This project is mirrored from https://gitlab.haskell.org/ghc/ghc.git. Pull mirroring failed .
Repository mirroring has been paused due to too many failed attempts. It can be resumed by a project maintainer.
Last successful update .
  1. 28 Nov, 2005 1 commit
  2. 25 Jul, 2005 1 commit
  3. 19 Jul, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-07-19 16:44:50 by simonpj] · a7ecdf96
      simonpj authored
      WARNING: this is a big commit.  You might want 
      	to wait a few days before updating, in case I've 
      	broken something.
      
      	However, if any of the changes are what you wanted,
      	please check it out and test!
      
      This commit does three main things:
      
      1. A re-organisation of the way that GHC handles bindings in HsSyn.
         This has been a bit of a mess for quite a while.  The key new
         types are
      
      	-- Bindings for a let or where clause
      	data HsLocalBinds id
      	  = HsValBinds (HsValBinds id)
      	  | HsIPBinds  (HsIPBinds id)
      	  | EmptyLocalBinds
      
      	-- Value bindings (not implicit parameters)
      	data HsValBinds id
      	  = ValBindsIn  -- Before typechecking
      		(LHsBinds id) [LSig id]	-- Not dependency analysed
      					-- Recursive by default
      
      	  | ValBindsOut	-- After typechecking
      		[(RecFlag, LHsBinds id)]-- Dependency analysed
      
      2. Implement Mark Jones's idea of increasing polymoprhism
         by using type signatures to cut the strongly-connected components
         of a recursive group.  As a consequence, GHC no longer insists
         on the contexts of the type signatures of a recursive group
         being identical.
      
         This drove a significant change: the renamer no longer does dependency
         analysis.  Instead, it attaches a free-variable set to each binding,
         so that the type checker can do the dep anal.  Reason: the typechecker
         needs to do *two* analyses:
      	one to find the true mutually-recursive groups
      		(which we need so we can build the right CoreSyn)
      	one to find the groups in which to typecheck, taking
      		account of type signatures
      
      3. Implement non-ground SPECIALISE pragmas, as promised, and as
         requested by Remi and Ross.  Certainly, this should fix the 
         current problem with GHC, namely that if you have
      	g :: Eq a => a -> b -> b
         then you can now specialise thus
      	SPECIALISE g :: Int -> b -> b
          (This didn't use to work.)
      
         However, it goes further than that.  For example:
      	f :: (Eq a, Ix b) => a -> b -> b
         then you can make a partial specialisation
      	SPECIALISE f :: (Eq a) => a -> Int -> Int
      
          In principle, you can specialise f to *any* type that is
          "less polymorphic" (in the sense of subsumption) than f's 
          actual type.  Such as
      	SPECIALISE f :: Eq a => [a] -> Int -> Int
          But I haven't tested that.
      
          I implemented this by doing the specialisation in the typechecker
          and desugarer, rather than leaving around the strange SpecPragmaIds,
          for the specialiser to find.  Indeed, SpecPragmaIds have vanished 
          altogether (hooray).
      
          Pragmas in general are handled more tidily.  There's a new
          data type HsBinds.Prag, which lives in an AbsBinds, and carries
          pragma info from the typechecker to the desugarer.
      
      
      Smaller things
      
      - The loop in the renamer goes via RnExpr, instead of RnSource.
        (That makes it more like the type checker.)
      
      - I fixed the thing that was causing 'check_tc' warnings to be 
        emitted.
      a7ecdf96
  4. 16 May, 2005 1 commit
  5. 28 Apr, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-04-28 10:09:41 by simonpj] · dd313897
      simonpj authored
      This big commit does several things at once (aeroplane hacking)
      which change the format of interface files.  
      
      	So you'll need to recompile your libraries!
      
      1. The "stupid theta" of a newtype declaration
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      Retain the "stupid theta" in a newtype declaration.
      For some reason this was being discarded, and putting it
      back in meant changing TyCon and IfaceSyn slightly.
         
      
      2. Overlap flags travel with the instance
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      Arrange that the ability to support overlap and incoherence
      is a property of the *instance declaration* rather than the
      module that imports the instance decl.  This allows a library
      writer to define overlapping instance decls without the
      library client having to know.  
      
      The implementation is that in an Instance we store the
      overlap flag, and preseve that across interface files
      
      
      3. Nuke the "instnce pool" and "rule pool"
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      A major tidy-up and simplification of the way that instances
      and rules are sucked in from interface files.  Up till now
      an instance decl has been held in a "pool" until its "gates" 
      (a set of Names) are in play, when the instance is typechecked
      and added to the InstEnv in the ExternalPackageState.  
      This is complicated and error-prone; it's easy to suck in 
      too few (and miss an instance) or too many (and thereby be
      forced to suck in its type constructors, etc).
      
      Now, as we load an instance from an interface files, we 
      put it straight in the InstEnv... but the Instance we put in
      the InstEnv has some Names (the "rough-match" names) that 
      can be used on lookup to say "this Instance can't match".
      The detailed dfun is only read lazily, and the rough-match
      thing meansn it is'nt poked on until it has a chance of
      being needed.
      
      This simply continues the successful idea for Ids, whereby
      they are loaded straightaway into the TypeEnv, but their
      TyThing is a lazy thunk, not poked on until the thing is looked
      up.
      
      Just the same idea applies to Rules.
      
      On the way, I made CoreRule and Instance into full-blown records
      with lots of info, with the same kind of key status as TyCon or 
      DataCon or Class.  And got rid of IdCoreRule altogether.   
      It's all much more solid and uniform, but it meant touching
      a *lot* of modules.
      
