TcGenDeriv.hs 101 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1
{-
2
    %
Austin Seipp's avatar
Austin Seipp committed
3 4 5
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

6 7

TcGenDeriv: Generating derived instance declarations
8 9 10 11 12

This module is nominally ``subordinate'' to @TcDeriv@, which is the
``official'' interface to deriving-related things.

This is where we do all the grimy bindings' generation.
Austin Seipp's avatar
Austin Seipp committed
13
-}
14

15
{-# LANGUAGE CPP, ScopedTypeVariables #-}
16
{-# LANGUAGE FlexibleContexts #-}
17

18
module TcGenDeriv (
19 20
        BagDerivStuff, DerivStuff(..),

21
        hasBuiltinDeriving,
22 23
        FFoldType(..), functorLikeTraverse,
        deepSubtypesContaining, foldDataConArgs,
24
        mkCoerceClassMethEqn,
25
        gen_Newtype_binds,
26
        genAuxBinds,
Ryan Scott's avatar
Ryan Scott committed
27
        ordOpTbl, boxConTbl, litConTbl,
cactus's avatar
cactus committed
28
        mkRdrFunBind
29
    ) where
30

31
#include "HsVersions.h"
32

33
import HsSyn
34 35 36 37
import RdrName
import BasicTypes
import DataCon
import Name
niteria's avatar
niteria committed
38 39
import Fingerprint
import Encoding
40

41
import DynFlags
42
import PrelInfo
43
import FamInstEnv( FamInst )
44
import MkCore ( eRROR_ID )
45
import PrelNames hiding (error_RDR)
Ryan Scott's avatar
Ryan Scott committed
46 47
import THNames
import Module ( moduleName, moduleNameString
48
              , moduleUnitId, unitIdString )
49
import MkId ( coerceId )
50 51 52 53 54 55
import PrimOp
import SrcLoc
import TyCon
import TcType
import TysPrim
import TysWiredIn
56
import Type
57
import Class
58
import TyCoRep
59
import VarSet
60
import VarEnv
61
import State
62
import Util
63
import Var
64
import Outputable
65
import Lexeme
66
import FastString
67
import Pair
68
import Bag
69
import TcEnv (InstInfo)
70
import StaticFlags( opt_PprStyle_Debug )
71

72 73
import ListSetOps ( assocMaybe )
import Data.List  ( partition, intersperse )
74

75 76
type BagDerivStuff = Bag DerivStuff

77
data AuxBindSpec
78 79 80
  = DerivCon2Tag TyCon  -- The con2Tag for given TyCon
  | DerivTag2Con TyCon  -- ...ditto tag2Con
  | DerivMaxTag  TyCon  -- ...and maxTag
81
  deriving( Eq )
82 83 84
  -- All these generate ZERO-BASED tag operations
  -- I.e first constructor has tag 0

85 86 87
data DerivStuff     -- Please add this auxiliary stuff
  = DerivAuxBind AuxBindSpec

88
  -- Generics
Simon Peyton Jones's avatar
Simon Peyton Jones committed
89
  | DerivFamInst FamInst               -- New type family instances
90

91
  -- New top-level auxiliary bindings
92
  | DerivHsBind (LHsBind RdrName, LSig RdrName) -- Also used for SYB
dreixel's avatar
dreixel committed
93
  | DerivInst (InstInfo RdrName)                -- New, auxiliary instances
94

Austin Seipp's avatar
Austin Seipp committed
95 96 97
{-
************************************************************************
*                                                                      *
98
                Class deriving diagnostics
Austin Seipp's avatar
Austin Seipp committed
99 100
*                                                                      *
************************************************************************
101

102 103 104 105 106 107 108 109
Only certain blessed classes can be used in a deriving clause. These classes
are listed below in the definition of hasBuiltinDeriving (with the exception
of Generic and Generic1, which are handled separately in TcGenGenerics).

A class might be able to be used in a deriving clause if it -XDeriveAnyClass
is willing to support it. The canDeriveAnyClass function checks if this is
the case.
-}
110

111 112 113 114 115 116 117
hasBuiltinDeriving :: DynFlags
                   -> (Name -> Fixity)
                   -> Class
                   -> Maybe (SrcSpan
                             -> TyCon
                             -> (LHsBinds RdrName, BagDerivStuff))
hasBuiltinDeriving dflags fix_env clas = assocMaybe gen_list (getUnique clas)
118 119 120 121 122 123 124 125 126 127 128 129
  where
    gen_list :: [(Unique, SrcSpan -> TyCon -> (LHsBinds RdrName, BagDerivStuff))]
    gen_list = [ (eqClassKey,          gen_Eq_binds)
               , (ordClassKey,         gen_Ord_binds)
               , (enumClassKey,        gen_Enum_binds)
               , (boundedClassKey,     gen_Bounded_binds)
               , (ixClassKey,          gen_Ix_binds)
               , (showClassKey,        gen_Show_binds fix_env)
               , (readClassKey,        gen_Read_binds fix_env)
               , (dataClassKey,        gen_Data_binds dflags)
               , (functorClassKey,     gen_Functor_binds)
               , (foldableClassKey,    gen_Foldable_binds)
Ryan Scott's avatar
Ryan Scott committed
130 131
               , (traversableClassKey, gen_Traversable_binds)
               , (liftClassKey,        gen_Lift_binds) ]
132

