TcDerivInfer.hs 40 KB
Newer Older
Ryan Scott's avatar
Ryan Scott committed
1 2 3 4 5 6 7 8 9
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


Functions for inferring (and simplifying) the context for derived instances.
-}

{-# LANGUAGE CPP #-}
10
{-# LANGUAGE MultiWayIf #-}
Ryan Scott's avatar
Ryan Scott committed
11 12 13 14 15

module TcDerivInfer (inferConstraints, simplifyInstanceContexts) where

#include "HsVersions.h"

16 17
import GhcPrelude

Ryan Scott's avatar
Ryan Scott committed
18
import Bag
19
import BasicTypes
Ryan Scott's avatar
Ryan Scott committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
import Class
import DataCon
import ErrUtils
import Inst
import Outputable
import PrelNames
import TcDerivUtils
import TcEnv
import TcGenFunctor
import TcGenGenerics
import TcMType
import TcRnMonad
import TcType
import TyCon
import Type
import TcSimplify
import TcValidity (validDerivPred)
37
import TcUnify (buildImplicationFor, checkConstraints)
38
import Unify (tcUnifyTy)
Ryan Scott's avatar
Ryan Scott committed
39
import Util
40
import Var
Ryan Scott's avatar
Ryan Scott committed
41 42 43
import VarSet

import Control.Monad
44 45
import Control.Monad.Trans.Class  (lift)
import Control.Monad.Trans.Reader (ask)
Ryan Scott's avatar
Ryan Scott committed
46 47 48 49 50
import Data.List
import Data.Maybe

----------------------

51 52
inferConstraints :: DerivSpecMechanism
                 -> DerivM ([ThetaOrigin], [TyVar], [TcType])
Ryan Scott's avatar
Ryan Scott committed
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
-- inferConstraints figures out the constraints needed for the
-- instance declaration generated by a 'deriving' clause on a
-- data type declaration. It also returns the new in-scope type
-- variables and instance types, in case they were changed due to
-- the presence of functor-like constraints.
-- See Note [Inferring the instance context]

-- e.g. inferConstraints
--        C Int (T [a])    -- Class and inst_tys
--        :RTList a        -- Rep tycon and its arg tys
-- where T [a] ~R :RTList a
--
-- Generate a sufficiently large set of constraints that typechecking the
-- generated method definitions should succeed.   This set will be simplified
-- before being used in the instance declaration
68 69 70 71 72
inferConstraints mechanism
  = do { DerivEnv { denv_tc          = tc
                  , denv_tc_args     = tc_args
                  , denv_cls         = main_cls
                  , denv_cls_tys     = cls_tys } <- ask
73
       ; wildcard <- isStandaloneWildcardDeriv
74 75 76 77 78 79 80 81 82 83 84 85 86
       ; let is_anyclass = isDerivSpecAnyClass mechanism
             infer_constraints
               | is_anyclass = inferConstraintsDAC inst_tys
               | otherwise   = inferConstraintsDataConArgs inst_ty inst_tys

             inst_ty  = mkTyConApp tc tc_args
             inst_tys = cls_tys ++ [inst_ty]

             -- Constraints arising from superclasses
             -- See Note [Superclasses of derived instance]
             cls_tvs  = classTyVars main_cls
             sc_constraints = ASSERT2( equalLength cls_tvs inst_tys
                                     , ppr main_cls <+> ppr inst_tys )
87
                              [ mkThetaOrigin (mkDerivOrigin wildcard)
88
                                              TypeLevel [] [] [] $
89 90 91 92 93 94
                                substTheta cls_subst (classSCTheta main_cls) ]
             cls_subst = ASSERT( equalLength cls_tvs inst_tys )
                         zipTvSubst cls_tvs inst_tys

       ; (inferred_constraints, tvs', inst_tys') <- infer_constraints
       ; lift $ traceTc "inferConstraints" $ vcat
95 96 97 98 99 100 101 102 103
              [ ppr main_cls <+> ppr inst_tys'
              , ppr inferred_constraints
              ]
       ; return ( sc_constraints ++ inferred_constraints
                , tvs', inst_tys' ) }

-- | Like 'inferConstraints', but used only in the case of deriving strategies
-- where the constraints are inferred by inspecting the fields of each data
-- constructor (i.e., stock- and newtype-deriving).
104 105 106 107 108 109 110 111
inferConstraintsDataConArgs :: TcType -> [TcType]
                            -> DerivM ([ThetaOrigin], [TyVar], [TcType])
inferConstraintsDataConArgs inst_ty inst_tys
  = do DerivEnv { denv_tvs         = tvs
                , denv_rep_tc      = rep_tc
                , denv_rep_tc_args = rep_tc_args
                , denv_cls         = main_cls
                , denv_cls_tys     = cls_tys } <- ask
112
       wildcard <- isStandaloneWildcardDeriv
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

       let tc_binders = tyConBinders rep_tc
           choose_level bndr
             | isNamedTyConBinder bndr = KindLevel
             | otherwise               = TypeLevel
           t_or_ks = map choose_level tc_binders ++ repeat TypeLevel
              -- want to report *kind* errors when possible