      
      4. Allow instance decls in hs-boot files
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      Allowing instance decls in hs-boot files is jolly useful, becuase
      in a big mutually-recursive bunch of data types, you want to give
      the instances with the data type declarations.  To achieve this
      
      * The hs-boot file makes a provisional name for the dict-fun, something
        like $fx9.
      
      * When checking the "mother module", we check that the instance
        declarations line up (by type) and generate bindings for the 
        boot dfuns, such as
      	$fx9 = $f2
        where $f2 is the dfun generated by the mother module
      
      * In doing this I decided that it's cleaner to have DFunIds get their
        final External Name at birth.  To do that they need a stable OccName,
        so I have an integer-valued dfun-name-supply in the TcM monad.
        That keeps it simple.
      
      This feature is hardly tested yet.
      
      
      5. Tidy up tidying, and Iface file generation
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      main/TidyPgm now has two entry points:
      
        simpleTidyPgm is for hi-boot files, when typechecking only
        (not yet implemented), and potentially when compiling without -O.
        It ignores the bindings, and generates a nice small TypeEnv.
      
        optTidyPgm is the normal case: compiling with -O.  It generates a
        TypeEnv rich in IdInfo
      
      MkIface.mkIface now only generates a ModIface.  A separate
      procedure, MkIface.writeIfaceFile, writes the file out to disk.
      dd313897
  6. 07 Mar, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-03-07 16:46:08 by simonpj] · 36d22a1c
      simonpj authored
      -----------------------------------------
             Fix a long-standing indirection-zapping bug
      	-----------------------------------------
      
      	Merge to STABLE
      
      Up to now we zap indirections as part of the occurence analyser.
      But this is bogus.  The indirection zapper does the following:
      
      	x_local = <expression>
      	...bindings...
      	x_exported = x_local
      
      where x_exported is exported, and x_local is not, then we
      replace it with this:
      
      	x_exported = <expression>
      	x_local = x_exported
      	...bindings...
      
      But this is plain wrong if x_exported has a RULE that mentions
      something (f, say) in ...bindings.., because 'f' will then die.
      
      After hacking a few solutions, I've eventually simply made the indirection
      zapping into a separate pass (which is cleaner anyway), which wraps the
      entire program back into a single Rec if the bad thing can happen.
      
      On the way I've made indirection-zapping work in Recs too, which wasn't the
      case before.
      
      * Move the zapper from OccurAnal into SimplCore
      * Tidy up the printing of pragmas (PprCore and friends)
      * Add a new function Rules.addRules
      * Merge rules in the indirection zapper (previously one set was discarded)
      36d22a1c
  7. 27 Jan, 2005 1 commit
  8. 22 Dec, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-12-22 12:06:13 by simonpj] · d7c402a3
      simonpj authored
      ----------------------------------------
           New Core invariant: keep case alternatives in sorted order
      	----------------------------------------
      
      We now keep the alternatives of a Case in the Core language in sorted
      order.  Sorted, that is,
      	by constructor tag	for DataAlt
      	by literal		for LitAlt
      
      The main reason is that it makes matching and equality testing more robust.
      But in fact some lines of code vanished from SimplUtils.mkAlts.
      
      
      WARNING: no change to interface file formats, but you'll need to recompile
      your libraries so that they generate interface files that respect the
      invariant.
      d7c402a3
  9. 25 Nov, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-11-25 11:36:34 by simonpj] · 1f7da302
      simonpj authored
      ------------------------------------------
      	Keep-alive set and Template Haskell quotes
      	------------------------------------------
      
      a) Template Haskell quotes should be able to mention top-leve
         things without resorting to lifting.  Example
      
      	module Foo( foo ) where
      	  f x = x
      	  foo = [| f 4 |]
      
         Here the reference to 'f' is ok; no need to 'lift' it.
         The relevant changes are in TcExpr.tcId
      
      b) However, we must take care not to discard the binding for f,
         so we add it to the 'keep-alive' set for the module.  I've
         now made this into (another) mutable bucket, tcg_keep, 
         in the TcGblEnv
      
      c) That in turn led me to look at the handling of orphan rules;
         as a result I made IdCoreRule into its own data type, which
         has simle but non-local ramifications
      1f7da302
  10. 30 Sep, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-09-30 10:35:15 by simonpj] · 23f40f0e
      simonpj authored
      ------------------------------------
      	Add Generalised Algebraic Data Types
      	------------------------------------
      
      This rather big commit adds support for GADTs.  For example,
      
          data Term a where
       	  Lit :: Int -> Term Int
      	  App :: Term (a->b) -> Term a -> Term b
      	  If  :: Term Bool -> Term a -> Term a
      	  ..etc..
      
          eval :: Term a -> a
          eval (Lit i) = i
          eval (App a b) = eval a (eval b)
          eval (If p q r) | eval p    = eval q
          		    | otherwise = eval r
      
      
      Lots and lots of of related changes throughout the compiler to make
      this fit nicely.
      
      One important change, only loosely related to GADTs, is that skolem
      constants in the typechecker are genuinely immutable and constant, so
      we often get better error messages from the type checker.  See
      TcType.TcTyVarDetails.
      