Austin Seipp's avatar
Austin Seipp committed
133 134 135
{-
************************************************************************
*                                                                      *
136
                Eq instances
Austin Seipp's avatar
Austin Seipp committed
137 138
*                                                                      *
************************************************************************
139

140 141 142 143 144 145 146 147 148
Here are the heuristics for the code we generate for @Eq@. Let's
assume we have a data type with some (possibly zero) nullary data
constructors and some ordinary, non-nullary ones (the rest, also
possibly zero of them).  Here's an example, with both \tr{N}ullary and
\tr{O}rdinary data cons.

  data Foo ... = N1 | N2 ... | Nn | O1 a b | O2 Int | O3 Double b b | ...

* For the ordinary constructors (if any), we emit clauses to do The
149 150
  Usual Thing, e.g.,:

151 152 153 154 155 156 157
    (==) (O1 a1 b1)    (O1 a2 b2)    = a1 == a2 && b1 == b2
    (==) (O2 a1)       (O2 a2)       = a1 == a2
    (==) (O3 a1 b1 c1) (O3 a2 b2 c2) = a1 == a2 && b1 == b2 && c1 == c2

  Note: if we're comparing unlifted things, e.g., if 'a1' and
  'a2' are Float#s, then we have to generate
       case (a1 `eqFloat#` a2) of r -> r
158 159
  for that particular test.

160 161
* If there are a lot of (more than en) nullary constructors, we emit a
  catch-all clause of the form:
162

163 164 165 166
      (==) a b  = case (con2tag_Foo a) of { a# ->
                  case (con2tag_Foo b) of { b# ->
                  case (a# ==# b#)     of {
                    r -> r }}}
167

168 169 170 171 172
  If con2tag gets inlined this leads to join point stuff, so
  it's better to use regular pattern matching if there aren't too
  many nullary constructors.  "Ten" is arbitrary, of course

* If there aren't any nullary constructors, we emit a simpler
173 174
  catch-all:

175
     (==) a b  = False
176

177
* For the @(/=)@ method, we normally just use the default method.
178 179 180 181
  If the type is an enumeration type, we could/may/should? generate
  special code that calls @con2tag_Foo@, much like for @(==)@ shown
  above.

182 183 184 185 186 187 188 189
We thought about doing this: If we're also deriving 'Ord' for this
tycon, we generate:
  instance ... Eq (Foo ...) where
    (==) a b  = case (compare a b) of { _LT -> False; _EQ -> True ; _GT -> False}
    (/=) a b  = case (compare a b) of { _LT -> True ; _EQ -> False; _GT -> True }
However, that requires that (Ord <whatever>) was put in the context
for the instance decl, which it probably wasn't, so the decls
produced don't get through the typechecker.
Austin Seipp's avatar
Austin Seipp committed
190
-}
sof's avatar
sof committed
191

dreixel's avatar
dreixel committed
192
gen_Eq_binds :: SrcSpan -> TyCon -> (LHsBinds RdrName, BagDerivStuff)
193
gen_Eq_binds loc tycon
dreixel's avatar
dreixel committed
194
  = (method_binds, aux_binds)
195
  where
196 197 198 199 200 201 202 203 204
    all_cons = tyConDataCons tycon
    (nullary_cons, non_nullary_cons) = partition isNullarySrcDataCon all_cons

    -- If there are ten or more (arbitrary number) nullary constructors,
    -- use the con2tag stuff.  For small types it's better to use
    -- ordinary pattern matching.
    (tag_match_cons, pat_match_cons)
       | nullary_cons `lengthExceeds` 10 = (nullary_cons, non_nullary_cons)
       | otherwise                       = ([],           all_cons)
205

206
    no_tag_match_cons = null tag_match_cons
207

208
    fall_through_eqn
209 210
      | no_tag_match_cons   -- All constructors have arguments
      = case pat_match_cons of
211
          []  -> []   -- No constructors; no fall-though case
212
          [_] -> []   -- One constructor; no fall-though case
213
          _   ->      -- Two or more constructors; add fall-through of
214 215
                      --       (==) _ _ = False
                 [([nlWildPat, nlWildPat], false_Expr)]
216

