This project is mirrored from https://gitlab.haskell.org/ghc/ghc.git.
Pull mirroring failed .
Repository mirroring has been paused due to too many failed attempts. It can be resumed by a project maintainer.
Last successful update .
Repository mirroring has been paused due to too many failed attempts. It can be resumed by a project maintainer.
Last successful update .
- 29 Apr, 2005 1 commit
-
-
simonpj authored
Fix typo causing loop in SpecConstr!
-
- 28 Apr, 2005 1 commit
-
-
simonpj authored
This big commit does several things at once (aeroplane hacking) which change the format of interface files. So you'll need to recompile your libraries! 1. The "stupid theta" of a newtype declaration ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Retain the "stupid theta" in a newtype declaration. For some reason this was being discarded, and putting it back in meant changing TyCon and IfaceSyn slightly. 2. Overlap flags travel with the instance ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Arrange that the ability to support overlap and incoherence is a property of the *instance declaration* rather than the module that imports the instance decl. This allows a library writer to define overlapping instance decls without the library client having to know. The implementation is that in an Instance we store the overlap flag, and preseve that across interface files 3. Nuke the "instnce pool" and "rule pool" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A major tidy-up and simplification of the way that instances and rules are sucked in from interface files. Up till now an instance decl has been held in a "pool" until its "gates" (a set of Names) are in play, when the instance is typechecked and added to the InstEnv in the ExternalPackageState. This is complicated and error-prone; it's easy to suck in too few (and miss an instance) or too many (and thereby be forced to suck in its type constructors, etc). Now, as we load an instance from an interface files, we put it straight in the InstEnv... but the Instance we put in the InstEnv has some Names (the "rough-match" names) that can be used on lookup to say "this Instance can't match". The detailed dfun is only read lazily, and the rough-match thing meansn it is'nt poked on until it has a chance of being needed. This simply continues the successful idea for Ids, whereby they are loaded straightaway into the TypeEnv, but their TyThing is a lazy thunk, not poked on until the thing is looked up. Just the same idea applies to Rules. On the way, I made CoreRule and Instance into full-blown records with lots of info, with the same kind of key status as TyCon or DataCon or Class. And got rid of IdCoreRule altogether. It's all much more solid and uniform, but it meant touching a *lot* of modules. 4. Allow instance decls in hs-boot files ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Allowing instance decls in hs-boot files is jolly useful, becuase in a big mutually-recursive bunch of data types, you want to give the instances with the data type declarations. To achieve this * The hs-boot file makes a provisional name for the dict-fun, something like $fx9. * When checking the "mother module", we check that the instance declarations line up (by type) and generate bindings for the boot dfuns, such as $fx9 = $f2 where $f2 is the dfun generated by the mother module * In doing this I decided that it's cleaner to have DFunIds get their final External Name at birth. To do that they need a stable OccName, so I have an integer-valued dfun-name-supply in the TcM monad. That keeps it simple. This feature is hardly tested yet. 5. Tidy up tidying, and Iface file generation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ main/TidyPgm now has two entry points: simpleTidyPgm is for hi-boot files, when typechecking only (not yet implemented), and potentially when compiling without -O. It ignores the bindings, and generates a nice small TypeEnv. optTidyPgm is the normal case: compiling with -O. It generates a TypeEnv rich in IdInfo MkIface.mkIface now only generates a ModIface. A separate procedure, MkIface.writeIfaceFile, writes the file out to disk.
-
- 31 Mar, 2005 1 commit
-
-
simonmar authored
Tweaks to get the GHC sources through Haddock. Doesn't quite work yet, because Haddock complains about the recursive modules. Haddock needs to understand SOURCE imports (it can probably just ignore them as a first attempt).
-
- 18 Mar, 2005 1 commit
-
-
simonmar authored
Flags cleanup. Basically the purpose of this commit is to move more of the compiler's global state into DynFlags, which is moving in the direction we need to go for the GHC API which can have multiple active sessions supported by a single GHC instance. Before: $ grep 'global_var' */*hs | wc -l 78 After: $ grep 'global_var' */*hs | wc -l 27 Well, it's an improvement. Most of what's left won't really affect our ability to host multiple sessions. Lots of static flags have become dynamic flags (yay!). Notably lots of flags that we used to think of as "driver" flags, like -I and -L, are now dynamic. The most notable static flags left behind are the "way" flags, eg. -prof. It would be nice to fix this, but it isn't urgent. On the way, lots of cleanup has happened. Everything related to static and dynamic flags lives in StaticFlags and DynFlags respectively, and they share a common command-line parser library in CmdLineParser. The flags related to modes (--makde, --interactive etc.) are now private to the front end: in fact private to Main itself, for now.
