TcDerivInfer.hs 38.4 KB
Newer Older
Ryan Scott's avatar
Ryan Scott committed
1
2
3
4
5
6
7
8
9
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


Functions for inferring (and simplifying) the context for derived instances.
-}

{-# LANGUAGE CPP #-}
10
{-# LANGUAGE MultiWayIf #-}
Ryan Scott's avatar
Ryan Scott committed
11
12
13
14
15

module TcDerivInfer (inferConstraints, simplifyInstanceContexts) where

#include "HsVersions.h"

16
17
import GhcPrelude

Ryan Scott's avatar
Ryan Scott committed
18
import Bag
19
import BasicTypes
Ryan Scott's avatar
Ryan Scott committed
20
21
import Class
import DataCon
22
-- import DynFlags
Ryan Scott's avatar
Ryan Scott committed
23
24
25
26
27
28
import ErrUtils
import Inst
import Outputable
import PrelNames
import TcDerivUtils
import TcEnv
29
-- import TcErrors (reportAllUnsolved)
Ryan Scott's avatar
Ryan Scott committed
30
31
32
33
34
35
36
37
38
39
import TcGenFunctor
import TcGenGenerics
import TcMType
import TcRnMonad
import TcType
import TyCon
import Type
import TcSimplify
import TcValidity (validDerivPred)
import TcUnify (buildImplicationFor)
40
import Unify (tcUnifyTy)
Ryan Scott's avatar
Ryan Scott committed
41
import Util
42
43
import Var
import VarEnv
Ryan Scott's avatar
Ryan Scott committed
44
45
46
import VarSet

import Control.Monad
47
48
import Control.Monad.Trans.Class  (lift)
import Control.Monad.Trans.Reader (ask)
Ryan Scott's avatar
Ryan Scott committed
49
50
51
52
53
import Data.List
import Data.Maybe

----------------------

54
55
inferConstraints :: DerivSpecMechanism
                 -> DerivM ([ThetaOrigin], [TyVar], [TcType])
Ryan Scott's avatar
Ryan Scott committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
-- inferConstraints figures out the constraints needed for the
-- instance declaration generated by a 'deriving' clause on a
-- data type declaration. It also returns the new in-scope type
-- variables and instance types, in case they were changed due to
-- the presence of functor-like constraints.
-- See Note [Inferring the instance context]

-- e.g. inferConstraints
--        C Int (T [a])    -- Class and inst_tys
--        :RTList a        -- Rep tycon and its arg tys
-- where T [a] ~R :RTList a
--
-- Generate a sufficiently large set of constraints that typechecking the
-- generated method definitions should succeed.   This set will be simplified
-- before being used in the instance declaration
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
inferConstraints mechanism
  = do { DerivEnv { denv_tc          = tc
                  , denv_tc_args     = tc_args
                  , denv_cls         = main_cls
                  , denv_cls_tys     = cls_tys } <- ask
       ; let is_anyclass = isDerivSpecAnyClass mechanism
             infer_constraints
               | is_anyclass = inferConstraintsDAC inst_tys
               | otherwise   = inferConstraintsDataConArgs inst_ty inst_tys

             inst_ty  = mkTyConApp tc tc_args
             inst_tys = cls_tys ++ [inst_ty]

             -- Constraints arising from superclasses
             -- See Note [Superclasses of derived instance]
             cls_tvs  = classTyVars main_cls
             sc_constraints = ASSERT2( equalLength cls_tvs inst_tys
                                     , ppr main_cls <+> ppr inst_tys )
                              [ mkThetaOrigin DerivOrigin TypeLevel [] [] $
                                substTheta cls_subst (classSCTheta main_cls) ]
             cls_subst = ASSERT( equalLength cls_tvs inst_tys )
                         zipTvSubst cls_tvs inst_tys

       ; (inferred_constraints, tvs', inst_tys') <- infer_constraints
       ; lift $ traceTc "inferConstraints" $ vcat
96
97
98
99
100
101
102
103
104
              [ ppr main_cls <+> ppr inst_tys'
              , ppr inferred_constraints
              ]
       ; return ( sc_constraints ++ inferred_constraints
                , tvs', inst_tys' ) }

-- | Like 'inferConstraints', but used only in the case of deriving strategies
-- where the constraints are inferred by inspecting the fields of each data
-- constructor (i.e., stock- and newtype-deriving).
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
inferConstraintsDataConArgs :: TcType -> [TcType]
                            -> DerivM ([ThetaOrigin], [TyVar], [TcType])
inferConstraintsDataConArgs inst_ty inst_tys
  = do DerivEnv { denv_tvs         = tvs
                , denv_rep_tc      = rep_tc
                , denv_rep_tc_args = rep_tc_args
                , denv_cls         = main_cls
                , denv_cls_tys     = cls_tys } <- ask

       let tc_binders = tyConBinders rep_tc
           choose_level bndr
             | isNamedTyConBinder bndr = KindLevel
             | otherwise               = TypeLevel
           t_or_ks = map choose_level tc_binders ++ repeat TypeLevel
              -- want to report *kind* errors when possible