217
      | otherwise -- One or more tag_match cons; add fall-through of
218 219
                  -- extract tags compare for equality
      = [([a_Pat, b_Pat],
220
         untag_Expr tycon [(a_RDR,ah_RDR), (b_RDR,bh_RDR)]
221
                    (genPrimOpApp (nlHsVar ah_RDR) eqInt_RDR (nlHsVar bh_RDR)))]
222

223 224
    aux_binds | no_tag_match_cons = emptyBag
              | otherwise         = unitBag $ DerivAuxBind $ DerivCon2Tag tycon
225

dreixel's avatar
dreixel committed
226
    method_binds = listToBag [eq_bind, ne_bind]
227
    eq_bind = mk_FunBind loc eq_RDR (map pats_etc pat_match_cons ++ fall_through_eqn)
228
    ne_bind = mk_easy_FunBind loc ne_RDR [a_Pat, b_Pat] (
229
                        nlHsApp (nlHsVar not_RDR) (nlHsPar (nlHsVarApps eq_RDR [a_RDR, b_RDR])))
230

231 232 233
    ------------------------------------------------------------------
    pats_etc data_con
      = let
234 235 236 237 238 239 240 241 242 243
            con1_pat = nlConVarPat data_con_RDR as_needed
            con2_pat = nlConVarPat data_con_RDR bs_needed

            data_con_RDR = getRdrName data_con
            con_arity   = length tys_needed
            as_needed   = take con_arity as_RDRs
            bs_needed   = take con_arity bs_RDRs
            tys_needed  = dataConOrigArgTys data_con
        in
        ([con1_pat, con2_pat], nested_eq_expr tys_needed as_needed bs_needed)
244
      where
245 246 247 248 249
        nested_eq_expr []  [] [] = true_Expr
        nested_eq_expr tys as bs
          = foldl1 and_Expr (zipWith3Equal "nested_eq" nested_eq tys as bs)
          where
            nested_eq ty a b = nlHsPar (eq_Expr tycon ty (nlHsVar a) (nlHsVar b))
250

Austin Seipp's avatar
Austin Seipp committed
251 252 253
{-
************************************************************************
*                                                                      *
254
        Ord instances
Austin Seipp's avatar
Austin Seipp committed
255 256
*                                                                      *
************************************************************************
257

258 259
Note [Generating Ord instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
260
Suppose constructors are K1..Kn, and some are nullary.
261 262 263
The general form we generate is:

* Do case on first argument
264
        case a of
265 266 267 268 269 270 271
          K1 ... -> rhs_1
          K2 ... -> rhs_2
          ...
          Kn ... -> rhs_n
          _ -> nullary_rhs

* To make rhs_i
272 273
     If i = 1, 2, n-1, n, generate a single case.
        rhs_2    case b of
274 275 276 277 278 279 280 281
                   K1 {}  -> LT
                   K2 ... -> ...eq_rhs(K2)...
                   _      -> GT

     Otherwise do a tag compare against the bigger range
     (because this is the one most likely to succeed)
        rhs_3    case tag b of tb ->
                 if 3 <# tg then GT
282
                 else case b of
283 284 285
                         K3 ... -> ...eq_rhs(K3)....
                         _      -> LT

286
* To make eq_rhs(K), which knows that
287 288 289 290 291 292
    a = K a1 .. av
    b = K b1 .. bv
  we just want to compare (a1,b1) then (a2,b2) etc.
  Take care on the last field to tail-call into comparing av,bv

* To make nullary_rhs generate this
293 294
     case con2tag a of a# ->
     case con2tag b of ->
295 296 297 298 299 300 301
     a# `compare` b#

Several special cases:

* Two or fewer nullary constructors: don't generate nullary_rhs

* Be careful about unlifted comparisons.  When comparing unboxed
302
  values we can't call the overloaded functions.
303 304 305 306 307
  See function unliftedOrdOp

Note [Do not rely on compare]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's a bad idea to define only 'compare', and build the other binary
Gabor Greif's avatar
Gabor Greif committed
308
comparisons on top of it; see Trac #2130, #4019.  Reason: we don't
309 310 311 312
want to laboriously make a three-way comparison, only to extract a
binary result, something like this:
     (>) (I# x) (I# y) = case <# x y of
                            True -> False
313
                            False -> case ==# x y of
314 315
                                       True  -> False
                                       False -> True
316

317
So for sufficiently small types (few constructors, or all nullary)
318
we generate all methods; for large ones we just use 'compare'.
Austin Seipp's avatar
Austin Seipp committed
319
-}
320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
data OrdOp = OrdCompare | OrdLT | OrdLE | OrdGE | OrdGT