      There's a new module types/Unify.lhs, which has purely-functional
      unification and matching for Type. This is used both in the typechecker
      (for type refinement of GADTs) and in Core Lint (also for type refinement).
      23f40f0e
  11. 06 May, 2004 1 commit
  12. 17 Nov, 2003 1 commit
  13. 30 Oct, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-10-30 16:01:49 by simonpj] · 57573e7e
      simonpj authored
      This commit does a long-overdue tidy-up
      
      * Remove PprType (gets rid of one more bunch of hi-boot files)
      
      * Put pretty-printing for types in TypeRep
      
      * Make a specialised pretty-printer for Types, rather than
        converting to IfaceTypes and printing those
      57573e7e
  14. 13 Oct, 2003 1 commit
  15. 09 Oct, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-10-09 11:58:39 by simonpj] · 98688c6e
      simonpj authored
      -------------------------
      		GHC heart/lung transplant
      		-------------------------
      
      This major commit changes the way that GHC deals with importing
      types and functions defined in other modules, during renaming and
      typechecking.  On the way I've changed or cleaned up numerous other
      things, including many that I probably fail to mention here.
      
      Major benefit: GHC should suck in many fewer interface files when
      compiling (esp with -O).  (You can see this with -ddump-rn-stats.)
      
      It's also some 1500 lines of code shorter than before.
      
      **	So expect bugs!  I can do a 3-stage bootstrap, and run
      **	the test suite, but you may be doing stuff I havn't tested.
      ** 	Don't update if you are relying on a working HEAD.
      
      
      In particular, (a) External Core and (b) GHCi are very little tested.
      
      	But please, please DO test this version!
      
      
      	------------------------
      		Big things
      	------------------------
      
      Interface files, version control, and importing declarations
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * There is a totally new data type for stuff that lives in interface files:
      	Original names			IfaceType.IfaceExtName
      	Types				IfaceType.IfaceType
      	Declarations (type,class,id)	IfaceSyn.IfaceDecl
      	Unfoldings			IfaceSyn.IfaceExpr
        (Previously we used HsSyn for type/class decls, and UfExpr for unfoldings.)
        The new data types are in iface/IfaceType and iface/IfaceSyn.  They are
        all instances of Binary, so they can be written into interface files.
        Previous engronkulation concering the binary instance of RdrName has
        gone away -- RdrName is not an instance of Binary any more.  Nor does
        Binary.lhs need to know about the ``current module'' which it used to,
        which made it specialised to GHC.
      
        A good feature of this is that the type checker for source code doesn't
        need to worry about the possibility that we might be typechecking interface
        file stuff.  Nor does it need to do renaming; we can typecheck direct from
        IfaceSyn, saving a whole pass (module TcIface)
      
      * Stuff from interface files is sucked in *lazily*, rather than being eagerly
        sucked in by the renamer. Instead, we use unsafeInterleaveIO to capture
        a thunk for the unfolding of an imported function (say).  If that unfolding
        is every pulled on, TcIface will scramble over the unfolding, which may
        in turn pull in the interface files of things mentioned in the unfolding.
      
        The External Package State is held in a mutable variable so that it
        can be side-effected by this lazy-sucking-in process (which may happen
        way later, e.g. when the simplifier runs).   In effect, the EPS is a kind
        of lazy memo table, filled in as we suck things in.  Or you could think
        of it as a global symbol table, populated on demand.
      
      * This lazy sucking is very cool, but it can lead to truly awful bugs. The
        intent is that updates to the symbol table happen atomically, but very bad
        things happen if you read the variable for the table, and then force a
        thunk which updates the table.  Updates can get lost that way. I regret
        this subtlety.
      
        One example of the way it showed up is that the top level of TidyPgm
        (which updates the global name cache) to be much more disciplined about
        those updates, since TidyPgm may itself force thunks which allocate new
        names.
      
      * Version numbering in interface files has changed completely, fixing
        one major bug with ghc --make.  Previously, the version of A.f changed
        only if A.f's type and unfolding was textually different.  That missed
        changes to things that A.f's unfolding mentions; which was fixed by
        eagerly sucking in all of those things, and listing them in the module's
        usage list.  But that didn't work with --make, because they might have
        been already sucked in.
      
        Now, A.f's version changes if anything reachable from A.f (via interface
        files) changes.  A module with unchanged source code needs recompiling
        only if the versions of any of its free variables changes. [This isn't
        quite right for dictionary functions and rules, which aren't mentioned
        explicitly in the source.  There are extensive comments in module MkIface,
        where all version-handling stuff is done.]
      
      * We don't need equality on HsDecls any more (because they aren't used in
        interface files).  Instead we have a specialised equality for IfaceSyn
        (eqIfDecl etc), which uses IfaceEq instead of Bool as its result type.
        See notes in IfaceSyn.
      
      * The horrid bit of the renamer that tried to predict what instance decls
        would be needed has gone entirely.  Instead, the type checker simply
        sucks in whatever instance decls it needs, when it needs them.  Easy!
      
        Similarly, no need for 'implicitModuleFVs' and 'implicitTemplateHaskellFVs'
        etc.  Hooray!
      
      
      Types and type checking
      ~~~~~~~~~~~~~~~~~~~~~~~
      * Kind-checking of types is far far tidier (new module TcHsTypes replaces
        the badly-named TcMonoType).  Strangely, this was one of my
        original goals, because the kind check for types is the Right Place to
        do type splicing, but it just didn't fit there before.
      
      * There's a new representation for newtypes in TypeRep.lhs.  Previously
        they were represented using "SourceTypes" which was a funny compromise.
        Now they have their own constructor in the Type datatype.  SourceType
        has turned back into PredType, which is what it used to be.
      