              -- Constraints arising from the arguments of each constructor
           con_arg_constraints
             :: (CtOrigin -> TypeOrKind
                          -> Type
                          -> [([PredOrigin], Maybe TCvSubst)])
             -> ([ThetaOrigin], [TyVar], [TcType])
           con_arg_constraints get_arg_constraints
             = let (predss, mbSubsts) = unzip
                     [ preds_and_mbSubst
                     | data_con <- tyConDataCons rep_tc
                     , (arg_n, arg_t_or_k, arg_ty)
                         <- zip3 [1..] t_or_ks $
                            dataConInstOrigArgTys data_con all_rep_tc_args
                       -- No constraints for unlifted types
                       -- See Note [Deriving and unboxed types]
                     , not (isUnliftedType arg_ty)
137
                     , let orig = DerivOriginDC data_con arg_n wildcard
138 139 140 141 142 143 144 145 146 147 148 149 150
                     , preds_and_mbSubst
                         <- get_arg_constraints orig arg_t_or_k arg_ty
                     ]
                   preds = concat predss
                   -- If the constraints require a subtype to be of kind
                   -- (* -> *) (which is the case for functor-like
                   -- constraints), then we explicitly unify the subtype's
                   -- kinds with (* -> *).
                   -- See Note [Inferring the instance context]
                   subst        = foldl' composeTCvSubst
                                         emptyTCvSubst (catMaybes mbSubsts)
                   unmapped_tvs = filter (\v -> v `notElemTCvSubst` subst
                                             && not (v `isInScope` subst)) tvs
Simon Peyton Jones's avatar
Simon Peyton Jones committed
151
                   (subst', _)  = substTyVarBndrs subst unmapped_tvs
152 153 154 155 156 157 158 159 160 161 162 163
                   preds'       = map (substPredOrigin subst') preds
                   inst_tys'    = substTys subst' inst_tys
                   tvs'         = tyCoVarsOfTypesWellScoped inst_tys'
               in ([mkThetaOriginFromPreds preds'], tvs', inst_tys')

           is_generic  = main_cls `hasKey` genClassKey
           is_generic1 = main_cls `hasKey` gen1ClassKey
           -- is_functor_like: see Note [Inferring the instance context]
           is_functor_like = typeKind inst_ty `tcEqKind` typeToTypeKind
                          || is_generic1

           get_gen1_constraints :: Class -> CtOrigin -> TypeOrKind -> Type
164
                                -> [([PredOrigin], Maybe TCvSubst)]
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
           get_gen1_constraints functor_cls orig t_or_k ty
              = mk_functor_like_constraints orig t_or_k functor_cls $
                get_gen1_constrained_tys last_tv ty

           get_std_constrained_tys :: CtOrigin -> TypeOrKind -> Type
                                   -> [([PredOrigin], Maybe TCvSubst)]
           get_std_constrained_tys orig t_or_k ty
               | is_functor_like
               = mk_functor_like_constraints orig t_or_k main_cls $
                 deepSubtypesContaining last_tv ty
               | otherwise
               = [( [mk_cls_pred orig t_or_k main_cls ty]
                  , Nothing )]

           mk_functor_like_constraints :: CtOrigin -> TypeOrKind
                                       -> Class -> [Type]
                                       -> [([PredOrigin], Maybe TCvSubst)]
           -- 'cls' is usually main_cls (Functor or Traversable etc), but if
           -- main_cls = Generic1, then 'cls' can be Functor; see
           -- get_gen1_constraints
           --
           -- For each type, generate two constraints,
           -- [cls ty, kind(ty) ~ (*->*)], and a kind substitution that results
           -- from unifying  kind(ty) with * -> *. If the unification is
           -- successful, it will ensure that the resulting instance is well
           -- kinded. If not, the second constraint will result in an error
           -- message which points out the kind mismatch.
           -- See Note [Inferring the instance context]
           mk_functor_like_constraints orig t_or_k cls
              = map $ \ty -> let ki = typeKind ty in
                             ( [ mk_cls_pred orig t_or_k cls ty
                               , mkPredOrigin orig KindLevel
                                   (mkPrimEqPred ki typeToTypeKind) ]
                             , tcUnifyTy ki typeToTypeKind
                             )

           rep_tc_tvs      = tyConTyVars rep_tc
           last_tv         = last rep_tc_tvs
           -- When we first gather up the constraints to solve, most of them
           -- contain rep_tc_tvs, i.e., the type variables from the derived
           -- datatype's type constructor. We don't want these type variables
           -- to appear in the final instance declaration, so we must
           -- substitute each type variable with its counterpart in the derived
           -- instance. rep_tc_args lists each of these counterpart types in
           -- the same order as the type variables.
           all_rep_tc_args
             = rep_tc_args ++ map mkTyVarTy
                                  (drop (length rep_tc_args) rep_tc_tvs)