-
- 07 Mar, 2005 1 commit
-
-
simonpj authored
----------------------------------------- Fix a long-standing indirection-zapping bug ----------------------------------------- Merge to STABLE Up to now we zap indirections as part of the occurence analyser. But this is bogus. The indirection zapper does the following: x_local = <expression> ...bindings... x_exported = x_local where x_exported is exported, and x_local is not, then we replace it with this: x_exported = <expression> x_local = x_exported ...bindings... But this is plain wrong if x_exported has a RULE that mentions something (f, say) in ...bindings.., because 'f' will then die. After hacking a few solutions, I've eventually simply made the indirection zapping into a separate pass (which is cleaner anyway), which wraps the entire program back into a single Rec if the bad thing can happen. On the way I've made indirection-zapping work in Recs too, which wasn't the case before. * Move the zapper from OccurAnal into SimplCore * Tidy up the printing of pragmas (PprCore and friends) * Add a new function Rules.addRules * Merge rules in the indirection zapper (previously one set was discarded)
-
- 24 Dec, 2004 1 commit
-
-
simonpj authored
--------------------------- Refactor the simplifier --------------------------- Driven by a GADT bug, I have refactored the simpifier, and the way GHC treats substitutions. I hope I have gotten it right. Be cautious about updating. * coreSyn/Subst.lhs has gone * coreSyn/CoreSubst replaces it, except that it's quite a bit simpler * simplCore/SimplEnv is added, and contains the simplifier-specific substitution stuff Previously Subst was trying to be all things to all men, and that was making it Too Complicated. There may be a little more code now, but it's much easier to understand.
-
- 23 Dec, 2004 1 commit
-
-
simonpj authored
Simplifications, dead code elimination
-
- 22 Dec, 2004 1 commit
-
-
simonpj authored
---------------------------------------- New Core invariant: keep case alternatives in sorted order ---------------------------------------- We now keep the alternatives of a Case in the Core language in sorted order. Sorted, that is, by constructor tag for DataAlt by literal for LitAlt The main reason is that it makes matching and equality testing more robust. But in fact some lines of code vanished from SimplUtils.mkAlts. WARNING: no change to interface file formats, but you'll need to recompile your libraries so that they generate interface files that respect the invariant.
-
- 21 Dec, 2004 1 commit
-
-
simonpj authored
--------------------------------- Improve handling of lexically scoped type variables --------------------------------- If we have f :: T a -> a f (x :: T b) = ... then the lexically scoped variable 'b' should refer to the rigid type variable 'a', without any intervening wobbliness. Previously the in-scope type variables were always mutable TyVars, which were instantatiated to point to the type they were bound to; but since the advent of GADTs the intervening mutable type variable is a bad thing. Hence * In the type environment, ATyVar now carries a type * The call to refineTyVars in tc_pat on SigPatIn finds the types by matching * Then tcExtendTyVarEnv3 extends the type envt appropriately Rater a lot of huff and puff, but it's quite natural for ATyVar to contain a type. Various other small nomenclature changes along the way.
-
- 20 Dec, 2004 1 commit
-
-
simonpj authored
-------------------------------- Deal properly with dual-renaming -------------------------------- When comparing types and terms, and during matching, we are faced with \x.e1 ~ \y.e2 There are many pitfalls here, and GHC has never done the job properly. Now, at last it does, using a new abstraction VarEnv.RnEnv2. See comments there for how it works. There are lots of consequential changes to use the new stuff, especially in types/Type (type comparison), types/Unify (matching on types) coreSyn/CoreUtils (equality on expressions), specialise/Rules (matching). I'm not 100% certain of that I've covered all the bases, so let me know if something unexpected happens after you update. Maybe wait until a nightly build has worked ok first!
-
- 06 Dec, 2004 1 commit
-
-
simonpj authored
--------------------- Bug in specialisation --------------------- Laszlo managed to get a function like this: foo :: Enum a => (# a, Int #) The specialiser specialised it, resulting in an unboxed tuple binding, which Lint objected to. This commit adds a dummy argument to the specialised function, very like the case for strictness analysis. For example, at type Char we'd get foo_char :: State# RealWorld -> (# Char, Int #) foo_char = \_ -> ... We use a State# type because it generates no argument-passing code at runtime. (We should really have some other void type for this purpose, because State# is misleading, but this way avoids extra types.)