              -- Constraints arising from the arguments of each constructor
           con_arg_constraints
             :: (CtOrigin -> TypeOrKind
                          -> Type
                          -> [([PredOrigin], Maybe TCvSubst)])
             -> ([ThetaOrigin], [TyVar], [TcType])
           con_arg_constraints get_arg_constraints
             = let (predss, mbSubsts) = unzip
                     [ preds_and_mbSubst
                     | data_con <- tyConDataCons rep_tc
                     , (arg_n, arg_t_or_k, arg_ty)
                         <- zip3 [1..] t_or_ks $
                            dataConInstOrigArgTys data_con all_rep_tc_args
                       -- No constraints for unlifted types
                       -- See Note [Deriving and unboxed types]
                     , not (isUnliftedType arg_ty)
                     , let orig = DerivOriginDC data_con arg_n
                     , preds_and_mbSubst
                         <- get_arg_constraints orig arg_t_or_k arg_ty
                     ]
                   preds = concat predss
                   -- If the constraints require a subtype to be of kind
                   -- (* -> *) (which is the case for functor-like
                   -- constraints), then we explicitly unify the subtype's
                   -- kinds with (* -> *).
                   -- See Note [Inferring the instance context]
                   subst        = foldl' composeTCvSubst
                                         emptyTCvSubst (catMaybes mbSubsts)
                   unmapped_tvs = filter (\v -> v `notElemTCvSubst` subst
                                             && not (v `isInScope` subst)) tvs
                   (subst', _)  = mapAccumL substTyVarBndr subst unmapped_tvs
                   preds'       = map (substPredOrigin subst') preds
                   inst_tys'    = substTys subst' inst_tys
                   tvs'         = tyCoVarsOfTypesWellScoped inst_tys'
               in ([mkThetaOriginFromPreds preds'], tvs', inst_tys')

           is_generic  = main_cls `hasKey` genClassKey
           is_generic1 = main_cls `hasKey` gen1ClassKey
           -- is_functor_like: see Note [Inferring the instance context]
           is_functor_like = typeKind inst_ty `tcEqKind` typeToTypeKind
                          || is_generic1

           get_gen1_constraints :: Class -> CtOrigin -> TypeOrKind -> Type
164
                                -> [([PredOrigin], Maybe TCvSubst)]
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
           get_gen1_constraints functor_cls orig t_or_k ty
              = mk_functor_like_constraints orig t_or_k functor_cls $
                get_gen1_constrained_tys last_tv ty

           get_std_constrained_tys :: CtOrigin -> TypeOrKind -> Type
                                   -> [([PredOrigin], Maybe TCvSubst)]
           get_std_constrained_tys orig t_or_k ty
               | is_functor_like
               = mk_functor_like_constraints orig t_or_k main_cls $
                 deepSubtypesContaining last_tv ty
               | otherwise
               = [( [mk_cls_pred orig t_or_k main_cls ty]
                  , Nothing )]

           mk_functor_like_constraints :: CtOrigin -> TypeOrKind
                                       -> Class -> [Type]
                                       -> [([PredOrigin], Maybe TCvSubst)]
           -- 'cls' is usually main_cls (Functor or Traversable etc), but if
           -- main_cls = Generic1, then 'cls' can be Functor; see
           -- get_gen1_constraints
           --
           -- For each type, generate two constraints,
           -- [cls ty, kind(ty) ~ (*->*)], and a kind substitution that results
           -- from unifying  kind(ty) with * -> *. If the unification is
           -- successful, it will ensure that the resulting instance is well
           -- kinded. If not, the second constraint will result in an error
           -- message which points out the kind mismatch.
           -- See Note [Inferring the instance context]
           mk_functor_like_constraints orig t_or_k cls
              = map $ \ty -> let ki = typeKind ty in
                             ( [ mk_cls_pred orig t_or_k cls ty
                               , mkPredOrigin orig KindLevel
                                   (mkPrimEqPred ki typeToTypeKind) ]
                             , tcUnifyTy ki typeToTypeKind
                             )

           rep_tc_tvs      = tyConTyVars rep_tc
           last_tv         = last rep_tc_tvs
           -- When we first gather up the constraints to solve, most of them
           -- contain rep_tc_tvs, i.e., the type variables from the derived
           -- datatype's type constructor. We don't want these type variables
           -- to appear in the final instance declaration, so we must
           -- substitute each type variable with its counterpart in the derived
           -- instance. rep_tc_args lists each of these counterpart types in
           -- the same order as the type variables.
           all_rep_tc_args
             = rep_tc_args ++ map mkTyVarTy
                                  (drop (length rep_tc_args) rep_tc_tvs)