      * Instance decl overlap checking done lazily.  Consider
      	instance C Int b
      	instance C a Int
        These were rejected before as overlapping, because when seeking
        (C Int Int) one couldn't tell which to use.  But there's no problem when
        seeking (C Bool Int); it can only be the second.
      
        So instead of checking for overlap when adding a new instance declaration,
        we check for overlap when looking up an Inst.  If we find more than one
        matching instance, we see if any of the candidates dominates the others
        (in the sense of being a substitution instance of all the others);
        and only if not do we report an error.
      
      
      
      	------------------------
      	     Medium things
      	------------------------
      
      * The TcRn monad is generalised a bit further.  It's now based on utils/IOEnv.lhs,
        the IO monad with an environment.  The desugarer uses the monad too,
        so that anything it needs can get faulted in nicely.
      
      * Reduce the number of wired-in things; in particular Word and Integer
        are no longer wired in.  The latter required HsLit.HsInteger to get a
        Type argument.  The 'derivable type classes' data types (:+:, :*: etc)
        are not wired in any more either (see stuff about derivable type classes
        below).
      
      * The PersistentComilerState is now held in a mutable variable
        in the HscEnv.  Previously (a) it was passed to and then returned by
        many top-level functions, which was painful; (b) it was invariably
        accompanied by the HscEnv.  This change tidies up top-level plumbing
        without changing anything important.
      
      * Derivable type classes are treated much more like 'deriving' clauses.
        Previously, the Ids for the to/from functions lived inside the TyCon,
        but now the TyCon simply records their existence (with a simple boolean).
        Anyone who wants to use them must look them up in the environment.
      
        This in turn makes it easy to generate the to/from functions (done
        in types/Generics) using HsSyn (like TcGenDeriv for ordinary derivings)
        instead of CoreSyn, which in turn means that (a) we don't have to figure
        out all the type arguments etc; and (b) it'll be type-checked for us.
        Generally, the task of generating the code has become easier, which is
        good for Manuel, who wants to make it more sophisticated.
      
      * A Name now says what its "parent" is. For example, the parent of a data
        constructor is its type constructor; the parent of a class op is its
        class.  This relationship corresponds exactly to the Avail data type;
        there may be other places we can exploit it.  (I made the change so that
        version comparison in interface files would be a bit easier; but in
        fact it tided up other things here and there (see calls to
        Name.nameParent).  For example, the declaration pool, of declararations
        read from interface files, but not yet used, is now keyed only by the 'main'
        name of the declaration, not the subordinate names.
      
      * New types OccEnv and OccSet, with the usual operations.
        OccNames can be efficiently compared, because they have uniques, thanks
        to the hashing implementation of FastStrings.
      
      * The GlobalRdrEnv is now keyed by OccName rather than RdrName.  Not only
        does this halve the size of the env (because we don't need both qualified
        and unqualified versions in the env), but it's also more efficient because
        we can use a UniqFM instead of a FiniteMap.
      
        Consequential changes to Provenance, which has moved to RdrName.
      
      * External Core remains a bit of a hack, as it was before, done with a mixture
        of HsDecls (so that recursiveness and argument variance is still inferred),
        and IfaceExprs (for value declarations).  It's not thoroughly tested.
      
      
      	------------------------
      	     Minor things
      	------------------------
      
      * DataCon fields dcWorkId, dcWrapId combined into a single field
        dcIds, that is explicit about whether the data con is a newtype or not.
        MkId.mkDataConWorkId and mkDataConWrapId are similarly combined into
        MkId.mkDataConIds
      
      * Choosing the boxing strategy is done for *source* type decls only, and
        hence is now in TcTyDecls, not DataCon.
      
      * WiredIn names are distinguished by their n_sort field, not by their location,
        which was rather strange
      
      * Define Maybes.mapCatMaybes :: (a -> Maybe b) -> [a] -> [b]
        and use it here and there
      
      * Much better pretty-printing of interface files (--show-iface)
      
      Many, many other small things.
      
      
      	------------------------
      	     File changes
      	------------------------
      * New iface/ subdirectory
      * Much of RnEnv has moved to iface/IfaceEnv
      * MkIface and BinIface have moved from main/ to iface/
      * types/Variance has been absorbed into typecheck/TcTyDecls
      * RnHiFiles and RnIfaces have vanished entirely.  Their
        work is done by iface/LoadIface
      * hsSyn/HsCore has gone, replaced by iface/IfaceSyn
      * typecheck/TcIfaceSig has gone, replaced by iface/TcIface
      * typecheck/TcMonoType has been renamed to typecheck/TcHsType
      * basicTypes/Var.hi-boot and basicTypes/Generics.hi-boot have gone altogether
      98688c6e
  16. 03 Mar, 2003 1 commit
    • simonmar's avatar
      [project @ 2003-03-03 12:43:31 by simonmar] · 19108ede
      simonmar authored
      A round of space-leak fixing.
      
        - re-instate zapping of the PersistentCompilerState at various
          points during the compilation cycle in HscMain.  This affects
          one-shot compilation only, since in this mode the information
          collected in the PCS is not required after creating the final
          interface file.
      
        - Unravel the recursive dependency between MkIface and
          CoreTidy/CoreToStg.  Previously the CafInfo for each binding was
          calculated by CoreToStg, and fed back into the IdInfo of the Ids
          generated by CoreTidy (an earlier pass).  MkIface then took this
          IdInfo and the bindings from CoreTidy to generate the interface;
          but it couldn't do this until *after* CoreToStg, because the CafInfo
          hadn't been calculated yet.  The result was that the CoreTidy
          output lived until after CoreToStg, and at the same time as the
          CorePrep and STG syntax, which is wasted space, not to mention
          the complexity and general ugliness in HscMain.
      