               -- Stupid constraints
           stupid_constraints
216
             = [ mkThetaOrigin deriv_origin TypeLevel [] [] [] $
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                 substTheta tc_subst (tyConStupidTheta rep_tc) ]
           tc_subst = -- See the comment with all_rep_tc_args for an
                      -- explanation of this assertion
                      ASSERT( equalLength rep_tc_tvs all_rep_tc_args )
                      zipTvSubst rep_tc_tvs all_rep_tc_args

           -- Extra Data constraints
           -- The Data class (only) requires that for
           --    instance (...) => Data (T t1 t2)
           -- IF   t1:*, t2:*
           -- THEN (Data t1, Data t2) are among the (...) constraints
           -- Reason: when the IF holds, we generate a method
           --             dataCast2 f = gcast2 f
           --         and we need the Data constraints to typecheck the method
           extra_constraints = [mkThetaOriginFromPreds constrs]
             where
               constrs
                 | main_cls `hasKey` dataClassKey
                 , all (isLiftedTypeKind . typeKind) rep_tc_args
236
                 = [ mk_cls_pred deriv_origin t_or_k main_cls ty
237 238 239 240 241 242 243 244 245 246 247 248 249
                   | (t_or_k, ty) <- zip t_or_ks rep_tc_args]
                 | otherwise
                 = []

           mk_cls_pred orig t_or_k cls ty
                -- Don't forget to apply to cls_tys' too
              = mkPredOrigin orig t_or_k (mkClassPred cls (cls_tys' ++ [ty]))
           cls_tys' | is_generic1 = []
                      -- In the awkward Generic1 case, cls_tys' should be
                      -- empty, since we are applying the class Functor.

                    | otherwise   = cls_tys

250 251
           deriv_origin = mkDerivOrigin wildcard

252 253
       if    -- Generic constraints are easy
          |  is_generic
254
           -> return ([], tvs, inst_tys)
255 256 257 258

             -- Generic1 needs Functor
             -- See Note [Getting base classes]
          |  is_generic1
259 260 261 262 263 264
           -> ASSERT( rep_tc_tvs `lengthExceeds` 0 )
              -- Generic1 has a single kind variable
              ASSERT( cls_tys `lengthIs` 1 )
              do { functorClass <- lift $ tcLookupClass functorClassName
                 ; pure $ con_arg_constraints
                        $ get_gen1_constraints functorClass }
265 266 267

             -- The others are a bit more complicated
          |  otherwise
268 269 270 271 272 273 274 275 276 277 278 279 280 281
           -> -- See the comment with all_rep_tc_args for an explanation of
              -- this assertion
              ASSERT2( equalLength rep_tc_tvs all_rep_tc_args
                     , ppr main_cls <+> ppr rep_tc
                       $$ ppr rep_tc_tvs $$ ppr all_rep_tc_args )
                do { let (arg_constraints, tvs', inst_tys')
                           = con_arg_constraints get_std_constrained_tys
                   ; lift $ traceTc "inferConstraintsDataConArgs" $ vcat
                          [ ppr main_cls <+> ppr inst_tys'
                          , ppr arg_constraints
                          ]
                   ; return ( stupid_constraints ++ extra_constraints
                                                 ++ arg_constraints
                            , tvs', inst_tys') }
Ryan Scott's avatar
Ryan Scott committed
282 283 284 285

typeToTypeKind :: Kind
typeToTypeKind = liftedTypeKind `mkFunTy` liftedTypeKind

286 287 288 289 290 291 292
-- | Like 'inferConstraints', but used only in the case of @DeriveAnyClass@,
-- which gathers its constraints based on the type signatures of the class's
-- methods instead of the types of the data constructor's field.
--
-- See Note [Gathering and simplifying constraints for DeriveAnyClass]
-- for an explanation of how these constraints are used to determine the
-- derived instance context.
293 294 295 296
inferConstraintsDAC :: [TcType] -> DerivM ([ThetaOrigin], [TyVar], [TcType])
inferConstraintsDAC inst_tys
  = do { DerivEnv { denv_tvs = tvs
                  , denv_cls = cls } <- ask
297
       ; wildcard <- isStandaloneWildcardDeriv
298 299

       ; let gen_dms = [ (sel_id, dm_ty)
300
                       | (sel_id, Just (_, GenericDM dm_ty)) <- classOpItems cls ]
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
             cls_tvs = classTyVars cls

             do_one_meth :: (Id, Type) -> TcM ThetaOrigin
               -- (Id,Type) are the selector Id and the generic default method type
               -- NB: the latter is /not/ quantified over the class variables
               -- See Note [Gathering and simplifying constraints for DeriveAnyClass]
             do_one_meth (sel_id, gen_dm_ty)
               = do { let (sel_tvs, _cls_pred, meth_ty)
                                   = tcSplitMethodTy (varType sel_id)
                          meth_ty' = substTyWith sel_tvs inst_tys meth_ty
                          (meth_tvs, meth_theta, meth_tau)
                                   = tcSplitNestedSigmaTys meth_ty'

                          gen_dm_ty' = substTyWith cls_tvs inst_tys gen_dm_ty
                          (dm_tvs, dm_theta, dm_tau)
                                     = tcSplitNestedSigmaTys gen_dm_ty'
318 319 320
                          tau_eq     = mkPrimEqPred meth_tau dm_tau
                    ; return (mkThetaOrigin (mkDerivOrigin wildcard) TypeLevel
                                meth_tvs dm_tvs meth_theta (tau_eq:dm_theta)) }
321