               -- Stupid constraints
           stupid_constraints
             = [ mkThetaOrigin DerivOrigin TypeLevel [] [] $
                 substTheta tc_subst (tyConStupidTheta rep_tc) ]
           tc_subst = -- See the comment with all_rep_tc_args for an
                      -- explanation of this assertion
                      ASSERT( equalLength rep_tc_tvs all_rep_tc_args )
                      zipTvSubst rep_tc_tvs all_rep_tc_args

           -- Extra Data constraints
           -- The Data class (only) requires that for
           --    instance (...) => Data (T t1 t2)
           -- IF   t1:*, t2:*
           -- THEN (Data t1, Data t2) are among the (...) constraints
           -- Reason: when the IF holds, we generate a method
           --             dataCast2 f = gcast2 f
           --         and we need the Data constraints to typecheck the method
           extra_constraints = [mkThetaOriginFromPreds constrs]
             where
               constrs
                 | main_cls `hasKey` dataClassKey
                 , all (isLiftedTypeKind . typeKind) rep_tc_args
                 = [ mk_cls_pred DerivOrigin t_or_k main_cls ty
                   | (t_or_k, ty) <- zip t_or_ks rep_tc_args]
                 | otherwise
                 = []

           mk_cls_pred orig t_or_k cls ty
                -- Don't forget to apply to cls_tys' too
              = mkPredOrigin orig t_or_k (mkClassPred cls (cls_tys' ++ [ty]))
           cls_tys' | is_generic1 = []
                      -- In the awkward Generic1 case, cls_tys' should be
                      -- empty, since we are applying the class Functor.

                    | otherwise   = cls_tys

       if    -- Generic constraints are easy
          |  is_generic
252
           -> return ([], tvs, inst_tys)
253
254
255
256

             -- Generic1 needs Functor
             -- See Note [Getting base classes]
          |  is_generic1
257
258
259
260
261
262
           -> ASSERT( rep_tc_tvs `lengthExceeds` 0 )
              -- Generic1 has a single kind variable
              ASSERT( cls_tys `lengthIs` 1 )
              do { functorClass <- lift $ tcLookupClass functorClassName
                 ; pure $ con_arg_constraints
                        $ get_gen1_constraints functorClass }
263
264
265

             -- The others are a bit more complicated
          |  otherwise
266
267
268
269
270
271
272
273
274
275
276
277
278
279
           -> -- See the comment with all_rep_tc_args for an explanation of
              -- this assertion
              ASSERT2( equalLength rep_tc_tvs all_rep_tc_args
                     , ppr main_cls <+> ppr rep_tc
                       $$ ppr rep_tc_tvs $$ ppr all_rep_tc_args )
                do { let (arg_constraints, tvs', inst_tys')
                           = con_arg_constraints get_std_constrained_tys
                   ; lift $ traceTc "inferConstraintsDataConArgs" $ vcat
                          [ ppr main_cls <+> ppr inst_tys'
                          , ppr arg_constraints
                          ]
                   ; return ( stupid_constraints ++ extra_constraints
                                                 ++ arg_constraints
                            , tvs', inst_tys') }
Ryan Scott's avatar
Ryan Scott committed
280
281
282
283

typeToTypeKind :: Kind
typeToTypeKind = liftedTypeKind `mkFunTy` liftedTypeKind

284
285
286
287
288
289
290
-- | Like 'inferConstraints', but used only in the case of @DeriveAnyClass@,
-- which gathers its constraints based on the type signatures of the class's
-- methods instead of the types of the data constructor's field.
--
-- See Note [Gathering and simplifying constraints for DeriveAnyClass]
-- for an explanation of how these constraints are used to determine the
-- derived instance context.
291
292
293
294
295
296
inferConstraintsDAC :: [TcType] -> DerivM ([ThetaOrigin], [TyVar], [TcType])
inferConstraintsDAC inst_tys
  = do { DerivEnv { denv_tvs = tvs
                  , denv_cls = cls } <- ask

       ; let gen_dms = [ (sel_id, dm_ty)
297
                       | (sel_id, Just (_, GenericDM dm_ty)) <- classOpItems cls ]
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
             cls_tvs = classTyVars cls
             empty_subst = mkEmptyTCvSubst (mkInScopeSet (mkVarSet tvs))

             do_one_meth :: (Id, Type) -> TcM ThetaOrigin
               -- (Id,Type) are the selector Id and the generic default method type
               -- NB: the latter is /not/ quantified over the class variables
               -- See Note [Gathering and simplifying constraints for DeriveAnyClass]
             do_one_meth (sel_id, gen_dm_ty)
               = do { let (sel_tvs, _cls_pred, meth_ty)
                                   = tcSplitMethodTy (varType sel_id)
                          meth_ty' = substTyWith sel_tvs inst_tys meth_ty
                          (meth_tvs, meth_theta, meth_tau)
                                   = tcSplitNestedSigmaTys meth_ty'