          So now we calculate CafInfo directly in CoreTidy.  The downside is
          that we have to predict what CorePrep is going to do to the
          bindings so we can tell what will turn into a CAF later, but it's
          no worse than before (it turned out that we were doing this
          prediction before in CoreToStg anyhow).
      
        - The typechecker lazilly typechecks unfoldings.  It turns out that
          this is a good idea from a performance perspective, but it also
          means that it must hang on to all the information it needs to
          do the typechecking.  Previously this meant holding on to the
          whole of the typechecker's environment, which includes all sorts
          of stuff which isn't necessary to typecheck unfoldings.  By paring
          down the environment captured by the lazy unfoldings, we can
          save quite a bit of space in the phases after typechecking.
      19108ede
  17. 20 Feb, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-02-20 18:33:50 by simonpj] · 56b5a8b8
      simonpj authored
      -------------------------------------
            Add Core Notes and the {-# CORE #-} pragma
      	-------------------------------------
      
      This is an idea of Hal Daume's. The key point is that Notes in Core
      are augmented thus:
      
        data Note
          = SCC CostCentre
          | ...
          | CoreNote String     -- NEW
      
      These notes can be injected via a Haskell-source pragma:
      
         f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)
      
      This wraps a (Note (CoreNote "foo")) around the 'show' variable,
      and a similar note around the argument to 'show'.
      
      These notes are basically ignored by GHC, but are emitted into
      External Core, where they may convey useful information.
      
      Exactly how code involving these notes is munged by the simplifier
      isn't very well defined.  We'll see how it pans out.  Meanwhile
      the impact on the rest of the compiler is minimal.
      56b5a8b8
  18. 12 Feb, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-02-12 15:01:31 by simonpj] · 42b63073
      simonpj authored
      -------------------------------------
        Big upheaval to the way that constructors are named
      	-------------------------------------
      
      This commit enshrines the new story for constructor names.  We could never
      really get External Core to work nicely before, but now it does.
      
      The story is laid out in detail in the Commentary
      	ghc/docs/comm/the-beast/data-types.html
      so I will not repeat it here.
      
      	[Manuel: the commentary isn't being updated, apparently.]
      
      However, the net effect is that in Core and in External Core, contructors look
      like constructors, and the way things are printed is all consistent.
      
      It is a fairly pervasive change (which is why it has been so long postponed),
      but I hope the question is now finally closed.
      
      All the libraries compile etc, and I've run many tests, but doubtless there will
      be some dark corners.
      42b63073
  19. 13 Sep, 2002 1 commit
    • simonpj's avatar
      [project @ 2002-09-13 15:02:25 by simonpj] · 9af77fa4
      simonpj authored
      --------------------------------------
      	Make Template Haskell into the HEAD
      	--------------------------------------
      
      This massive commit transfers to the HEAD all the stuff that
      Simon and Tim have been doing on Template Haskell.  The
      meta-haskell-branch is no more!
      
      WARNING: make sure that you
      
        * Update your links if you are using link trees.
          Some modules have been added, some have gone away.
      
        * Do 'make clean' in all library trees.
          The interface file format has changed, and you can
          get strange panics (sadly) if GHC tries to read old interface files:
          e.g.  ghc-5.05: panic! (the `impossible' happened, GHC version 5.05):
      	  Binary.get(TyClDecl): ForeignType
      
        * You need to recompile the rts too; Linker.c has changed
      
      
      However the libraries are almost unaltered; just a tiny change in
      Base, and to the exports in Prelude.
      
      
      NOTE: so far as TH itself is concerned, expression splices work
      fine, but declaration splices are not complete.
      
      
      		---------------
      		The main change
      		---------------
      
      The main structural change: renaming and typechecking have to be
      interleaved, because we can't rename stuff after a declaration splice
      until after we've typechecked the stuff before (and the splice
      itself).
      
      * Combine the renamer and typecheker monads into one
      	(TcRnMonad, TcRnTypes)
        These two replace TcMonad and RnMonad
      
      * Give them a single 'driver' (TcRnDriver).  This driver
        replaces TcModule.lhs and Rename.lhs
      
      * The haskell-src library package has a module
      	Language/Haskell/THSyntax
        which defines the Haskell data type seen by the TH programmer.
      
      * New modules:
      	hsSyn/Convert.hs 	converts THSyntax -> HsSyn
      	deSugar/DsMeta.hs 	converts HsSyn -> THSyntax
      
      * New module typecheck/TcSplice type-checks Template Haskell splices.
      
      		-------------
      		Linking stuff
      		-------------
      
      * ByteCodeLink has been split into
      	ByteCodeLink	(which links)
      	ByteCodeAsm	(which assembles)
      
      * New module ghci/ObjLink is the object-code linker.
      
      * compMan/CmLink is removed entirely (was out of place)
        Ditto CmTypes (which was tiny)
      
      * Linker.c initialises the linker when it is first used (no need to call
        initLinker any more).  Template Haskell makes it harder to know when
        and whether to initialise the linker.
      
      
      	-------------------------------------
      	Gathering the LIE in the type checker
      	-------------------------------------
      
      * Instead of explicitly gathering constraints in the LIE
      	tcExpr :: RenamedExpr -> TcM (TypecheckedExpr, LIE)
        we now dump the constraints into a mutable varabiable carried
        by the monad, so we get
      	tcExpr :: RenamedExpr -> TcM TypecheckedExpr
      
        Much less clutter in the code, and more efficient too.
        (Originally suggested by Mark Shields.)
      