-
- 25 Nov, 2004 1 commit
-
-
simonpj authored
------------------------------------------ Keep-alive set and Template Haskell quotes ------------------------------------------ a) Template Haskell quotes should be able to mention top-leve things without resorting to lifting. Example module Foo( foo ) where f x = x foo = [| f 4 |] Here the reference to 'f' is ok; no need to 'lift' it. The relevant changes are in TcExpr.tcId b) However, we must take care not to discard the binding for f, so we add it to the 'keep-alive' set for the module. I've now made this into (another) mutable bucket, tcg_keep, in the TcGblEnv c) That in turn led me to look at the handling of orphan rules; as a result I made IdCoreRule into its own data type, which has simle but non-local ramifications
-
- 30 Sep, 2004 1 commit
-
-
simonpj authored
------------------------------------ Add Generalised Algebraic Data Types ------------------------------------ This rather big commit adds support for GADTs. For example, data Term a where Lit :: Int -> Term Int App :: Term (a->b) -> Term a -> Term b If :: Term Bool -> Term a -> Term a ..etc.. eval :: Term a -> a eval (Lit i) = i eval (App a b) = eval a (eval b) eval (If p q r) | eval p = eval q | otherwise = eval r Lots and lots of of related changes throughout the compiler to make this fit nicely. One important change, only loosely related to GADTs, is that skolem constants in the typechecker are genuinely immutable and constant, so we often get better error messages from the type checker. See TcType.TcTyVarDetails. There's a new module types/Unify.lhs, which has purely-functional unification and matching for Type. This is used both in the typechecker (for type refinement of GADTs) and in Core Lint (also for type refinement).
-
- 17 Aug, 2004 1 commit
-
-
simonpj authored
------------------------------- Use merge-sort not quicksort Nuke quicksort altogether ------------------------------- Quicksort has O(n**2) behaviour worst case, and this occasionally bites. In particular, when compiling large files consisting only of static data, we get loads of top-level delarations -- and that led to more than half the total compile time being spent in the strongly connected component analysis for the occurrence analyser. Switching to merge sort completely solved the problem. I've nuked quicksort altogether to make sure this does not happen again.
-
- 21 Apr, 2004 1 commit
-
-
simonpj authored
Do a much better job of slurping RULES. Now that stuff is slurped in lazily, as the simplifier pokes on it, we may not get the rules as early as we might wish. In the current HEAD, no new rules are slurped in after the beginning of SimplCore, and that means we permanently miss many rules. This commit arranges that every time round the simplifier loop we slurp in any new rules, and put them into the in-scope set, where the simplifier can find them. It's still possible that a rule might be slurped in a little later than in earlier versions of GHC, leading to more simplifier iterations, but let's see if that turns out to be a problem in practice.
-
- 02 Apr, 2004 1 commit
-
-
simonpj authored
Remove unused result from dropInline
-
- 17 Dec, 2003 1 commit
-
-
simonpj authored
----------------------------------------------------- Fix a subtle loop in the context-reduction machinery ---------------------------------------------------- This bug was provoked by a recent change: when trying to prove a constraint C, TcSimplify.reduce now adds C to the database before trying to prove C, thus building recursive dictionaries. Two bugs a) If we add C's superclasses (which we were) we can now build a bogusly-recursive dictionary (see Note [SUPERCLASS-LOOP]). Solution: in reduce, add C only (via addIrred NoSCs) and then later use addWanted to add its definition plus SCs. b) Since we can have recursive definitions, the superclass-loop handling machinery (findAllDeps) must carry its visited-set with it (which it was not doing before) The main file is TcSimplify; but I modified a bunch of others to take advantage of new function extendVarSetList
-
- 17 Nov, 2003 1 commit
-
-
simonmar authored
GC dead code and export list entries.
-
- 29 Oct, 2003 1 commit
-
-
simonpj authored
Fix a bad consequence of the new story for the generic toT/fromT functions derived from data types declarations. The problem was that they were being generated and then discarded by the simplifier, because there was nothing keeping them alive. This commit * Adds a field tcg_keep to the TcGblEnv, which records things to be kept alive; * Makes the desugarer pin the keep-alive flag on each binding (it's actually a call to setIdLocalExported) * Removes that job from updateBinders in SimplCore It's somewhat tiresome, but not really difficult.
-
- 13 Oct, 2003 1 commit
-
-
simonpj authored
Deal corectly with rules for Ids defined in this module, even when they are imported (as orphans) from other modules. The epicentre for this stuff is SimplCore.