                          gen_dm_ty' = substTyWith cls_tvs inst_tys gen_dm_ty
                          (dm_tvs, dm_theta, dm_tau)
                                     = tcSplitNestedSigmaTys gen_dm_ty'

                    ; (subst, _meta_tvs) <- pushTcLevelM_ $
                                            newMetaTyVarsX empty_subst dm_tvs
                      -- Yuk: the pushTcLevel is to match the one in mk_wanteds
                      --      simplifyDeriv.  If we don't, the unification
                      --      variables will bogusly be untouchable.

                    ; let dm_theta' = substTheta subst dm_theta
                          tau_eq = mkPrimEqPred meth_tau (substTy subst dm_tau)
                    ; return (mkThetaOrigin DerivOrigin TypeLevel
                                meth_tvs meth_theta (tau_eq:dm_theta')) }

       ; theta_origins <- lift $ pushTcLevelM_ (mapM do_one_meth gen_dms)
329
330
331
332
            -- Yuk: the pushTcLevel is to match the one wrapping the call
            --      to mk_wanteds in simplifyDeriv.  If we omit this, the
            --      unification variables will wrongly be untouchable.

333
       ; return (theta_origins, tvs, inst_tys) }
334
335

{- Note [Inferring the instance context]
Ryan Scott's avatar
Ryan Scott committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are two sorts of 'deriving':

  * InferTheta: the deriving clause for a data type
      data T a = T1 a deriving( Eq )
    Here we must infer an instance context,
    and generate instance declaration
      instance Eq a => Eq (T a) where ...

  * CheckTheta: standalone deriving
      deriving instance Eq a => Eq (T a)
    Here we only need to fill in the bindings;
    the instance context is user-supplied

For a deriving clause (InferTheta) we must figure out the
351
instance context (inferConstraintsDataConArgs). Suppose we are inferring
Ryan Scott's avatar
Ryan Scott committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
the instance context for
    C t1 .. tn (T s1 .. sm)
There are two cases

  * (T s1 .. sm) :: *         (the normal case)
    Then we behave like Eq and guess (C t1 .. tn t)
    for each data constructor arg of type t.  More
    details below.

  * (T s1 .. sm) :: * -> *    (the functor-like case)
    Then we behave like Functor.

In both cases we produce a bunch of un-simplified constraints
and them simplify them in simplifyInstanceContexts; see
Note [Simplifying the instance context].

In the functor-like case, we may need to unify some kind variables with * in
order for the generated instance to be well-kinded. An example from
Trac #10524:

  newtype Compose (f :: k2 -> *) (g :: k1 -> k2) (a :: k1)
    = Compose (f (g a)) deriving Functor

Earlier in the deriving pipeline, GHC unifies the kind of Compose f g
(k1 -> *) with the kind of Functor's argument (* -> *), so k1 := *. But this
alone isn't enough, since k2 wasn't unified with *:

  instance (Functor (f :: k2 -> *), Functor (g :: * -> k2)) =>
    Functor (Compose f g) where ...

The two Functor constraints are ill-kinded. To ensure this doesn't happen, we:

  1. Collect all of a datatype's subtypes which require functor-like
     constraints.
  2. For each subtype, create a substitution by unifying the subtype's kind
     with (* -> *).
  3. Compose all the substitutions into one, then apply that substitution to
     all of the in-scope type variables and the instance types.

Note [Getting base classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functor and Typeable are defined in package 'base', and that is not available
when compiling 'ghc-prim'.  So we must be careful that 'deriving' for stuff in
ghc-prim does not use Functor or Typeable implicitly via these lookups.

Note [Deriving and unboxed types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have some special hacks to support things like
   data T = MkT Int# deriving ( Show )

Specifically, we use TcGenDeriv.box to box the Int# into an Int
(which we know how to show), and append a '#'. Parenthesis are not required
for unboxed values (`MkT -3#` is a valid expression).

Note [Superclasses of derived instance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general, a derived instance decl needs the superclasses of the derived
class too.  So if we have
        data T a = ...deriving( Ord )
then the initial context for Ord (T a) should include Eq (T a).  Often this is
redundant; we'll also generate an Ord constraint for each constructor argument,
and that will probably generate enough constraints to make the Eq (T a) constraint
be satisfied too.  But not always; consider:

 data S a = S
 instance Eq (S a)
 instance Ord (S a)

 data T a = MkT (S a) deriving( Ord )
 instance Num a => Eq (T a)

The derived instance for (Ord (T a)) must have a (Num a) constraint!
Similarly consider:
        data T a = MkT deriving( Data )
Here there *is* no argument field, but we must nevertheless generate
a context for the Data instances:
        instance Typeable a => Data (T a) where ...