      
      		-----------------
      		Remove "SysNames"
      		-----------------
      
      Because the renamer and the type checker were entirely separate,
      we had to carry some rather tiresome implicit binders (or "SysNames")
      along inside some of the HsDecl data structures.  They were both
      tiresome and fragile.
      
      Now that the typechecker and renamer are more intimately coupled,
      we can eliminate SysNames (well, mostly... default methods still
      carry something similar).
      
      		-------------
      		Clean up HsPat
      		-------------
      
      One big clean up is this: instead of having two HsPat types (InPat and
      OutPat), they are now combined into one.  This is more consistent with
      the way that HsExpr etc is handled; there are some 'Out' constructors
      for the type checker output.
      
      So:
      	HsPat.InPat	--> HsPat.Pat
      	HsPat.OutPat	--> HsPat.Pat
      	No 'pat' type parameter in HsExpr, HsBinds, etc
      
      	Constructor patterns are nicer now: they use
      		HsPat.HsConDetails
      	for the three cases of constructor patterns:
      		prefix, infix, and record-bindings
      
      	The *same* data type HsConDetails is used in the type
      	declaration of the data type (HsDecls.TyData)
      
      Lots of associated clean-up operations here and there.  Less code.
      Everything is wonderful.
      9af77fa4
  20. 14 Jun, 2002 1 commit
    • simonpj's avatar
      [project @ 2002-06-14 14:03:25 by simonpj] · 990dd09b
      simonpj authored
      ---------------------------------------
      	Utterly expunge the tyGenInfo field of
      			an IdInfo
      	---------------------------------------
      
      tyGenInfo was a relic of a previous version of Keith's usage
      analyser.  It's just dead code, so I've nuked it.
      990dd09b
  21. 29 Apr, 2002 1 commit
    • simonmar's avatar
      [project @ 2002-04-29 14:03:38 by simonmar] · b085ee40
      simonmar authored
      FastString cleanup, stage 1.
      
      The FastString type is no longer a mixture of hashed strings and
      literal strings, it contains hashed strings only with O(1) comparison
      (except for UnicodeStr, but that will also go away in due course).  To
      create a literal instance of FastString, use FSLIT("..").
      
      By far the most common use of the old literal version of FastString
      was in the pattern
      
      	  ptext SLIT("...")
      
      this combination still works, although it doesn't go via FastString
      any more.  The next stage will be to remove the need to use this
      special combination at all, using a RULE.
      
      To convert a FastString into an SDoc, now use 'ftext' instead of
      'ptext'.
      
      I've also removed all the FAST_STRING related macros from HsVersions.h
      except for SLIT and FSLIT, just use the relevant functions from
      FastString instead.
      b085ee40
  22. 18 Mar, 2002 1 commit
  23. 15 Mar, 2002 1 commit
  24. 14 Mar, 2002 1 commit
  25. 30 Jan, 2002 1 commit
  26. 10 Dec, 2001 1 commit
    • simonmar's avatar
      [project @ 2001-12-10 14:07:30 by simonmar] · 973539a8
      simonmar authored
      Make the inclusion of the old strictness analyser, CPR analyser, and
      the relevant IdInfo components, conditional on DEBUG.  This makes
      IdInfo smaller by three fields in a non-DEBUG compiler, and reduces
      the risk that the unused fields could harbour space leaks.
      
      Eventually these passes will go away altogether.
      973539a8
  27. 25 Oct, 2001 1 commit
    • sof's avatar
      [project @ 2001-10-25 02:13:10 by sof] · 9e933350
      sof authored
      - Pet peeve removal / code tidyup, replaced various sub-optimal
        uses of 'length' with something a bit better, i.e., replaced
        the following patterns
      
         *  length as `cmpOp` length bs
         *  length as `cmpOp` val   -- incl. uses where val == 1 and val == 0
         *  {take,drop,splitAt} (length as) bs
         *  length [ () | pat <- as ]
      
        with uses of misc Util functions.
      
        I'd be surprised if there's a noticeable reduction in running
        times as a result of these changes, but every little bit helps.
      
        [ The changes have been tested wrt testsuite/ - I'm seeing a couple
          of unexpected breakages coming from CorePrep, but I'm currently
          assuming that these are due to other recent changes. ]
      
      - compMan/CompManager.lhs: restored 4.08 compilability + some code
        cleanup.
      
      None of these changes are HEADworthy.
      9e933350
  28. 24 Oct, 2001 1 commit
  29. 26 Sep, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-09-26 15:12:33 by simonpj] · e0d750be
      simonpj authored
      ------------------
      		Simon's big commit
      		------------------
      
      This commit, which I don't think I can sensibly do piecemeal, consists
      of the things I've been doing recently, mainly directed at making
      Manuel, George, and Marcin happier with RULES.
      
      
      Reogranise the simplifier
      ~~~~~~~~~~~~~~~~~~~~~~~~~
      1. The simplifier's environment is now an explicit parameter.  This
      makes it a bit easier to figure out where it is going.
      
      2. Constructor arguments can now be arbitrary expressions, except
      when the application is the RHS of a let(rec).  This makes it much
      easier to match rules like
      
      	RULES
      	    "foo"  f (h x, g y) = f' x y
      
      In the simplifier, it's Simplify.mkAtomicArgs that ANF-ises a
      constructor application where necessary.  In the occurrence analyser,
      there's a new piece of context info (OccEncl) to say whether a
      constructor app is in a place where it should be in ANF.  (Unless
      it knows this it'll give occurrence info which will inline the
      argument back into the constructor app.)
      