322
       ; theta_origins <- lift $ mapM do_one_meth gen_dms
323
       ; return (theta_origins, tvs, inst_tys) }
324 325

{- Note [Inferring the instance context]
Ryan Scott's avatar
Ryan Scott committed
326
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
327 328 329 330 331 332 333 334 335 336 337
There are two sorts of 'deriving', as represented by the two constructors
for DerivContext:

  * InferContext mb_wildcard: This can either be:
    - The deriving clause for a data type.
        (e.g, data T a = T1 a deriving( Eq ))
      In this case, mb_wildcard = Nothing.
    - A standalone declaration with an extra-constraints wildcard
        (e.g., deriving instance _ => Eq (Foo a))
      In this case, mb_wildcard = Just loc, where loc is the location
      of the extra-constraints wildcard.
Ryan Scott's avatar
Ryan Scott committed
338 339 340 341 342

    Here we must infer an instance context,
    and generate instance declaration
      instance Eq a => Eq (T a) where ...

343
  * SupplyContext theta: standalone deriving
Ryan Scott's avatar
Ryan Scott committed
344 345
      deriving instance Eq a => Eq (T a)
    Here we only need to fill in the bindings;
346
    the instance context (theta) is user-supplied
Ryan Scott's avatar
Ryan Scott committed
347

348
For the InferContext case, we must figure out the
349
instance context (inferConstraintsDataConArgs). Suppose we are inferring
Ryan Scott's avatar
Ryan Scott committed
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
the instance context for
    C t1 .. tn (T s1 .. sm)
There are two cases

  * (T s1 .. sm) :: *         (the normal case)
    Then we behave like Eq and guess (C t1 .. tn t)
    for each data constructor arg of type t.  More
    details below.

  * (T s1 .. sm) :: * -> *    (the functor-like case)
    Then we behave like Functor.

In both cases we produce a bunch of un-simplified constraints
and them simplify them in simplifyInstanceContexts; see
Note [Simplifying the instance context].

In the functor-like case, we may need to unify some kind variables with * in
order for the generated instance to be well-kinded. An example from
Trac #10524:

  newtype Compose (f :: k2 -> *) (g :: k1 -> k2) (a :: k1)
    = Compose (f (g a)) deriving Functor

Earlier in the deriving pipeline, GHC unifies the kind of Compose f g
(k1 -> *) with the kind of Functor's argument (* -> *), so k1 := *. But this
alone isn't enough, since k2 wasn't unified with *:

  instance (Functor (f :: k2 -> *), Functor (g :: * -> k2)) =>
    Functor (Compose f g) where ...

The two Functor constraints are ill-kinded. To ensure this doesn't happen, we:

  1. Collect all of a datatype's subtypes which require functor-like
     constraints.
  2. For each subtype, create a substitution by unifying the subtype's kind
     with (* -> *).
  3. Compose all the substitutions into one, then apply that substitution to
     all of the in-scope type variables and the instance types.

Note [Getting base classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functor and Typeable are defined in package 'base', and that is not available
when compiling 'ghc-prim'.  So we must be careful that 'deriving' for stuff in
ghc-prim does not use Functor or Typeable implicitly via these lookups.

Note [Deriving and unboxed types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have some special hacks to support things like
   data T = MkT Int# deriving ( Show )

Specifically, we use TcGenDeriv.box to box the Int# into an Int
401
(which we know how to show), and append a '#'. Parentheses are not required
Ryan Scott's avatar
Ryan Scott committed
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
for unboxed values (`MkT -3#` is a valid expression).

Note [Superclasses of derived instance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general, a derived instance decl needs the superclasses of the derived
class too.  So if we have
        data T a = ...deriving( Ord )
then the initial context for Ord (T a) should include Eq (T a).  Often this is
redundant; we'll also generate an Ord constraint for each constructor argument,
and that will probably generate enough constraints to make the Eq (T a) constraint
be satisfied too.  But not always; consider:

 data S a = S
 instance Eq (S a)
 instance Ord (S a)

 data T a = MkT (S a) deriving( Ord )
 instance Num a => Eq (T a)

The derived instance for (Ord (T a)) must have a (Num a) constraint!
Similarly consider:
        data T a = MkT deriving( Data )
Here there *is* no argument field, but we must nevertheless generate
a context for the Data instances:
        instance Typeable a => Data (T a) where ...

428

Ryan Scott's avatar
Ryan Scott committed
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
************************************************************************
*                                                                      *
         Finding the fixed point of deriving equations
*                                                                      *
************************************************************************

Note [Simplifying the instance context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

        data T a b = C1 (Foo a) (Bar b)
                   | C2 Int (T b a)
                   | C3 (T a a)
                   deriving (Eq)

We want to come up with an instance declaration of the form

        instance (Ping a, Pong b, ...) => Eq (T a b) where
                x == y = ...