430

Ryan Scott's avatar
Ryan Scott committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
************************************************************************
*                                                                      *
         Finding the fixed point of deriving equations
*                                                                      *
************************************************************************

Note [Simplifying the instance context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

        data T a b = C1 (Foo a) (Bar b)
                   | C2 Int (T b a)
                   | C3 (T a a)
                   deriving (Eq)

We want to come up with an instance declaration of the form

        instance (Ping a, Pong b, ...) => Eq (T a b) where
                x == y = ...

It is pretty easy, albeit tedious, to fill in the code "...".  The
trick is to figure out what the context for the instance decl is,
namely Ping, Pong and friends.

Let's call the context reqd for the T instance of class C at types
(a,b, ...)  C (T a b).  Thus:

        Eq (T a b) = (Ping a, Pong b, ...)

Now we can get a (recursive) equation from the data decl.  This part
461
is done by inferConstraintsDataConArgs.
Ryan Scott's avatar
Ryan Scott committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3


Foo and Bar may have explicit instances for Eq, in which case we can
just substitute for them.  Alternatively, either or both may have
their Eq instances given by deriving clauses, in which case they
form part of the system of equations.

Now all we need do is simplify and solve the equations, iterating to
find the least fixpoint.  This is done by simplifyInstanceConstraints.
Notice that the order of the arguments can
switch around, as here in the recursive calls to T.

Let's suppose Eq (Foo a) = Eq a, and Eq (Bar b) = Ping b.

We start with:

        Eq (T a b) = {}         -- The empty set

Next iteration:
        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3

        After simplification:
                   = Eq a u Ping b u {} u {} u {}
                   = Eq a u Ping b

Next iteration:

        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3

        After simplification:
                   = Eq a u Ping b
                   u (Eq b u Ping a)
                   u (Eq a u Ping a)

                   = Eq a u Ping b u Eq b u Ping a

The next iteration gives the same result, so this is the fixpoint.  We
need to make a canonical form of the RHS to ensure convergence.  We do
this by simplifying the RHS to a form in which

        - the classes constrain only tyvars
        - the list is sorted by tyvar (major key) and then class (minor key)
        - no duplicates, of course

Note [Deterministic simplifyInstanceContexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Canonicalisation uses nonDetCmpType which is nondeterministic. Sorting
with nonDetCmpType puts the returned lists in a nondeterministic order.
If we were to return them, we'd get class constraints in
nondeterministic order.

Consider:

  data ADT a b = Z a b deriving Eq

The generated code could be either:

  instance (Eq a, Eq b) => Eq (Z a b) where

Or:

  instance (Eq b, Eq a) => Eq (Z a b) where

To prevent the order from being nondeterministic we only
canonicalize when comparing and return them in the same order as
simplifyDeriv returned them.
See also Note [nonDetCmpType nondeterminism]
-}


540
541
simplifyInstanceContexts :: [DerivSpec [ThetaOrigin]]
                         -> TcM [DerivSpec ThetaType]
Ryan Scott's avatar
Ryan Scott committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
-- Used only for deriving clauses (InferTheta)
-- not for standalone deriving
-- See Note [Simplifying the instance context]

simplifyInstanceContexts [] = return []

simplifyInstanceContexts infer_specs
  = do  { traceTc "simplifyInstanceContexts" $ vcat (map pprDerivSpec infer_specs)
        ; iterate_deriv 1 initial_solutions }
  where
    ------------------------------------------------------------------
        -- The initial solutions for the equations claim that each
        -- instance has an empty context; this solution is certainly
        -- in canonical form.
    initial_solutions :: [ThetaType]
    initial_solutions = [ [] | _ <- infer_specs ]

    ------------------------------------------------------------------
        -- iterate_deriv calculates the next batch of solutions,
        -- compares it with the current one; finishes if they are the
        -- same, otherwise recurses with the new solutions.
        -- It fails if any iteration fails
    iterate_deriv :: Int -> [ThetaType] -> TcM [DerivSpec ThetaType]
    iterate_deriv n current_solns
      | n > 20  -- Looks as if we are in an infinite loop
                -- This can happen if we have -XUndecidableInstances
                -- (See TcSimplify.tcSimplifyDeriv.)
      = pprPanic "solveDerivEqns: probable loop"
                 (vcat (map pprDerivSpec infer_specs) $$ ppr current_solns)
      | otherwise
      = do {      -- Extend the inst info from the explicit instance decls
                  -- with the current set of solutions, and simplify each RHS
             inst_specs <- zipWithM newDerivClsInst current_solns infer_specs
           ; new_solns <- checkNoErrs $
                          extendLocalInstEnv inst_specs $
                          mapM gen_soln infer_specs