      3. I'm experimenting with doing the "float-past big lambda" transformation
      in the full laziness pass, rather than mixed in with the simplifier (was
      tryRhsTyLam).
      
      4.  Arrange that
      	case (coerce (S,T) (x,y)) of ...
      will simplify.  Previous it didn't.
      A local change to CoreUtils.exprIsConApp_maybe.
      
      5. Do a better job in CoreUtils.exprEtaExpandArity when there's an
      error function in one branch.
      
      
      Phase numbers, RULES, and INLINE pragmas
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      1.  Phase numbers decrease from N towards zero (instead of increasing).
      This makes it easier to add new earlier phases, which is what users want
      to do.
      
      2.  RULES get their own phase number, N, and are disabled in phases before N.
      
      e.g. 	{-# RULES "foo" [2] forall x y.  f (x,y) = f' x y #-}
      
      Note the [2], which says "only active in phase 2 and later".
      
      3.  INLINE and NOINLINE pragmas have a phase number to.  This is now treated
      in just the same way as the phase number on RULE; that is, the Id is not inlined
      in phases earlier than N.  In phase N and later the Id *may* be inlined, and
      here is where INLINE and NOINLINE differ: INLNE makes the RHS look small, so
      as soon as it *may* be inlined it probably *will* be inlined.
      
      The syntax of the phase number on an INLINE/NOINLINE pragma has changed to be
      like the RULES case (i.e. in square brackets).  This should also make sure
      you examine all such phase numbers; many will need to change now the numbering
      is reversed.
      
      Inlining Ids is no longer affected at all by whether the Id appears on the
      LHS of a rule.  Now it's up to the programmer to put a suitable INLINE/NOINLINE
      pragma to stop it being inlined too early.
      
      
      Implementation notes:
      
      *  A new data type, BasicTypes.Activation says when a rule or inline pragma
      is active.   Functions isAlwaysActive, isNeverActive, isActive, do the
      obvious thing (all in BasicTypes).
      
      * Slight change in the SimplifierSwitch data type, which led to a lot of
      simplifier-specific code moving from CmdLineOpts to SimplMonad; a Good Thing.
      
      * The InlinePragma in the IdInfo of an Id is now simply an Activation saying
      when the Id can be inlined.  (It used to be a rather bizarre pair of a
      Bool and a (Maybe Phase), so this is much much easier to understand.)
      
      * The simplifier has a "mode" environment switch, replacing the old
      black list.  Unfortunately the data type decl has to be in
      CmdLineOpts, because it's an argument to the CoreDoSimplify switch
      
          data SimplifierMode = SimplGently | SimplPhase Int
      
      Here "gently" means "no rules, no inlining".   All the crucial
      inlining decisions are now collected together in SimplMonad
      (preInlineUnconditionally, postInlineUnconditionally, activeInline,
      activeRule).
      
      
      Specialisation
      ~~~~~~~~~~~~~~
      1.  Only dictionary *functions* are made INLINE, not dictionaries that
      have no parameters.  (This inline-dictionary-function thing is Marcin's
      idea and I'm still not sure whether it's a good idea.  But it's definitely
      a Bad Idea when there are no arguments.)
      
      2.  Be prepared to specialise an INLINE function: an easy fix in
      Specialise.lhs
      
      But there is still a problem, which is that the INLINE wins
      at the call site, so we don't use the specialised version anyway.
      I'm still unsure whether it makes sense to SPECIALISE something
      you want to INLINE.
      
      
      
      
      
      Random smaller things
      ~~~~~~~~~~~~~~~~~~~~~~
      
      * builtinRules (there was only one, but may be more) in PrelRules are now
        incorporated.   They were being ignored before...
      
      * OrdList.foldOL -->  OrdList.foldrOL, OrdList.foldlOL
      
      * Some tidying up of the tidyOpenTyVar, tidyTyVar functions.  I've
        forgotten exactly what!
      e0d750be
  30. 14 Sep, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-09-14 15:51:41 by simonpj] · 5ab261bb
      simonpj authored
      --------------------------
      	Add a rule-check pass
      	(special request by Manuel)
      	--------------------------
      
      	DO NOT merge with stable
      
      The flag
      
      	-frule-check foo
      
      will report all sites at which RULES whose name starts with "foo.."
      might apply, but in fact the arguments don't match so the rule
      doesn't apply.
      
      The pass is run right after all the core-to-core passes.  (Next thing
      to do: make the core-to-core script external, so you can fiddle with
      it.  Meanwhile, the core-to-core script is in
      	DriverState.builCoreToDo
      so you can move the CoreDoRuleCheck line around if you want.
      
      The format of the report is experimental: Manuel, feel free to fiddle
      with it.
      
      Most of the code is in specialise/Rules.lhs
      
      
      Incidental changes
      ~~~~~~~~~~~~~~~~~~
      Change BuiltinRule so that the rule name is accessible
      without actually successfully applying the rule.  This
      change affects quite a few files in a trivial way.
      5ab261bb
  31. 17 Jul, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-07-17 15:28:30 by simonpj] · fdc83001
      simonpj authored
      --------------------------------
      	First cut at the demand analyser
      	--------------------------------
      
      This demand analyser is intended to replace the strictness/absence
      analyser, and the CPR analyser.
      
      This commit adds it to the compiler, but in an entirely non-invasive
      way.
      