------------
ordMethRdr :: OrdOp -> RdrName
ordMethRdr op
  = case op of
       OrdCompare -> compare_RDR
       OrdLT      -> lt_RDR
       OrdLE      -> le_RDR
       OrdGE      -> ge_RDR
       OrdGT      -> gt_RDR

------------
ltResult :: OrdOp -> LHsExpr RdrName
-- Knowing a<b, what is the result for a `op` b?
ltResult OrdCompare = ltTag_Expr
ltResult OrdLT      = true_Expr
ltResult OrdLE      = true_Expr
ltResult OrdGE      = false_Expr
ltResult OrdGT      = false_Expr

------------
eqResult :: OrdOp -> LHsExpr RdrName
-- Knowing a=b, what is the result for a `op` b?
eqResult OrdCompare = eqTag_Expr
eqResult OrdLT      = false_Expr
eqResult OrdLE      = true_Expr
eqResult OrdGE      = true_Expr
eqResult OrdGT      = false_Expr

------------
gtResult :: OrdOp -> LHsExpr RdrName
-- Knowing a>b, what is the result for a `op` b?
gtResult OrdCompare = gtTag_Expr
gtResult OrdLT      = false_Expr
gtResult OrdLE      = false_Expr
gtResult OrdGE      = true_Expr
gtResult OrdGT      = true_Expr

------------
dreixel's avatar
dreixel committed
361
gen_Ord_binds :: SrcSpan -> TyCon -> (LHsBinds RdrName, BagDerivStuff)
362
gen_Ord_binds loc tycon
363
  | null tycon_data_cons        -- No data-cons => invoke bale-out case
dreixel's avatar
dreixel committed
364
  = (unitBag $ mk_FunBind loc compare_RDR [], emptyBag)
365
  | otherwise
dreixel's avatar
dreixel committed
366
  = (unitBag (mkOrdOp OrdCompare) `unionBags` other_ops, aux_binds)
367
  where
368
    aux_binds | single_con_type = emptyBag
369
              | otherwise       = unitBag $ DerivAuxBind $ DerivCon2Tag tycon
370

371 372 373
        -- Note [Do not rely on compare]
    other_ops | (last_tag - first_tag) <= 2     -- 1-3 constructors
                || null non_nullary_cons        -- Or it's an enumeration
374
              = listToBag (map mkOrdOp [OrdLT,OrdLE,OrdGE,OrdGT])
375
              | otherwise
376
              = emptyBag
377

378 379 380
    get_tag con = dataConTag con - fIRST_TAG
        -- We want *zero-based* tags, because that's what
        -- con2Tag returns (generated by untag_Expr)!
381

382 383 384 385
    tycon_data_cons = tyConDataCons tycon
    single_con_type = isSingleton tycon_data_cons
    (first_con : _) = tycon_data_cons
    (last_con : _)  = reverse tycon_data_cons
386 387
    first_tag       = get_tag first_con
    last_tag        = get_tag last_con
388

389
    (nullary_cons, non_nullary_cons) = partition isNullarySrcDataCon tycon_data_cons
390

391

392
    mkOrdOp :: OrdOp -> LHsBind RdrName
393
    -- Returns a binding   op a b = ... compares a and b according to op ....
dreixel's avatar
dreixel committed
394
    mkOrdOp op = mk_easy_FunBind loc (ordMethRdr op) [a_Pat, b_Pat] (mkOrdOpRhs op)
395

396
    mkOrdOpRhs :: OrdOp -> LHsExpr RdrName
397
    mkOrdOpRhs op       -- RHS for comparing 'a' and 'b' according to op
398
      | length nullary_cons <= 2  -- Two nullary or fewer, so use cases
399
      = nlHsCase (nlHsVar a_RDR) $
400
        map (mkOrdOpAlt op) tycon_data_cons
401
        -- i.e.  case a of { C1 x y -> case b of C1 x y -> ....compare x,y...
402
        --                   C2 x   -> case b of C2 x -> ....comopare x.... }
403

404 405
      | null non_nullary_cons    -- All nullary, so go straight to comparing tags
      = mkTagCmp op
406

407
      | otherwise                -- Mixed nullary and non-nullary
408
      = nlHsCase (nlHsVar a_RDR) $
409
        (map (mkOrdOpAlt op) non_nullary_cons
410
         ++ [mkSimpleHsAlt nlWildPat (mkTagCmp op)])
411