           ; if (current_solns `eqSolution` new_solns) then
                return [ spec { ds_theta = soln }
                       | (spec, soln) <- zip infer_specs current_solns ]
             else
                iterate_deriv (n+1) new_solns }

    eqSolution a b = eqListBy (eqListBy eqType) (canSolution a) (canSolution b)
       -- Canonicalise for comparison
       -- See Note [Deterministic simplifyInstanceContexts]
    canSolution = map (sortBy nonDetCmpType)
    ------------------------------------------------------------------
590
    gen_soln :: DerivSpec [ThetaOrigin] -> TcM ThetaType
Ryan Scott's avatar
Ryan Scott committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    gen_soln (DS { ds_loc = loc, ds_tvs = tyvars
                 , ds_cls = clas, ds_tys = inst_tys, ds_theta = deriv_rhs })
      = setSrcSpan loc  $
        addErrCtxt (derivInstCtxt the_pred) $
        do { theta <- simplifyDeriv the_pred tyvars deriv_rhs
                -- checkValidInstance tyvars theta clas inst_tys
                -- Not necessary; see Note [Exotic derived instance contexts]

           ; traceTc "TcDeriv" (ppr deriv_rhs $$ ppr theta)
                -- Claim: the result instance declaration is guaranteed valid
                -- Hence no need to call:
                --   checkValidInstance tyvars theta clas inst_tys
           ; return theta }
      where
        the_pred = mkClassPred clas inst_tys

derivInstCtxt :: PredType -> MsgDoc
derivInstCtxt pred
  = text "When deriving the instance for" <+> parens (ppr pred)

{-
***********************************************************************************
*                                                                                 *
*            Simplify derived constraints
*                                                                                 *
***********************************************************************************
-}

-- | Given @instance (wanted) => C inst_ty@, simplify 'wanted' as much
-- as possible. Fail if not possible.
simplifyDeriv :: PredType -- ^ @C inst_ty@, head of the instance we are
                          -- deriving.  Only used for SkolemInfo.
              -> [TyVar]  -- ^ The tyvars bound by @inst_ty@.
624
              -> [ThetaOrigin] -- ^ Given and wanted constraints
Ryan Scott's avatar
Ryan Scott committed
625
626
              -> TcM ThetaType -- ^ Needed constraints (after simplification),
                               -- i.e. @['PredType']@.
627
simplifyDeriv pred tvs thetas
Ryan Scott's avatar
Ryan Scott committed
628
629
630
631
632
633
634
635
636
637
  = do { (skol_subst, tvs_skols) <- tcInstSkolTyVars tvs -- Skolemize
                -- The constraint solving machinery
                -- expects *TcTyVars* not TyVars.
                -- We use *non-overlappable* (vanilla) skolems
                -- See Note [Overlap and deriving]

       ; let skol_set  = mkVarSet tvs_skols
             skol_info = DerivSkol pred
             doc = text "deriving" <+> parens (ppr pred)

638
639
640
641
642
643
644
645
646
647
             mk_given_ev :: PredType -> TcM EvVar
             mk_given_ev given =
               let given_pred = substTy skol_subst given
               in newEvVar given_pred

             mk_wanted_ct :: PredOrigin -> TcM CtEvidence
             mk_wanted_ct (PredOrigin wanted o t_or_k)
               = newWanted o (Just t_or_k) (substTyUnchecked skol_subst wanted)

             -- Create the implications we need to solve. For stock and newtype
648
             -- deriving, these implication constraints will be simple class
649
             -- constraints like (C a, Ord b).
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
             -- But with DeriveAnyClass, we make an implication constraint.
             -- See Note [Gathering and simplifying constraints for DeriveAnyClass]
             mk_wanteds :: ThetaOrigin -> TcM WantedConstraints
             mk_wanteds (ThetaOrigin { to_tvs            = local_skols
                                     , to_givens         = givens
                                     , to_wanted_origins = wanteds })
               | null local_skols, null givens
               = do { wanted_cts <- mapM mk_wanted_ct wanteds
                    ; return (mkSimpleWC wanted_cts) }
               | otherwise
               = do { given_evs <- mapM mk_given_ev givens
                    ; (wanted_cts, tclvl) <- pushTcLevelM $
                                             mapM mk_wanted_ct wanteds
                    ; (implic, _) <- buildImplicationFor tclvl skol_info local_skols
                                                   given_evs (mkSimpleWC wanted_cts)
                    ; pure (mkImplicWC implic) }

       -- See [STEP DAC BUILD]
668
669
       -- Generate the implication constraints constraints to solve with the
       -- skolemized variables
670
       ; (wanteds, tclvl) <- pushTcLevelM $ mapM mk_wanteds thetas
Ryan Scott's avatar
Ryan Scott committed
671
672