-
- 09 Oct, 2003 1 commit
-
-
simonpj authored
------------------------- GHC heart/lung transplant ------------------------- This major commit changes the way that GHC deals with importing types and functions defined in other modules, during renaming and typechecking. On the way I've changed or cleaned up numerous other things, including many that I probably fail to mention here. Major benefit: GHC should suck in many fewer interface files when compiling (esp with -O). (You can see this with -ddump-rn-stats.) It's also some 1500 lines of code shorter than before. ** So expect bugs! I can do a 3-stage bootstrap, and run ** the test suite, but you may be doing stuff I havn't tested. ** Don't update if you are relying on a working HEAD. In particular, (a) External Core and (b) GHCi are very little tested. But please, please DO test this version! ------------------------ Big things ------------------------ Interface files, version control, and importing declarations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * There is a totally new data type for stuff that lives in interface files: Original names IfaceType.IfaceExtName Types IfaceType.IfaceType Declarations (type,class,id) IfaceSyn.IfaceDecl Unfoldings IfaceSyn.IfaceExpr (Previously we used HsSyn for type/class decls, and UfExpr for unfoldings.) The new data types are in iface/IfaceType and iface/IfaceSyn. They are all instances of Binary, so they can be written into interface files. Previous engronkulation concering the binary instance of RdrName has gone away -- RdrName is not an instance of Binary any more. Nor does Binary.lhs need to know about the ``current module'' which it used to, which made it specialised to GHC. A good feature of this is that the type checker for source code doesn't need to worry about the possibility that we might be typechecking interface file stuff. Nor does it need to do renaming; we can typecheck direct from IfaceSyn, saving a whole pass (module TcIface) * Stuff from interface files is sucked in *lazily*, rather than being eagerly sucked in by the renamer. Instead, we use unsafeInterleaveIO to capture a thunk for the unfolding of an imported function (say). If that unfolding is every pulled on, TcIface will scramble over the unfolding, which may in turn pull in the interface files of things mentioned in the unfolding. The External Package State is held in a mutable variable so that it can be side-effected by this lazy-sucking-in process (which may happen way later, e.g. when the simplifier runs). In effect, the EPS is a kind of lazy memo table, filled in as we suck things in. Or you could think of it as a global symbol table, populated on demand. * This lazy sucking is very cool, but it can lead to truly awful bugs. The intent is that updates to the symbol table happen atomically, but very bad things happen if you read the variable for the table, and then force a thunk which updates the table. Updates can get lost that way. I regret this subtlety. One example of the way it showed up is that the top level of TidyPgm (which updates the global name cache) to be much more disciplined about those updates, since TidyPgm may itself force thunks which allocate new names. * Version numbering in interface files has changed completely, fixing one major bug with ghc --make. Previously, the version of A.f changed only if A.f's type and unfolding was textually different. That missed changes to things that A.f's unfolding mentions; which was fixed by eagerly sucking in all of those things, and listing them in the module's usage list. But that didn't work with --make, because they might have been already sucked in. Now, A.f's version changes if anything reachable from A.f (via interface files) changes. A module with unchanged source code needs recompiling only if the versions of any of its free variables changes. [This isn't quite right for dictionary functions and rules, which aren't mentioned explicitly in the source. There are extensive comments in module MkIface, where all version-handling stuff is done.] * We don't need equality on HsDecls any more (because they aren't used in interface files). Instead we have a specialised equality for IfaceSyn (eqIfDecl etc), which uses IfaceEq instead of Bool as its result type. See notes in IfaceSyn. * The horrid bit of the renamer that tried to predict what instance decls would be needed has gone entirely. Instead, the type checker simply sucks in whatever instance decls it needs, when it needs them. Easy! Similarly, no need for 'implicitModuleFVs' and 'implicitTemplateHaskellFVs' etc. Hooray! Types and type checking ~~~~~~~~~~~~~~~~~~~~~~~ * Kind-checking of types is far far tidier (new module TcHsTypes replaces the badly-named TcMonoType). Strangely, this was one of my original goals, because the kind check for types is the Right Place to do type splicing, but it just didn't fit there before. * There's a new representation for newtypes in TypeRep.lhs. Previously they were represented using "SourceTypes" which was a funny compromise. Now they have their own constructor in the Type datatype. SourceType has turned back into PredType, which is what it used to be. * Instance decl overlap checking done lazily. Consider instance C Int b instance C a Int These were rejected before as overlapping, because when seeking (C Int Int) one couldn't tell which to use. But there's no problem when seeking (C Bool Int); it can only be the