It is pretty easy, albeit tedious, to fill in the code "...".  The
trick is to figure out what the context for the instance decl is,
namely Ping, Pong and friends.

Let's call the context reqd for the T instance of class C at types
(a,b, ...)  C (T a b).  Thus:

        Eq (T a b) = (Ping a, Pong b, ...)

Now we can get a (recursive) equation from the data decl.  This part
459
is done by inferConstraintsDataConArgs.
Ryan Scott's avatar
Ryan Scott committed
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3


Foo and Bar may have explicit instances for Eq, in which case we can
just substitute for them.  Alternatively, either or both may have
their Eq instances given by deriving clauses, in which case they
form part of the system of equations.

Now all we need do is simplify and solve the equations, iterating to
find the least fixpoint.  This is done by simplifyInstanceConstraints.
Notice that the order of the arguments can
switch around, as here in the recursive calls to T.

Let's suppose Eq (Foo a) = Eq a, and Eq (Bar b) = Ping b.

We start with:

        Eq (T a b) = {}         -- The empty set

Next iteration:
        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3

        After simplification:
                   = Eq a u Ping b u {} u {} u {}
                   = Eq a u Ping b

Next iteration:

        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3

        After simplification:
                   = Eq a u Ping b
                   u (Eq b u Ping a)
                   u (Eq a u Ping a)

                   = Eq a u Ping b u Eq b u Ping a

The next iteration gives the same result, so this is the fixpoint.  We
need to make a canonical form of the RHS to ensure convergence.  We do
this by simplifying the RHS to a form in which

        - the classes constrain only tyvars
        - the list is sorted by tyvar (major key) and then class (minor key)
        - no duplicates, of course

Note [Deterministic simplifyInstanceContexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Canonicalisation uses nonDetCmpType which is nondeterministic. Sorting
with nonDetCmpType puts the returned lists in a nondeterministic order.
If we were to return them, we'd get class constraints in
nondeterministic order.

Consider:

  data ADT a b = Z a b deriving Eq

The generated code could be either:

  instance (Eq a, Eq b) => Eq (Z a b) where

Or:

  instance (Eq b, Eq a) => Eq (Z a b) where

To prevent the order from being nondeterministic we only
canonicalize when comparing and return them in the same order as
simplifyDeriv returned them.
See also Note [nonDetCmpType nondeterminism]
-}


538 539
simplifyInstanceContexts :: [DerivSpec [ThetaOrigin]]
                         -> TcM [DerivSpec ThetaType]
540 541
-- Used only for deriving clauses or standalone deriving with an
-- extra-constraints wildcard (InferContext)
Ryan Scott's avatar
Ryan Scott committed
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
-- See Note [Simplifying the instance context]

simplifyInstanceContexts [] = return []

simplifyInstanceContexts infer_specs
  = do  { traceTc "simplifyInstanceContexts" $ vcat (map pprDerivSpec infer_specs)
        ; iterate_deriv 1 initial_solutions }
  where
    ------------------------------------------------------------------
        -- The initial solutions for the equations claim that each
        -- instance has an empty context; this solution is certainly
        -- in canonical form.
    initial_solutions :: [ThetaType]
    initial_solutions = [ [] | _ <- infer_specs ]

    ------------------------------------------------------------------
        -- iterate_deriv calculates the next batch of solutions,
        -- compares it with the current one; finishes if they are the
        -- same, otherwise recurses with the new solutions.
        -- It fails if any iteration fails
    iterate_deriv :: Int -> [ThetaType] -> TcM [DerivSpec ThetaType]
    iterate_deriv n current_solns
      | n > 20  -- Looks as if we are in an infinite loop
                -- This can happen if we have -XUndecidableInstances
                -- (See TcSimplify.tcSimplifyDeriv.)
      = pprPanic "solveDerivEqns: probable loop"
                 (vcat (map pprDerivSpec infer_specs) $$ ppr current_solns)
      | otherwise
      = do {      -- Extend the inst info from the explicit instance decls
                  -- with the current set of solutions, and simplify each RHS
             inst_specs <- zipWithM newDerivClsInst current_solns infer_specs
           ; new_solns <- checkNoErrs $
                          extendLocalInstEnv inst_specs $
                          mapM gen_soln infer_specs

           ; if (current_solns `eqSolution` new_solns) then
                return [ spec { ds_theta = soln }
                       | (spec, soln) <- zip infer_specs current_solns ]
             else
                iterate_deriv (n+1) new_solns }

    eqSolution a b = eqListBy (eqListBy eqType) (canSolution a) (canSolution b)
       -- Canonicalise for comparison
       -- See Note [Deterministic simplifyInstanceContexts]
    canSolution = map (sortBy nonDetCmpType)
    ------------------------------------------------------------------
588
    gen_soln :: DerivSpec [ThetaOrigin] -> TcM ThetaType
Ryan Scott's avatar
Ryan Scott committed
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    gen_soln (DS { ds_loc = loc, ds_tvs = tyvars
                 , ds_cls = clas, ds_tys = inst_tys, ds_theta = deriv_rhs })
      = setSrcSpan loc  $
        addErrCtxt (derivInstCtxt the_pred) $
        do { theta <- simplifyDeriv the_pred tyvars deriv_rhs
                -- checkValidInstance tyvars theta clas inst_tys
                -- Not necessary; see Note [Exotic derived instance contexts]