       ; traceTc "simplifyDeriv inputs" $
673
674
675
         vcat [ pprTyVars tvs $$ ppr thetas $$ ppr wanteds, doc ]

       -- See [STEP DAC SOLVE]
Ryan Scott's avatar
Ryan Scott committed
676
       -- Simplify the constraints
677
       ; solved_implics <- runTcSDeriveds $ solveWantedsAndDrop
678
                                          $ unionsWC wanteds
679
680
       -- It's not yet zonked!  Obviously zonk it before peering at it
       ; solved_implics <- zonkWC solved_implics
Ryan Scott's avatar
Ryan Scott committed
681

682
       -- See [STEP DAC HOIST]
Ryan Scott's avatar
Ryan Scott committed
683
684
685
686
       -- Split the resulting constraints into bad and good constraints,
       -- building an @unsolved :: WantedConstraints@ representing all
       -- the constraints we can't just shunt to the predicates.
       -- See Note [Exotic derived instance contexts]
687
       ; let residual_simple = approximateWC True solved_implics
Ryan Scott's avatar
Ryan Scott committed
688
689
690
691
692
693
             (bad, good) = partitionBagWith get_good residual_simple

             get_good :: Ct -> Either Ct PredType
             get_good ct | validDerivPred skol_set p
                         , isWantedCt ct
                         = Right p
694
                          -- TODO: This is wrong
Ryan Scott's avatar
Ryan Scott committed
695
696
697
698
699
700
701
702
703
704
705
706
                          -- NB re 'isWantedCt': residual_wanted may contain
                          -- unsolved CtDerived and we stick them into the
                          -- bad set so that reportUnsolved may decide what
                          -- to do with them
                         | otherwise
                         = Left ct
                           where p = ctPred ct

       ; traceTc "simplifyDeriv outputs" $
         vcat [ ppr tvs_skols, ppr residual_simple, ppr good, ppr bad ]

       -- Return the good unsolved constraints (unskolemizing on the way out.)
707
708
709
710
711
712
713
       ; let min_theta = mkMinimalBySCs (bagToList good)
             -- An important property of mkMinimalBySCs (used above) is that in
             -- addition to removing constraints that are made redundant by
             -- superclass relationships, it also removes _duplicate_
             -- constraints.
             -- See Note [Gathering and simplifying constraints for
             --           DeriveAnyClass]
Ryan Scott's avatar
Ryan Scott committed
714
715
             subst_skol = zipTvSubst tvs_skols $ mkTyVarTys tvs
                          -- The reverse substitution (sigh)
716

717
       -- See [STEP DAC RESIDUAL]
718
719
720
721
722
723
724
       ; min_theta_vars <- mapM newEvVar min_theta
       ; (leftover_implic, _) <- buildImplicationFor tclvl skol_info tvs_skols
                                   min_theta_vars solved_implics
       -- This call to simplifyTop is purely for error reporting
       -- See Note [Error reporting for deriving clauses]
       -- See also Note [Exotic derived instance contexts], which are caught
       -- in this line of code.
725
       ; simplifyTopImplic leftover_implic
726

Ryan Scott's avatar
Ryan Scott committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
       ; return (substTheta subst_skol min_theta) }

{-
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
  data Show a => Show [a] where ..
  data Show [Char] where ...

Now a data type with deriving:
  data T a = MkT [a] deriving( Show )

We want to get the derived instance
  instance Show [a] => Show (T a) where...
and NOT
  instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing

It's very like the situation when we're inferring the type
of a function
   f x = show [x]
and we want to infer
   f :: Show [a] => a -> String

BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
             the context for the derived instance.
             Hence tcInstSkolTyVars not tcInstSuperSkolTyVars

755
756
757
758
759
760
761
762
763
Note [Gathering and simplifying constraints for DeriveAnyClass]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DeriveAnyClass works quite differently from stock and newtype deriving in
the way it gathers and simplifies constraints to be used in a derived
instance's context. Stock and newtype deriving gather constraints by looking
at the data constructors of the data type for which we are deriving an
instance. But DeriveAnyClass doesn't need to know about a data type's
definition at all!

764
To see why, consider this example of DeriveAnyClass:
765
766

  class Foo a where
767
768
769
    bar :: forall b. Ix b => a -> b -> String
    default bar :: (Show a, Ix c) => a -> c -> String
    bar x y = show x ++ show (range (y,y))
770
771
772
773
774

    baz :: Eq a => a -> a -> Bool
    default baz :: (Ord a, Show a) => a -> a -> Bool
    baz x y = compare x y == EQ

775
776
Because 'bar' and 'baz' have default signatures, this generates a top-level
definition for these generic default methods
777

778
779
780
781
  $gdm_bar :: forall a. Foo a
           => forall c. (Show a, Ix c)
           => a -> c -> String
  $gdm_bar x y = show x ++ show (range (y,y))
782

