appends, but it probably
      doesn't matter since error messages shouldn't get that large, and are
      usually prepended.  In practice, everything is `important` except
      `relevantBindings`, which is `supplementary`.
      
      ErrMsg's errMsgShortDoc and errMsgExtraInfo were extracted into ErrDoc,
      which has important, context, and suppelementary fields.  Each of those
      three sections is marked with a bullet character, '•' on unicode
      terminals and '*' on ascii terminals.  Since this breaks tons of tests,
      I also modified testlib.normalise_errmsg to strip out '•'s.
      
      --- Additional notes:
      
      To avoid prepending * to an empty doc, I needed to filter empty docs.
      This seemed less error-prone than trying to modify everyone who produces
      SDoc to instead produce Maybe SDoc.  So I added `Outputable.isEmpty`.
      Unfortunately it needs a DynFlags, which is kind of bogus, but otherwise
      I think I'd need another Empty case for SDoc, and then it couldn't be a
      newtype any more.
      
      ErrMsg's errMsgShortString is only used by the Show instance, which is
      in turn only used by Show HscTypes.SourceError, which is in turn only
      needed for the Exception instance.  So it's probably possible to get rid
      of errMsgShortString, but that would a be an unrelated cleanup.
      
      Fixes #11014.
      
      Test Plan: see above
      
      Reviewers: austin, simonpj, thomie, bgamari
      
      Reviewed By: thomie, bgamari
      
      Subscribers: simonpj, nomeata, thomie
      
      Differential Revision: https://phabricator.haskell.org/D1427
      
      GHC Trac Issues: #11014
      c05fddde
  14. 06 Jan, 2015 1 commit
    • Simon Peyton Jones's avatar
      Modify a couple of error messages slightly · 00e1fc1b
      Simon Peyton Jones authored
      In particular
        In the type signature for:
           f :: Int -> Int
      I added the colon
      
      Also reword the "maybe you haven't applied a function to enough arguments?"
      suggestion to make grammatical sense.
      
      These tiny changes affect a lot of error messages.
      00e1fc1b
  15. 25 Feb, 2014 1 commit
  16. 10 Sep, 2013 1 commit
    • Simon Peyton Jones's avatar
      Error message wibbles · 9ca4a73d
      Simon Peyton Jones authored
      Almost all are re-orderings of relevant-binding output
      
             Relevant bindings include
        +      m :: Map (a, b) elt (bound at T3169.hs:12:17)
        +      b :: b (bound at T3169.hs:12:13)
               lookup :: (a, b) -> Map (a, b) elt -> Maybe elt
                 (bound at T3169.hs:12:3)
        -      b :: b (bound at T3169.hs:12:13)
        -      m :: Map (a, b) elt (bound at T3169.hs:12:17)
      9ca4a73d
  17. 29 Apr, 2013 1 commit
    • Simon Peyton Jones's avatar
      Wibbles to error messages, following the fix for Trac #7851 · d5bd2d37
      Simon Peyton Jones authored
      In effect, the error context for naked variables now takes up
      a "slot" in the context stack; but it is often empty.  So the
      context stack becomes one shorter in those cases.  I don't think
      this matters; indeed, it's aguably an improvement.  Anyway that's
      why so many tests are affected.
      d5bd2d37
  18. 24 Feb, 2013 1 commit
  19. 28 Sep, 2012 1 commit
  20. 21 Sep, 2012 1 commit
  21. 15 May, 2012 1 commit
  22. 13 Apr, 2012 1 commit
  23. 02 Mar, 2012 1 commit
  24. 20 Jul, 2011 1 commit
  25. 28 Nov, 2009 1 commit
  26. 29 Oct, 2007 1 commit
  27. 24 Sep, 2007 1 commit
    • drl's avatar
      Changes to the testsuite for the new renamer · ef3ccc56
      drl authored
      The rationale for these new behaviors is as follows:
      
      We now allow existentials to be unpacked in local (but not top-level!)
      ValBinds, so some pattern signatures that used to fail in the renamer
      now fail in the type checker (if the type of the body mentions the
      unpacked type var):
         tc141(normal)
      
      We don't always print HsWrappers in debug mode:
         TH_exn1(normal)
         TH_exn2(normal)
      
      Sections are parsed (and therefore printed) differently:
         rnfail019(normal)
         read023(normal)
      
      Character numbers in pattern printing are more precise:
         tcfail067(normal)
         tcfail124(normal)
         tcfail125(normal)
      ef3ccc56
  28. 07 Sep, 2006 1 commit
  29. 18 Aug, 2006 1 commit