           ; traceTc "TcDeriv" (ppr deriv_rhs $$ ppr theta)
                -- Claim: the result instance declaration is guaranteed valid
                -- Hence no need to call:
                --   checkValidInstance tyvars theta clas inst_tys
           ; return theta }
      where
        the_pred = mkClassPred clas inst_tys

derivInstCtxt :: PredType -> MsgDoc
derivInstCtxt pred
  = text "When deriving the instance for" <+> parens (ppr pred)

{-
***********************************************************************************
*                                                                                 *
*            Simplify derived constraints
*                                                                                 *
***********************************************************************************
-}

-- | Given @instance (wanted) => C inst_ty@, simplify 'wanted' as much
-- as possible. Fail if not possible.
simplifyDeriv :: PredType -- ^ @C inst_ty@, head of the instance we are
                          -- deriving.  Only used for SkolemInfo.
              -> [TyVar]  -- ^ The tyvars bound by @inst_ty@.
622
              -> [ThetaOrigin] -- ^ Given and wanted constraints
Ryan Scott's avatar
Ryan Scott committed
623 624
              -> TcM ThetaType -- ^ Needed constraints (after simplification),
                               -- i.e. @['PredType']@.
625
simplifyDeriv pred tvs thetas
Ryan Scott's avatar
Ryan Scott committed
626 627 628 629 630 631 632 633 634 635
  = do { (skol_subst, tvs_skols) <- tcInstSkolTyVars tvs -- Skolemize
                -- The constraint solving machinery
                -- expects *TcTyVars* not TyVars.
                -- We use *non-overlappable* (vanilla) skolems
                -- See Note [Overlap and deriving]

       ; let skol_set  = mkVarSet tvs_skols
             skol_info = DerivSkol pred
             doc = text "deriving" <+> parens (ppr pred)

636 637 638 639 640
             mk_given_ev :: PredType -> TcM EvVar
             mk_given_ev given =
               let given_pred = substTy skol_subst given
               in newEvVar given_pred

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
             emit_wanted_constraints :: [TyVar] -> [PredOrigin] -> TcM ()
             emit_wanted_constraints metas_to_be preds
               = do { -- We instantiate metas_to_be with fresh meta type
                      -- variables. Currently, these can only be type variables
                      -- quantified in generic default type signatures.
                      -- See Note [Gathering and simplifying constraints for
                      -- DeriveAnyClass]
                      (meta_subst, _meta_tvs) <- newMetaTyVars metas_to_be

                    -- Now make a constraint for each of the instantiated predicates
                    ; let wanted_subst = skol_subst `unionTCvSubst` meta_subst
                          mk_wanted_ct (PredOrigin wanted orig t_or_k)
                            = do { ev <- newWanted orig (Just t_or_k) $
                                         substTyUnchecked wanted_subst wanted
                                 ; return (mkNonCanonical ev) }
                    ; cts <- mapM mk_wanted_ct preds

                    -- And emit them into the monad
                    ; emitSimples (listToCts cts) }
660 661

             -- Create the implications we need to solve. For stock and newtype
662
             -- deriving, these implication constraints will be simple class
663
             -- constraints like (C a, Ord b).
664 665 666
             -- But with DeriveAnyClass, we make an implication constraint.
             -- See Note [Gathering and simplifying constraints for DeriveAnyClass]
             mk_wanteds :: ThetaOrigin -> TcM WantedConstraints
667 668 669
             mk_wanteds (ThetaOrigin { to_anyclass_skols  = ac_skols
                                     , to_anyclass_metas  = ac_metas
                                     , to_anyclass_givens = ac_givens
670
                                     , to_wanted_origins  = preds })
671 672 673 674
               = do { ac_given_evs <- mapM mk_given_ev ac_givens
                    ; (_, wanteds)
                        <- captureConstraints $
                           checkConstraints skol_info ac_skols ac_given_evs $
675 676 677 678
                              -- The checkConstraints bumps the TcLevel, and
                              -- wraps the wanted constraints in an implication,
                              -- when (but only when) necessary
                           emit_wanted_constraints ac_metas preds
679
                    ; pure wanteds }
680 681

       -- See [STEP DAC BUILD]
682 683
       -- Generate the implication constraints constraints to solve with the
       -- skolemized variables
684
       ; wanteds <- mapM mk_wanteds thetas
Ryan Scott's avatar
Ryan Scott committed
685 686

       ; traceTc "simplifyDeriv inputs" $
687 688 689
         vcat [ pprTyVars tvs $$ ppr thetas $$ ppr wanteds, doc ]

       -- See [STEP DAC SOLVE]
Ryan Scott's avatar
Ryan Scott committed
690
       -- Simplify the constraints
691
       ; solved_implics <- runTcSDeriveds $ solveWantedsAndDrop
692
                                          $ unionsWC wanteds
693 694
       -- It's not yet zonked!  Obviously zonk it before peering at it
       ; solved_implics <- zonkWC solved_implics
Ryan Scott's avatar
Ryan Scott committed
695