second. So instead of checking for overlap when adding a new instance declaration, we check for overlap when looking up an Inst. If we find more than one matching instance, we see if any of the candidates dominates the others (in the sense of being a substitution instance of all the others); and only if not do we report an error. ------------------------ Medium things ------------------------ * The TcRn monad is generalised a bit further. It's now based on utils/IOEnv.lhs, the IO monad with an environment. The desugarer uses the monad too, so that anything it needs can get faulted in nicely. * Reduce the number of wired-in things; in particular Word and Integer are no longer wired in. The latter required HsLit.HsInteger to get a Type argument. The 'derivable type classes' data types (:+:, :*: etc) are not wired in any more either (see stuff about derivable type classes below). * The PersistentComilerState is now held in a mutable variable in the HscEnv. Previously (a) it was passed to and then returned by many top-level functions, which was painful; (b) it was invariably accompanied by the HscEnv. This change tidies up top-level plumbing without changing anything important. * Derivable type classes are treated much more like 'deriving' clauses. Previously, the Ids for the to/from functions lived inside the TyCon, but now the TyCon simply records their existence (with a simple boolean). Anyone who wants to use them must look them up in the environment. This in turn makes it easy to generate the to/from functions (done in types/Generics) using HsSyn (like TcGenDeriv for ordinary derivings) instead of CoreSyn, which in turn means that (a) we don't have to figure out all the type arguments etc; and (b) it'll be type-checked for us. Generally, the task of generating the code has become easier, which is good for Manuel, who wants to make it more sophisticated. * A Name now says what its "parent" is. For example, the parent of a data constructor is its type constructor; the parent of a class op is its class. This relationship corresponds exactly to the Avail data type; there may be other places we can exploit it. (I made the change so that version comparison in interface files would be a bit easier; but in fact it tided up other things here and there (see calls to Name.nameParent). For example, the declaration pool, of declararations read from interface files, but not yet used, is now keyed only by the 'main' name of the declaration, not the subordinate names. * New types OccEnv and OccSet, with the usual operations. OccNames can be efficiently compared, because they have uniques, thanks to the hashing implementation of FastStrings. * The GlobalRdrEnv is now keyed by OccName rather than RdrName. Not only does this halve the size of the env (because we don't need both qualified and unqualified versions in the env), but it's also more efficient because we can use a UniqFM instead of a FiniteMap. Consequential changes to Provenance, which has moved to RdrName. * External Core remains a bit of a hack, as it was before, done with a mixture of HsDecls (so that recursiveness and argument variance is still inferred), and IfaceExprs (for value declarations). It's not thoroughly tested. ------------------------ Minor things ------------------------ * DataCon fields dcWorkId, dcWrapId combined into a single field dcIds, that is explicit about whether the data con is a newtype or not. MkId.mkDataConWorkId and mkDataConWrapId are similarly combined into MkId.mkDataConIds * Choosing the boxing strategy is done for *source* type decls only, and hence is now in TcTyDecls, not DataCon. * WiredIn names are distinguished by their n_sort field, not by their location, which was rather strange * Define Maybes.mapCatMaybes :: (a -> Maybe b) -> [a] -> [b] and use it here and there * Much better pretty-printing of interface files (--show-iface) Many, many other small things. ------------------------ File changes ------------------------ * New iface/ subdirectory * Much of RnEnv has moved to iface/IfaceEnv * MkIface and BinIface have moved from main/ to iface/ * types/Variance has been absorbed into typecheck/TcTyDecls * RnHiFiles and RnIfaces have vanished entirely. Their work is done by iface/LoadIface * hsSyn/HsCore has gone, replaced by iface/IfaceSyn * typecheck/TcIfaceSig has gone, replaced by iface/TcIface * typecheck/TcMonoType has been renamed to typecheck/TcHsType * basicTypes/Var.hi-boot and basicTypes/Generics.hi-boot have gone altogether
-
- 18 Feb, 2003 1 commit
-
-
simonpj authored
Remove un-necessary case
-
- 12 Feb, 2003 1 commit
-
-
simonpj authored
------------------------------------- Big upheaval to the way that constructors are named ------------------------------------- This commit enshrines the new story for constructor names. We could never really get External Core to work nicely before, but now it does. The story is laid out in detail in the Commentary ghc/docs/comm/the-beast/data-types.html so I will not repeat it here. [Manuel: the commentary isn't being updated, apparently.] However, the net effect is that in Core and in External Core, contructors look like constructors, and the way things are printed is all consistent. It is a fairly pervasive change (which is why it has been so long postponed), but I hope the question is now finally closed. All the libraries compile etc, and I've run many tests, but doubtless there will be some dark corners.