412

413
    mkOrdOpAlt :: OrdOp -> DataCon -> LMatch RdrName (LHsExpr RdrName)
414
    -- Make the alternative  (Ki a1 a2 .. av ->
415 416 417 418 419 420 421 422 423 424 425 426 427
    mkOrdOpAlt op data_con
      = mkSimpleHsAlt (nlConVarPat data_con_RDR as_needed) (mkInnerRhs op data_con)
      where
        as_needed    = take (dataConSourceArity data_con) as_RDRs
        data_con_RDR = getRdrName data_con

    mkInnerRhs op data_con
      | single_con_type
      = nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con ]

      | tag == first_tag
      = nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con
                                 , mkSimpleHsAlt nlWildPat (ltResult op) ]
428
      | tag == last_tag
429 430
      = nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con
                                 , mkSimpleHsAlt nlWildPat (gtResult op) ]
431

432 433 434 435 436 437 438 439 440
      | tag == first_tag + 1
      = nlHsCase (nlHsVar b_RDR) [ mkSimpleHsAlt (nlConWildPat first_con) (gtResult op)
                                 , mkInnerEqAlt op data_con
                                 , mkSimpleHsAlt nlWildPat (ltResult op) ]
      | tag == last_tag - 1
      = nlHsCase (nlHsVar b_RDR) [ mkSimpleHsAlt (nlConWildPat last_con) (ltResult op)
                                 , mkInnerEqAlt op data_con
                                 , mkSimpleHsAlt nlWildPat (gtResult op) ]

441
      | tag > last_tag `div` 2  -- lower range is larger
442
      = untag_Expr tycon [(b_RDR, bh_RDR)] $
443
        nlHsIf (genPrimOpApp (nlHsVar bh_RDR) ltInt_RDR tag_lit)
444
               (gtResult op) $  -- Definitely GT
445 446
        nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con
                                 , mkSimpleHsAlt nlWildPat (ltResult op) ]
447 448

      | otherwise               -- upper range is larger
449
      = untag_Expr tycon [(b_RDR, bh_RDR)] $
450
        nlHsIf (genPrimOpApp (nlHsVar bh_RDR) gtInt_RDR tag_lit)
451
               (ltResult op) $  -- Definitely LT
452 453 454
        nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con
                                 , mkSimpleHsAlt nlWildPat (gtResult op) ]
      where
455
        tag     = get_tag data_con
456
        tag_lit = noLoc (HsLit (HsIntPrim "" (toInteger tag)))
457

458
    mkInnerEqAlt :: OrdOp -> DataCon -> LMatch RdrName (LHsExpr RdrName)
459 460 461 462
    -- First argument 'a' known to be built with K
    -- Returns a case alternative  Ki b1 b2 ... bv -> compare (a1,a2,...) with (b1,b2,...)
    mkInnerEqAlt op data_con
      = mkSimpleHsAlt (nlConVarPat data_con_RDR bs_needed) $
463
        mkCompareFields tycon op (dataConOrigArgTys data_con)
464 465 466 467
      where
        data_con_RDR = getRdrName data_con
        bs_needed    = take (dataConSourceArity data_con) bs_RDRs

468
    mkTagCmp :: OrdOp -> LHsExpr RdrName
469 470 471 472
    -- Both constructors known to be nullary
    -- genreates (case data2Tag a of a# -> case data2Tag b of b# -> a# `op` b#
    mkTagCmp op = untag_Expr tycon [(a_RDR, ah_RDR),(b_RDR, bh_RDR)] $
                  unliftedOrdOp tycon intPrimTy op ah_RDR bh_RDR
473

474 475 476 477 478 479 480 481 482 483
mkCompareFields :: TyCon -> OrdOp -> [Type] -> LHsExpr RdrName
-- Generates nested comparisons for (a1,a2...) against (b1,b2,...)
-- where the ai,bi have the given types
mkCompareFields tycon op tys
  = go tys as_RDRs bs_RDRs
  where
    go []   _      _          = eqResult op
    go [ty] (a:_)  (b:_)
      | isUnLiftedType ty     = unliftedOrdOp tycon ty op a b
      | otherwise             = genOpApp (nlHsVar a) (ordMethRdr op) (nlHsVar b)
484 485
    go (ty:tys) (a:as) (b:bs) = mk_compare ty a b
                                  (ltResult op)
486
                                  (go tys as bs)
487
                                  (gtResult op)
488 489 490 491
    go _ _ _ = panic "mkCompareFields"