696
       -- See [STEP DAC HOIST]
Ryan Scott's avatar
Ryan Scott committed
697 698 699 700
       -- Split the resulting constraints into bad and good constraints,
       -- building an @unsolved :: WantedConstraints@ representing all
       -- the constraints we can't just shunt to the predicates.
       -- See Note [Exotic derived instance contexts]
701
       ; let residual_simple = approximateWC True solved_implics
Ryan Scott's avatar
Ryan Scott committed
702 703 704 705 706 707
             (bad, good) = partitionBagWith get_good residual_simple

             get_good :: Ct -> Either Ct PredType
             get_good ct | validDerivPred skol_set p
                         , isWantedCt ct
                         = Right p
708
                          -- TODO: This is wrong
Ryan Scott's avatar
Ryan Scott committed
709 710 711 712 713 714 715 716 717 718 719 720
                          -- NB re 'isWantedCt': residual_wanted may contain
                          -- unsolved CtDerived and we stick them into the
                          -- bad set so that reportUnsolved may decide what
                          -- to do with them
                         | otherwise
                         = Left ct
                           where p = ctPred ct

       ; traceTc "simplifyDeriv outputs" $
         vcat [ ppr tvs_skols, ppr residual_simple, ppr good, ppr bad ]

       -- Return the good unsolved constraints (unskolemizing on the way out.)
721
       ; let min_theta = mkMinimalBySCs id (bagToList good)
722 723 724 725 726 727
             -- An important property of mkMinimalBySCs (used above) is that in
             -- addition to removing constraints that are made redundant by
             -- superclass relationships, it also removes _duplicate_
             -- constraints.
             -- See Note [Gathering and simplifying constraints for
             --           DeriveAnyClass]
Ryan Scott's avatar
Ryan Scott committed
728 729
             subst_skol = zipTvSubst tvs_skols $ mkTyVarTys tvs
                          -- The reverse substitution (sigh)
730

731
       -- See [STEP DAC RESIDUAL]
732
       ; min_theta_vars <- mapM newEvVar min_theta
733 734 735 736
       ; tc_lvl <- getTcLevel
       ; (leftover_implic, _)
           <- buildImplicationFor (pushTcLevel tc_lvl) skol_info tvs_skols
                                  min_theta_vars solved_implics
737 738 739 740
       -- This call to simplifyTop is purely for error reporting
       -- See Note [Error reporting for deriving clauses]
       -- See also Note [Exotic derived instance contexts], which are caught
       -- in this line of code.
741
       ; simplifyTopImplic leftover_implic
742

Ryan Scott's avatar
Ryan Scott committed
743 744 745 746 747 748
       ; return (substTheta subst_skol min_theta) }

{-
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
Ryan Scott's avatar
Ryan Scott committed
749 750
  instance Show a => Show [a] where ..
  instance Show [Char] where ...
Ryan Scott's avatar
Ryan Scott committed
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

Now a data type with deriving:
  data T a = MkT [a] deriving( Show )

We want to get the derived instance
  instance Show [a] => Show (T a) where...
and NOT
  instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing

It's very like the situation when we're inferring the type
of a function
   f x = show [x]
and we want to infer
   f :: Show [a] => a -> String

BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
             the context for the derived instance.
             Hence tcInstSkolTyVars not tcInstSuperSkolTyVars

771 772 773 774 775 776 777 778 779
Note [Gathering and simplifying constraints for DeriveAnyClass]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DeriveAnyClass works quite differently from stock and newtype deriving in
the way it gathers and simplifies constraints to be used in a derived
instance's context. Stock and newtype deriving gather constraints by looking
at the data constructors of the data type for which we are deriving an
instance. But DeriveAnyClass doesn't need to know about a data type's
definition at all!

780
To see why, consider this example of DeriveAnyClass:
781 782

  class Foo a where
783 784 785
    bar :: forall b. Ix b => a -> b -> String
    default bar :: (Show a, Ix c) => a -> c -> String
    bar x y = show x ++ show (range (y,y))
786 787 788 789 790

    baz :: Eq a => a -> a -> Bool
    default baz :: (Ord a, Show a) => a -> a -> Bool
    baz x y = compare x y == EQ

791 792
Because 'bar' and 'baz' have default signatures, this generates a top-level
definition for these generic default methods
793

794 795 796 797
  $gdm_bar :: forall a. Foo a
           => forall c. (Show a, Ix c)
           => a -> c -> String
  $gdm_bar x y = show x ++ show (range (y,y))
798

799 800
(and similarly for baz).  Now consider a 'deriving' clause
  data Maybe s = ... deriving Foo
801

802 803
This derives an instance of the form:
  instance (CX) => Foo (Maybe s) where
804 805 806
    bar = $gdm_bar
    baz = $gdm_baz

807 808 809 810 811
Now it is GHC's job to fill in a suitable instance context (CX).  If
GHC were typechecking the binding
   bar = $gdm bar
it would
   * skolemise the expected type of bar
812
   * instantiate the type of $gdm_bar with meta-type variables
813 814 815 816
   * build an implication constraint

[STEP DAC BUILD]
So that's what we do.  We build the constraint (call it C1)
817

818
   forall b. Ix b => (Show (Maybe s), Ix cc,
819 820
                      Maybe s -> b -> String
                          ~ Maybe s -> cc -> String)
821

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
Here, the 'b' comes from the quantified type variable in the expected type
of bar (i.e., 'to_anyclass_skols' in 'ThetaOrigin'). The 'cc' is a unification
variable that comes from instantiating the quantified type variable 'c' in
$gdm_bar's type (i.e., 'to_anyclass_metas' in 'ThetaOrigin).