-
- 13 Sep, 2002 1 commit
-
-
simonpj authored
-------------------------------------- Make Template Haskell into the HEAD -------------------------------------- This massive commit transfers to the HEAD all the stuff that Simon and Tim have been doing on Template Haskell. The meta-haskell-branch is no more! WARNING: make sure that you * Update your links if you are using link trees. Some modules have been added, some have gone away. * Do 'make clean' in all library trees. The interface file format has changed, and you can get strange panics (sadly) if GHC tries to read old interface files: e.g. ghc-5.05: panic! (the `impossible' happened, GHC version 5.05): Binary.get(TyClDecl): ForeignType * You need to recompile the rts too; Linker.c has changed However the libraries are almost unaltered; just a tiny change in Base, and to the exports in Prelude. NOTE: so far as TH itself is concerned, expression splices work fine, but declaration splices are not complete. --------------- The main change --------------- The main structural change: renaming and typechecking have to be interleaved, because we can't rename stuff after a declaration splice until after we've typechecked the stuff before (and the splice itself). * Combine the renamer and typecheker monads into one (TcRnMonad, TcRnTypes) These two replace TcMonad and RnMonad * Give them a single 'driver' (TcRnDriver). This driver replaces TcModule.lhs and Rename.lhs * The haskell-src library package has a module Language/Haskell/THSyntax which defines the Haskell data type seen by the TH programmer. * New modules: hsSyn/Convert.hs converts THSyntax -> HsSyn deSugar/DsMeta.hs converts HsSyn -> THSyntax * New module typecheck/TcSplice type-checks Template Haskell splices. ------------- Linking stuff ------------- * ByteCodeLink has been split into ByteCodeLink (which links) ByteCodeAsm (which assembles) * New module ghci/ObjLink is the object-code linker. * compMan/CmLink is removed entirely (was out of place) Ditto CmTypes (which was tiny) * Linker.c initialises the linker when it is first used (no need to call initLinker any more). Template Haskell makes it harder to know when and whether to initialise the linker. ------------------------------------- Gathering the LIE in the type checker ------------------------------------- * Instead of explicitly gathering constraints in the LIE tcExpr :: RenamedExpr -> TcM (TypecheckedExpr, LIE) we now dump the constraints into a mutable varabiable carried by the monad, so we get tcExpr :: RenamedExpr -> TcM TypecheckedExpr Much less clutter in the code, and more efficient too. (Originally suggested by Mark Shields.) ----------------- Remove "SysNames" ----------------- Because the renamer and the type checker were entirely separate, we had to carry some rather tiresome implicit binders (or "SysNames") along inside some of the HsDecl data structures. They were both tiresome and fragile. Now that the typechecker and renamer are more intimately coupled, we can eliminate SysNames (well, mostly... default methods still carry something similar). ------------- Clean up HsPat ------------- One big clean up is this: instead of having two HsPat types (InPat and OutPat), they are now combined into one. This is more consistent with the way that HsExpr etc is handled; there are some 'Out' constructors for the type checker output. So: HsPat.InPat --> HsPat.Pat HsPat.OutPat --> HsPat.Pat No 'pat' type parameter in HsExpr, HsBinds, etc Constructor patterns are nicer now: they use HsPat.HsConDetails for the three cases of constructor patterns: prefix, infix, and record-bindings The *same* data type HsConDetails is used in the type declaration of the data type (HsDecls.TyData) Lots of associated clean-up operations here and there. Less code. Everything is wonderful.
-
- 09 Sep, 2002 1 commit
-
-
simonpj authored
Formatting only
-
- 02 Sep, 2002 1 commit
-
-
simonpj authored
Do not specialise functions that take implicit parameters. The specialisation mechanism doesn't work for them, because their implicit args are not driven by their type args (unlike the implicit dictionary parameters) MERGE TO STABLE
-
- 29 Apr, 2002 1 commit
-
-
simonmar authored
FastString cleanup, stage 1. The FastString type is no longer a mixture of hashed strings and literal strings, it contains hashed strings only with O(1) comparison (except for UnicodeStr, but that will also go away in due course). To create a literal instance of FastString, use FSLIT(".."). By far the most common use of the old literal version of FastString was in the pattern ptext SLIT("...") this combination still works, although it doesn't go via FastString any more. The next stage will be to remove the need to use this special combination at all, using a RULE. To convert a FastString into an SDoc, now use 'ftext' instead of 'ptext'. I've also removed all the FAST_STRING related macros from HsVersions.h except for SLIT and FSLIT, just use the relevant functions from FastString instead.
-
- 05 Apr, 2002 1 commit
-
-
sof authored
Friday afternoon pet peeve removal: define (Util.notNull :: [a] -> Bool) and use it
-
- 20 Mar, 2002 1 commit
-
-
simonpj authored
Unravel module loop again (tested this time; sorry)
-
- 18 Mar, 2002 1 commit
-
-
simonpj authored
Tidier printing routines for Rules
-
- 04 Mar, 2002 1 commit
-
-
simonmar authored
Binary Interface Files - stage 1 -------------------------------- This commit changes the default interface file format from text to binary, in order to improve compilation performace. To view an interface file, use 'ghc --show-iface Foo.hi'. utils/Binary.hs is the basic Binary I/O library, based on the nhc98 binary I/O library but much stripped-down and working in terms of bytes rather than bits, and with some special features for GHC: it remembers which Module is being emitted to avoid dumping too many qualified names, and it keeps track of a "dictionary" of FastStrings so that we don't dump the same FastString more than once into the binary file. I'll make a generic version of this for the libraries at some point. main/BinIface.hs contains most of the Binary instances. Some instances are in the same module as the data type (RdrName, Name, OccName in particular). Most instances were generated using a modified version of DrIFT, which I'll commit later. However, editing them by hand isn't hard (certainly easier than modifying ParseIface.y). The first thing in a binary interface is the interface version, so nice error messages will be generated if the binary format changes and you still have old interfaces lying around. The version also now includes the "way" as an extra sanity check. Other changes ------------- I don't like the way FastStrings contain both hashed strings (with O(1) comparison) and literal C strings (with O(n) comparison). So as a first step to separating these I made serveral "literal" type strings into hashed strings. SLIT() still generates a literal, and now FSLIT() generates a hashed string. With DEBUG on, you'll get a warning if you try to compare any SLIT()s with anything, and the compiler will fall over if you try to dump any literal C strings into an interface file (usually indicating a use of SLIT() which should be FSLIT()). mkSysLocal no longer re-encodes its FastString argument each time it is called. I also fixed the -pgm options so that the argument can now optionally be separted from the option. Bugfix: PrelNames declared Names for several comparison primops, eg. eqCharName, eqIntName etc. but these had different uniques from the real primop names. I've moved these to PrimOps and defined them using mkPrimOpIdName instead, and deleted some for which we don't have real primops (Manuel: please check that things still work for you after this change).