783
784
(and similarly for baz).  Now consider a 'deriving' clause
  data Maybe s = ... deriving Foo
785

786
787
This derives an instance of the form:
  instance (CX) => Foo (Maybe s) where
788
789
790
    bar = $gdm_bar
    baz = $gdm_baz

791
792
793
794
795
Now it is GHC's job to fill in a suitable instance context (CX).  If
GHC were typechecking the binding
   bar = $gdm bar
it would
   * skolemise the expected type of bar
Gabor Greif's avatar
Gabor Greif committed
796
   * instantiate the type of $dm_bar with meta-type variables
797
798
799
800
   * build an implication constraint

[STEP DAC BUILD]
So that's what we do.  We build the constraint (call it C1)
801

802
   forall b. Ix b => (Show (Maybe s), Ix cc,
803
804
                      Maybe s -> b -> String
                          ~ Maybe s -> cc -> String)
805

806
807
808
809
810
The 'cc' is a unification variable that comes from instantiating
$dm_bar's type.  The equality constraint comes from marrying up
the instantiated type of $dm_bar with the specified type of bar.
Notice that the type variables from the instance, 's' in this case,
are global to this constraint.
811

812
Similarly for 'baz', givng the constraint C2
813

814
815
816
   forall. Eq (Maybe s) => (Ord a, Show a,
                            Maybe s -> Maybe s -> Bool
                                ~ Maybe s -> Maybe s -> Bool)
817

818
In this case baz has no local quantification, so the implication
819
constraint has no local skolems and there are no unification
820
variables.
821

822
823
824
[STEP DAC SOLVE]
We can combine these two implication constraints into a single
constraint (C1, C2), and simplify, unifying cc:=b, to get:
825

826
827
828
   forall b. Ix b => Show a
   /\
   forall. Eq (Maybe s) => (Ord a, Show a)
829

830
831
832
833
[STEP DAC HOIST]
Let's call that (C1', C2').  Now we need to hoist the unsolved
constraints out of the implications to become our candidate for
(CX). That is done by approximateWC, which will return:
834
835
836
837
838
839
840

  (Show a, Ord a, Show a)

Now we can use mkMinimalBySCs to remove superclasses and duplicates, giving

  (Show a, Ord a)

841
842
843
844
845
846
847
848
849
850
851
And that's what GHC uses for CX.

[STEP DAC RESIDUAL]
In this case we have solved all the leftover constraints, but what if
we don't?  Simple!  We just form the final residual constraint

   forall s. CX => (C1',C2')

and simplify that. In simple cases it'll succeed easily, because CX
literally contains the constraints in C1', C2', but if there is anything
more complicated it will be reported in a civilised way.
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

Note [Error reporting for deriving clauses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A suprisingly tricky aspect of deriving to get right is reporting sensible
error messages. In particular, if simplifyDeriv reaches a constraint that it
cannot solve, which might include:

1. Insoluble constraints
2. "Exotic" constraints (See Note [Exotic derived instance contexts])

Then we report an error immediately in simplifyDeriv.

Another possible choice is to punt and let another part of the typechecker
(e.g., simplifyInstanceContexts) catch the errors. But this tends to lead
to worse error messages, so we do it directly in simplifyDeriv.

simplifyDeriv checks for errors in a clever way. If the deriving machinery
infers the context (Foo a)--that is, if this instance is to be generated:

  instance Foo a => ...

Then we form an implication of the form:

  forall a. Foo a => <residual_wanted_constraints>

And pass it to the simplifier. If the context (Foo a) is enough to discharge
all the constraints in <residual_wanted_constraints>, then everything is
hunky-dory. But if <residual_wanted_constraints> contains, say, an insoluble
constraint, then (Foo a) won't be able to solve it, causing GHC to error.

Ryan Scott's avatar
Ryan Scott committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context.  It's a
bit unclear what rules we should apply for this; the Haskell report is
silent.  Obviously, constraints like (Eq a) are fine, but what about
        data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint.  That's probably fine too.

One could go further: consider
        data T a b c = MkT (Foo a b c) deriving( Eq )
        instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)

Notice that this instance (just) satisfies the Paterson termination
conditions.  Then we *could* derive an instance decl like this:

        instance (C Int a, Eq b, Eq c) => Eq (T a b c)
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.

However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.

So for now we simply require that the derived instance context
should have only type-variable constraints.

Here is another example:
        data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
        instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!

NB: if you want to lift this condition, make sure you still meet the
termination conditions!  If not, the deriving mechanism generates
larger and larger constraints.  Example:
  data Succ a = S a
  data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show

Note the lack of a Show instance for Succ.  First we'll generate
  instance (Show (Succ a), Show a) => Show (Seq a)
and then
  instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on.  Instead we want to complain of no instance for (Show (Succ a)).

The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.
-}