The (Ix b) constraint comes from the context of bar's type
(i.e., 'to_wanted_givens' in 'ThetaOrigin'). The (Show (Maybe s)) and (Ix cc)
constraints come from the context of $gdm_bar's type
(i.e., 'to_anyclass_givens' in 'ThetaOrigin').

The equality constraint (Maybe s -> b -> String) ~ (Maybe s -> cc -> String)
comes from marrying up the instantiated type of $gdm_bar with the specified
type of bar. Notice that the type variables from the instance, 's' in this
case, are global to this constraint.

Note that it is vital that we instantiate the `c` in $gdm_bar's type with a new
unification variable for each iteration of simplifyDeriv. If we re-use the same
unification variable across multiple iterations, then bad things can happen,
such as Trac #14933.
841

842
Similarly for 'baz', givng the constraint C2
843

844 845 846
   forall. Eq (Maybe s) => (Ord a, Show a,
                            Maybe s -> Maybe s -> Bool
                                ~ Maybe s -> Maybe s -> Bool)
847

848
In this case baz has no local quantification, so the implication
849
constraint has no local skolems and there are no unification
850
variables.
851

852 853 854
[STEP DAC SOLVE]
We can combine these two implication constraints into a single
constraint (C1, C2), and simplify, unifying cc:=b, to get:
855

856 857 858
   forall b. Ix b => Show a
   /\
   forall. Eq (Maybe s) => (Ord a, Show a)
859

860 861 862 863
[STEP DAC HOIST]
Let's call that (C1', C2').  Now we need to hoist the unsolved
constraints out of the implications to become our candidate for
(CX). That is done by approximateWC, which will return:
864 865 866 867 868 869 870

  (Show a, Ord a, Show a)

Now we can use mkMinimalBySCs to remove superclasses and duplicates, giving

  (Show a, Ord a)

871 872 873 874 875 876 877 878 879 880 881
And that's what GHC uses for CX.

[STEP DAC RESIDUAL]
In this case we have solved all the leftover constraints, but what if
we don't?  Simple!  We just form the final residual constraint

   forall s. CX => (C1',C2')

and simplify that. In simple cases it'll succeed easily, because CX
literally contains the constraints in C1', C2', but if there is anything
more complicated it will be reported in a civilised way.
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

Note [Error reporting for deriving clauses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A suprisingly tricky aspect of deriving to get right is reporting sensible
error messages. In particular, if simplifyDeriv reaches a constraint that it
cannot solve, which might include:

1. Insoluble constraints
2. "Exotic" constraints (See Note [Exotic derived instance contexts])

Then we report an error immediately in simplifyDeriv.

Another possible choice is to punt and let another part of the typechecker
(e.g., simplifyInstanceContexts) catch the errors. But this tends to lead
to worse error messages, so we do it directly in simplifyDeriv.

simplifyDeriv checks for errors in a clever way. If the deriving machinery
infers the context (Foo a)--that is, if this instance is to be generated:

  instance Foo a => ...

Then we form an implication of the form:

  forall a. Foo a => <residual_wanted_constraints>

And pass it to the simplifier. If the context (Foo a) is enough to discharge
all the constraints in <residual_wanted_constraints>, then everything is
hunky-dory. But if <residual_wanted_constraints> contains, say, an insoluble
constraint, then (Foo a) won't be able to solve it, causing GHC to error.

Ryan Scott's avatar
Ryan Scott committed
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context.  It's a
bit unclear what rules we should apply for this; the Haskell report is
silent.  Obviously, constraints like (Eq a) are fine, but what about
        data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint.  That's probably fine too.

One could go further: consider
        data T a b c = MkT (Foo a b c) deriving( Eq )
        instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)

Notice that this instance (just) satisfies the Paterson termination
conditions.  Then we *could* derive an instance decl like this:

        instance (C Int a, Eq b, Eq c) => Eq (T a b c)
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.

However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.

So for now we simply require that the derived instance context
should have only type-variable constraints.

Here is another example:
        data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
        instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!

NB: if you want to lift this condition, make sure you still meet the
termination conditions!  If not, the deriving mechanism generates
larger and larger constraints.  Example:
  data Succ a = S a
  data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show

Note the lack of a Show instance for Succ.  First we'll generate
  instance (Show (Succ a), Show a) => Show (Seq a)
and then
  instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on.  Instead we want to complain of no instance for (Show (Succ a)).

The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.
-}