-
- 01 Nov, 2001 2 commits
-
-
simonpj authored
wibble
-
simonpj authored
--------------------------------------- Fix a unboxed-binding bug in SpecConstr --------------------------------------- [HEAD only] This fixes a rather obscure bug in the constructor specialiser discovered by Ralf Hinze. It was generating a specialised version of the function with no arguments --- and the function returned an unboxed type. Solution: same as for worker-wrapper; add a dummy argument. Several files are affected because I added CoreUtils.mkPiTypes, as a useful helper function.
-
- 30 Oct, 2001 1 commit
-
-
simonpj authored
Specialise-constructor rules active only in phase 0 (for Manuel & Gaby)
-
- 25 Oct, 2001 1 commit
-
-
sof authored
- Pet peeve removal / code tidyup, replaced various sub-optimal uses of 'length' with something a bit better, i.e., replaced the following patterns * length as `cmpOp` length bs * length as `cmpOp` val -- incl. uses where val == 1 and val == 0 * {take,drop,splitAt} (length as) bs * length [ () | pat <- as ] with uses of misc Util functions. I'd be surprised if there's a noticeable reduction in running times as a result of these changes, but every little bit helps. [ The changes have been tested wrt testsuite/ - I'm seeing a couple of unexpected breakages coming from CorePrep, but I'm currently assuming that these are due to other recent changes. ] - compMan/CompManager.lhs: restored 4.08 compilability + some code cleanup. None of these changes are HEADworthy.
-
- 26 Sep, 2001 1 commit
-
-
simonpj authored
------------------ Simon's big commit ------------------ This commit, which I don't think I can sensibly do piecemeal, consists of the things I've been doing recently, mainly directed at making Manuel, George, and Marcin happier with RULES. Reogranise the simplifier ~~~~~~~~~~~~~~~~~~~~~~~~~ 1. The simplifier's environment is now an explicit parameter. This makes it a bit easier to figure out where it is going. 2. Constructor arguments can now be arbitrary expressions, except when the application is the RHS of a let(rec). This makes it much easier to match rules like RULES "foo" f (h x, g y) = f' x y In the simplifier, it's Simplify.mkAtomicArgs that ANF-ises a constructor application where necessary. In the occurrence analyser, there's a new piece of context info (OccEncl) to say whether a constructor app is in a place where it should be in ANF. (Unless it knows this it'll give occurrence info which will inline the argument back into the constructor app.) 3. I'm experimenting with doing the "float-past big lambda" transformation in the full laziness pass, rather than mixed in with the simplifier (was tryRhsTyLam). 4. Arrange that case (coerce (S,T) (x,y)) of ... will simplify. Previous it didn't. A local change to CoreUtils.exprIsConApp_maybe. 5. Do a better job in CoreUtils.exprEtaExpandArity when there's an error function in one branch. Phase numbers, RULES, and INLINE pragmas ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. Phase numbers decrease from N towards zero (instead of increasing). This makes it easier to add new earlier phases, which is what users want to do. 2. RULES get their own phase number, N, and are disabled in phases before N. e.g. {-# RULES "foo" [2] forall x y. f (x,y) = f' x y #-} Note the [2], which says "only active in phase 2 and later". 3. INLINE and NOINLINE pragmas have a phase number to. This is now treated in just the same way as the phase number on RULE; that is, the Id is not inlined in phases earlier than N. In phase N and later the Id *may* be inlined, and here is where INLINE and NOINLINE differ: INLNE makes the RHS look small, so as soon as it *may* be inlined it probably *will* be inlined. The syntax of the phase number on an INLINE/NOINLINE pragma has changed to be like the RULES case (i.e. in square brackets). This should also make sure you examine all such phase numbers; many will need to change now the numbering is reversed. Inlining Ids is no longer affected at all by whether the Id appears on the LHS of a rule. Now it's up to the programmer to put a suitable INLINE/NOINLINE pragma to stop it being inlined too early. Implementation notes: * A new data type, BasicTypes.Activation says when a rule or inline pragma is active. Functions isAlwaysActive, isNeverActive, isActive, do the obvious thing (all in BasicTypes). * Slight change in the SimplifierSwitch data type, which led to a lot of simplifier-specific code moving from