    -- (mk_compare ty a b) generates
    --    (case (compare a b) of { LT -> <lt>; EQ -> <eq>; GT -> <bt> })
492
    -- but with suitable special cases for
493 494 495
    mk_compare ty a b lt eq gt
      | isUnLiftedType ty
      = unliftedCompare lt_op eq_op a_expr b_expr lt eq gt
496
      | otherwise
497 498 499 500 501 502 503 504 505 506 507 508
      = nlHsCase (nlHsPar (nlHsApp (nlHsApp (nlHsVar compare_RDR) a_expr) b_expr))
          [mkSimpleHsAlt (nlNullaryConPat ltTag_RDR) lt,
           mkSimpleHsAlt (nlNullaryConPat eqTag_RDR) eq,
           mkSimpleHsAlt (nlNullaryConPat gtTag_RDR) gt]
      where
        a_expr = nlHsVar a
        b_expr = nlHsVar b
        (lt_op, _, eq_op, _, _) = primOrdOps "Ord" tycon ty

unliftedOrdOp :: TyCon -> Type -> OrdOp -> RdrName -> RdrName -> LHsExpr RdrName
unliftedOrdOp tycon ty op a b
  = case op of
509
       OrdCompare -> unliftedCompare lt_op eq_op a_expr b_expr
510 511 512 513 514 515 516
                                     ltTag_Expr eqTag_Expr gtTag_Expr
       OrdLT      -> wrap lt_op
       OrdLE      -> wrap le_op
       OrdGE      -> wrap ge_op
       OrdGT      -> wrap gt_op
  where
   (lt_op, le_op, eq_op, ge_op, gt_op) = primOrdOps "Ord" tycon ty
517
   wrap prim_op = genPrimOpApp a_expr prim_op b_expr
518 519 520
   a_expr = nlHsVar a
   b_expr = nlHsVar b

521
unliftedCompare :: RdrName -> RdrName
522
                -> LHsExpr RdrName -> LHsExpr RdrName   -- What to cmpare
523 524 525 526
                -> LHsExpr RdrName -> LHsExpr RdrName -> LHsExpr RdrName  -- Three results
                -> LHsExpr RdrName
-- Return (if a < b then lt else if a == b then eq else gt)
unliftedCompare lt_op eq_op a_expr b_expr lt eq gt
527
  = nlHsIf (genPrimOpApp a_expr lt_op b_expr) lt $
Gabor Greif's avatar
typos  
Gabor Greif committed
528
                        -- Test (<) first, not (==), because the latter
529 530
                        -- is true less often, so putting it first would
                        -- mean more tests (dynamically)
531
        nlHsIf (genPrimOpApp a_expr eq_op b_expr) eq gt
532 533 534 535

nlConWildPat :: DataCon -> LPat RdrName
-- The pattern (K {})
nlConWildPat con = noLoc (ConPatIn (noLoc (getRdrName con))
536
                                   (RecCon (HsRecFields { rec_flds = []
537
                                                        , rec_dotdot = Nothing })))
538

Austin Seipp's avatar
Austin Seipp committed
539 540 541
{-
************************************************************************
*                                                                      *
542
        Enum instances
Austin Seipp's avatar
Austin Seipp committed
543 544
*                                                                      *
************************************************************************
545 546 547 548 549 550 551 552 553 554 555

@Enum@ can only be derived for enumeration types.  For a type
\begin{verbatim}
data Foo ... = N1 | N2 | ... | Nn
\end{verbatim}

we use both @con2tag_Foo@ and @tag2con_Foo@ functions, as well as a
@maxtag_Foo@ variable (all generated by @gen_tag_n_con_binds@).

\begin{verbatim}
instance ... Enum (Foo ...) where
sof's avatar
sof committed
556 557 558
    succ x   = toEnum (1 + fromEnum x)
    pred x   = toEnum (fromEnum x - 1)

559 560
    toEnum i = tag2con_Foo i

561 562 563 564 565
    enumFrom a = map tag2con_Foo [con2tag_Foo a .. maxtag_Foo]

    -- or, really...
    enumFrom a
      = case con2tag_Foo a of
566
          a# -> map tag2con_Foo (enumFromTo (I# a#) maxtag_Foo)
567 568 569 570 571 572 573

   enumFromThen a b
     = map tag2con_Foo [con2tag_Foo a, con2tag_Foo b .. maxtag_Foo]

    -- or, really...
    enumFromThen a b
      = case con2tag_Foo a of { a# ->
574 575 576
        case con2tag_Foo b of { b# ->
        map tag2con_Foo (enumFromThenTo (I# a#) (I# b#) maxtag_Foo)
        }}
577 578 579
\end{verbatim}

For @enumFromTo@ and @enumFromThenTo@, we use the default methods.
Austin Seipp's avatar
Austin Seipp committed
580
-}
581

dreixel's avatar
dreixel committed
582
gen_Enum_binds :: SrcSpan -> TyCon -> (LHsBinds RdrName, BagDerivStuff)
583
gen_Enum_binds loc tycon
dreixel's avatar
dreixel committed
584
  = (method_binds, aux_binds)
585
  where
dreixel's avatar
dreixel committed
586
    method_binds = listToBag [
587 588 589 590 591 592 593
                        succ_enum,
                        pred_enum,
                        to_enum,
                        enum_from,
                        enum_from_then,
                        from_enum
                    ]
594 595
    aux_binds = listToBag $ map DerivAuxBind
                  [DerivCon2Tag tycon, DerivTag2Con tycon, DerivMaxTag tycon]
596