      	If you build the compiler without -DDEBUG,
      	you won't get it at all.
      
      	If you build the compiler with -DDEBUG,
      	you'll get the demand analyser, but the existing
      	strictness analyser etc are still there.  All the
      	demand analyser does is to compare its output with
      	the existing stuff and report differences.
      
      There's no cross-module stuff for demand info yet.
      
      The strictness/demand info is put the IdInfo as
      	newStrictnessInfo
      	newDemandInfo
      
      Eventually we'll remove the old ones.
      
      Simon
      fdc83001
  32. 22 May, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-05-22 13:43:14 by simonpj] · f16228e4
      simonpj authored
      -------------------------------------------
      	Towards generalising 'foreign' declarations
      	-------------------------------------------
      
      This is a first step towards generalising 'foreign' declarations to
      handle langauges other than C.  Quite a lot of files are touched,
      but nothing has really changed.  Everything should work exactly as
      before.
      
      	But please be on your guard for ccall-related bugs.
      
      Main things
      
      Basic data types: ForeignCall.lhs
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * Remove absCSyn/CallConv.lhs
      
      * Add prelude/ForeignCall.lhs.  This defines the ForeignCall
        type and its variants
      
      * Define ForeignCall.Safety to say whether a call is unsafe
        or not (was just a boolean).  Lots of consequential chuffing.
      
      * Remove all CCall stuff from PrimOp, and put it in ForeignCall
      
      
      Take CCallOp out of the PrimOp type (where it was always a glitch)
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * Add IdInfo.FCallId variant to the type IdInfo.GlobalIdDetails,
      	along with predicates Id.isFCallId, Id.isFCallId_maybe
      
      * Add StgSyn.StgOp, to sum PrimOp with FCallOp, because it
        *is* useful to sum them together in Stg and AbsC land.  If
        nothing else, it minimises changes.
      
      
      Also generally rename "CCall" stuff to "FCall" where it's generic
      to all foreign calls.
      f16228e4
  33. 13 Mar, 2001 1 commit
    • simonmar's avatar
      [project @ 2001-03-13 12:50:29 by simonmar] · 10cbc75d
      simonmar authored
      Some rearrangements that Simon & I have been working on recently:
      
          - CoreSat is now CorePrep, and is a general "prepare-for-code-
            generation" pass.  It does cloning, saturation of constructors &
            primops, A-normal form, and a couple of other minor fiddlings.
      
          - CoreTidy no longer does cloning, and minor fiddlings.  It doesn't
            need the unique supply any more, so that's removed.
      
          - CoreToStg now collects CafInfo and the list of CafRefs for each
            binding.  The SRT pass is much simpler now.
      
          - IdInfo now has a CgInfo field for "code generator info".  It currently
            contains arity (the actual code gen arity which affects the calling
            convention as opposed to the ArityInfo which is a measure of how
            many arguments the Id can be applied to before it does any work), and
            CafInfo.
      
            Previously we overloaded the ArityInfo field to contain both
            codegen arity and simplifier arity.  Things are cleaner now.
      
          - CgInfo is collected by CoreToStg, and passed back into CoreTidy in
            a loop.  The compiler will complain rather than going into a black
            hole if the CgInfo is pulled on too early.
      
          - Worker info in an interface file now comes with arity info attached.
            Previously the main arity info was overloaded for this purpose, but
            it lead to a few hacks in the compiler, this tidies things up somewhat.
      
      Bottom line: we removed several fragilities, and tidied up a number of
      things.  Code size should be smaller, but we'll see...
      10cbc75d
  34. 08 Mar, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-03-08 12:07:38 by simonpj] · 51a571c0
      simonpj authored
      --------------------
      	A major hygiene pass
      	--------------------
      
      1. The main change here is to
      
      	Move what was the "IdFlavour" out of IdInfo,
      	and into the varDetails field of a Var
      
         It was a mess before, because the flavour was a permanent attribute
         of an Id, whereas the rest of the IdInfo was ephemeral.  It's
         all much tidier now.
      
         Main places to look:
      
      	   Var.lhs	Defn of VarDetails
      	   IdInfo.lhs	Defn of GlobalIdDetails
      
         The main remaining infelicity is that SpecPragmaIds are right down
         in Var.lhs, which seems unduly built-in for such an ephemeral thing.
         But that is no worse than before.
      
      
      2. Tidy up the HscMain story a little.  Move mkModDetails from MkIface
         into CoreTidy (where it belongs more nicely)
      
         This was partly forced by (1) above, because I didn't want to make
         DictFun Ids into a separate kind of Id (which is how it was before).
         Not having them separate means we have to keep a list of them right
         through, rather than pull them out of the bindings at the end.
      
      3. Add NameEnv as a separate module (to join NameSet).
      
      4. Remove unnecessary {-# SOURCE #-} imports from FieldLabel.
      51a571c0
  35. 03 Mar, 2001 1 commit
  36. 23 Feb, 2001 1 commit
  37. 07 Dec, 2000 1 commit
  38. 20 Nov, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-11-20 14:48:52 by simonpj] · c271b647
      simonpj authored
      When renaming, typechecking an expression from the user
      interface, we may suck in declarations from interface
      files (e.g. the Prelude).  This commit takes account of that.
      
      To do so, I did some significant restructuring in TcModule,
      with consequential changes and tidy ups elsewhere in the type
      checker.  I think there should be fewer lines in total than before.
      c271b647
  39. 07 Nov, 2000 1 commit
  40. 25 Oct, 2000 1 commit