CmdLineOpts to SimplMonad; a Good Thing. * The InlinePragma in the IdInfo of an Id is now simply an Activation saying when the Id can be inlined. (It used to be a rather bizarre pair of a Bool and a (Maybe Phase), so this is much much easier to understand.) * The simplifier has a "mode" environment switch, replacing the old black list. Unfortunately the data type decl has to be in CmdLineOpts, because it's an argument to the CoreDoSimplify switch data SimplifierMode = SimplGently | SimplPhase Int Here "gently" means "no rules, no inlining". All the crucial inlining decisions are now collected together in SimplMonad (preInlineUnconditionally, postInlineUnconditionally, activeInline, activeRule). Specialisation ~~~~~~~~~~~~~~ 1. Only dictionary *functions* are made INLINE, not dictionaries that have no parameters. (This inline-dictionary-function thing is Marcin's idea and I'm still not sure whether it's a good idea. But it's definitely a Bad Idea when there are no arguments.) 2. Be prepared to specialise an INLINE function: an easy fix in Specialise.lhs But there is still a problem, which is that the INLINE wins at the call site, so we don't use the specialised version anyway. I'm still unsure whether it makes sense to SPECIALISE something you want to INLINE. Random smaller things ~~~~~~~~~~~~~~~~~~~~~~ * builtinRules (there was only one, but may be more) in PrelRules are now incorporated. They were being ignored before... * OrdList.foldOL --> OrdList.foldrOL, OrdList.foldlOL * Some tidying up of the tidyOpenTyVar, tidyTyVar functions. I've forgotten exactly what!
-
- 14 Sep, 2001 1 commit
-
-
simonpj authored
-------------------------- Add a rule-check pass (special request by Manuel) -------------------------- DO NOT merge with stable The flag -frule-check foo will report all sites at which RULES whose name starts with "foo.." might apply, but in fact the arguments don't match so the rule doesn't apply. The pass is run right after all the core-to-core passes. (Next thing to do: make the core-to-core script external, so you can fiddle with it. Meanwhile, the core-to-core script is in DriverState.builCoreToDo so you can move the CoreDoRuleCheck line around if you want. The format of the report is experimental: Manuel, feel free to fiddle with it. Most of the code is in specialise/Rules.lhs Incidental changes ~~~~~~~~~~~~~~~~~~ Change BuiltinRule so that the rule name is accessible without actually successfully applying the rule. This change affects quite a few files in a trivial way.
-
- 24 Aug, 2001 1 commit
-
-
simonpj authored
Fix an obscure but easy bug in SpecConstr
-
- 25 Jun, 2001 2 commits
-
-
simonpj authored
Import wibbles
-
simonpj authored
---------------- Squash newtypes ---------------- This commit squashes newtypes and their coerces, from the typechecker onwards. The original idea was that the coerces would not get in the way of optimising transformations, but despite much effort they continue to do so. There's no very good reason to retain newtype information beyond the typechecker, so now we don't. Main points: * The post-typechecker suite of Type-manipulating functions is in types/Type.lhs, as before. But now there's a new suite in types/TcType.lhs. The difference is that in the former, newtype are transparent, while in the latter they are opaque. The typechecker should only import TcType, not Type. * The operations in TcType are all non-monadic, and most of them start with "tc" (e.g. tcSplitTyConApp). All the monadic operations (used exclusively by the typechecker) are in a new module, typecheck/TcMType.lhs * I've grouped newtypes with predicate types, thus: data Type = TyVarTy Tyvar | .... | SourceTy SourceType data SourceType = NType TyCon [Type] | ClassP Class [Type] | IParam Type [SourceType was called PredType.] This is a little wierd in some ways, because NTypes can't occur in qualified types. However, the idea is that a SourceType is a type that is opaque to the type checker, but transparent to the rest of the compiler, and newtypes fit that as do implicit parameters and dictionaries. * Recursive newtypes still retain their coreces, exactly as before. If they were transparent we'd get a recursive type, and that would make various bits of the compiler diverge (e.g. things which do type comparison). * I've removed types/Unify.lhs (non-monadic type unifier and matcher), merging it into TcType. Ditto typecheck/TcUnify.lhs (monadic unifier), merging it into TcMType.
-