597
    occ_nm = getOccString tycon
sof's avatar
sof committed
598 599

    succ_enum
600
      = mk_easy_FunBind loc succ_RDR [a_Pat] $
601 602 603 604 605 606 607 608
        untag_Expr tycon [(a_RDR, ah_RDR)] $
        nlHsIf (nlHsApps eq_RDR [nlHsVar (maxtag_RDR tycon),
                               nlHsVarApps intDataCon_RDR [ah_RDR]])
             (illegal_Expr "succ" occ_nm "tried to take `succ' of last tag in enumeration")
             (nlHsApp (nlHsVar (tag2con_RDR tycon))
                    (nlHsApps plus_RDR [nlHsVarApps intDataCon_RDR [ah_RDR],
                                        nlHsIntLit 1]))

sof's avatar
sof committed
609
    pred_enum
610
      = mk_easy_FunBind loc pred_RDR [a_Pat] $
611 612 613 614 615 616
        untag_Expr tycon [(a_RDR, ah_RDR)] $
        nlHsIf (nlHsApps eq_RDR [nlHsIntLit 0,
                               nlHsVarApps intDataCon_RDR [ah_RDR]])
             (illegal_Expr "pred" occ_nm "tried to take `pred' of first tag in enumeration")
             (nlHsApp (nlHsVar (tag2con_RDR tycon))
                           (nlHsApps plus_RDR [nlHsVarApps intDataCon_RDR [ah_RDR],
617
                                               nlHsLit (HsInt "-1" (-1))]))
618 619

    to_enum
620
      = mk_easy_FunBind loc toEnum_RDR [a_Pat] $
621 622
        nlHsIf (nlHsApps and_RDR
                [nlHsApps ge_RDR [nlHsVar a_RDR, nlHsIntLit 0],
623 624
                 nlHsApps le_RDR [nlHsVar a_RDR, nlHsVar (maxtag_RDR tycon)]])
             (nlHsVarApps (tag2con_RDR tycon) [a_RDR])
625
             (illegal_toEnum_tag occ_nm (maxtag_RDR tycon))
626

627
    enum_from
628
      = mk_easy_FunBind loc enumFrom_RDR [a_Pat] $
629 630 631 632 633 634
          untag_Expr tycon [(a_RDR, ah_RDR)] $
          nlHsApps map_RDR
                [nlHsVar (tag2con_RDR tycon),
                 nlHsPar (enum_from_to_Expr
                            (nlHsVarApps intDataCon_RDR [ah_RDR])
                            (nlHsVar (maxtag_RDR tycon)))]
635 636

    enum_from_then
637
      = mk_easy_FunBind loc enumFromThen_RDR [a_Pat, b_Pat] $
638 639 640 641 642 643 644 645 646 647
          untag_Expr tycon [(a_RDR, ah_RDR), (b_RDR, bh_RDR)] $
          nlHsApp (nlHsVarApps map_RDR [tag2con_RDR tycon]) $
            nlHsPar (enum_from_then_to_Expr
                    (nlHsVarApps intDataCon_RDR [ah_RDR])
                    (nlHsVarApps intDataCon_RDR [bh_RDR])
                    (nlHsIf  (nlHsApps gt_RDR [nlHsVarApps intDataCon_RDR [ah_RDR],
                                               nlHsVarApps intDataCon_RDR [bh_RDR]])
                           (nlHsIntLit 0)
                           (nlHsVar (maxtag_RDR tycon))
                           ))
648 649

    from_enum
650
      = mk_easy_FunBind loc fromEnum_RDR [a_Pat] $
651 652
          untag_Expr tycon [(a_RDR, ah_RDR)] $
          (nlHsVarApps intDataCon_RDR [ah_RDR])
653

Austin Seipp's avatar
Austin Seipp committed
654 655 656
{-
************************************************************************
*                                                                      *
657
        Bounded instances
Austin Seipp's avatar
Austin Seipp committed
658 659 660
*                                                                      *
************************************************************************
-}
661

dreixel's avatar
dreixel committed
662
gen_Bounded_binds :: SrcSpan -> TyCon -> (LHsBinds RdrName, BagDerivStuff)
663
gen_Bounded_binds loc tycon
664
  | isEnumerationTyCon tycon
dreixel's avatar
dreixel committed
665
  = (listToBag [ min_bound_enum, max_bound_enum ], emptyBag)
666 667
  | otherwise
  = ASSERT(isSingleton data_cons)
dreixel's avatar
dreixel committed
668
    (listToBag [ min_bound_1con, max_bound_1con ], emptyBag)
669
  where
670
    data_cons = tyConDataCons tycon
671 672

    ----- enum-flavored: ---------------------------
673 674
    min_bound_enum = mkHsVarBind loc minBound_RDR (nlHsVar data_con_1_RDR)
    max_bound_enum = mkHsVarBind loc maxBound_RDR (nlHsVar data_con_N_RDR)
675

676 677
    data_con_1     = head data_cons
    data_con_N     = last data_cons
678 679
    data_con_1_RDR = getRdrName data_con_1
    data_con_N_RDR = getRdrName data_con_N
680 681

    ----- single-constructor-flavored: -------------
682
    arity          = dataConSourceArity data_con_1
683

684
    min_bound_1con = mkHsVarBind loc minBound_RDR $
685
                     nlHsVarApps data_con_1_RDR (nOfThem arity minBound_RDR)
686
    max_bound_1con = mkHsVarBind loc maxBound_RDR $
687
                     nlHsVarApps data_con_1_RDR (nOfThem arity maxBound_RDR)
688

Austin Seipp's avatar
Austin Seipp committed
689 690 691
{-
************************************************************************
*                                                                      *
692
        Ix instances
Austin Seipp's avatar
Austin Seipp committed
693 694
*                                                                      *
************************************************************************
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

Deriving @Ix@ is only possible for enumeration types and
single-constructor types.  We deal with them in turn.

For an enumeration type, e.g.,
\begin{verbatim}
    data Foo ... = N1 | N2 | ... | Nn
\end{verbatim}
things go not too differently from @Enum@:
\begin{verbatim}
instance ... Ix (Foo ...) where
    range (a, b)
      = map tag2con_Foo [con2tag_Foo a .. con2tag_Foo b]

    -- or, really...
    range (a, b)
      = case (con2tag_Foo a) of { a# ->
712 713 714
        case (con2tag_Foo b) of { b# ->
        map tag2con_Foo (enumFromTo (I# a#) (I# b#))
        }}
715

Gabor Greif's avatar
typos  
Gabor Greif committed
716
    -- Generate code for unsafeIndex, because using index leads
717 718 719
    -- to lots of redundant range tests
    unsafeIndex c@(a, b) d
      = case (con2tag_Foo d -# con2tag_Foo a) of
720
               r# -> I# r#
721 722 723

    inRange (a, b) c
      = let
724 725 726
            p_tag = con2tag_Foo c
        in
        p_tag >= con2tag_Foo a && p_tag <= con2tag_Foo b
727 728 729 730

    -- or, really...
    inRange (a, b) c
      = case (con2tag_Foo a)   of { a_tag ->
731 732 733 734 735 736 737
        case (con2tag_Foo b)   of { b_tag ->
        case (con2tag_Foo c)   of { c_tag ->
        if (c_tag >=# a_tag) then
          c_tag <=# b_tag
        else
          False
        }}}
738
\end{verbatim}
739
(modulo suitable case-ification to handle the unlifted tags)
740 741 742 743 744 745 746

For a single-constructor type (NB: this includes all tuples), e.g.,
\begin{verbatim}
    data Foo ... = MkFoo a b Int Double c c
\end{verbatim}
we follow the scheme given in Figure~19 of the Haskell~1.2 report
(p.~147).
Austin Seipp's avatar
Austin Seipp committed
747
-}
748

dreixel's avatar
dreixel committed
749
gen_Ix_binds :: SrcSpan -> TyCon -> (LHsBinds RdrName, BagDerivStuff)
750

751
gen_Ix_binds loc tycon
752
  | isEnumerationTyCon tycon
753 754 755
  = ( enum_ixes
    , listToBag $ map DerivAuxBind
                   [DerivCon2Tag tycon, DerivTag2Con tycon, DerivMaxTag tycon])
756
  | otherwise
757
  = (single_con_ixes, unitBag (DerivAuxBind (DerivCon2Tag tycon)))
758 759
  where
    --------------------------------------------------------------
dreixel's avatar
dreixel committed
760
    enum_ixes = listToBag [ enum_range, enum_index, enum_inRange ]
761 762

    enum_range
763
      = mk_easy_FunBind loc range_RDR [nlTuplePat [a_Pat, b_Pat] Boxed] $
764 765 766 767 768 769
          untag_Expr tycon [(a_RDR, ah_RDR)] $
          untag_Expr tycon [(b_RDR, bh_RDR)] $
          nlHsApp (nlHsVarApps map_RDR [tag2con_RDR tycon]) $
              nlHsPar (enum_from_to_Expr
                        (nlHsVarApps intDataCon_RDR [ah_RDR])
                        (nlHsVarApps intDataCon_RDR [bh_RDR]))
770 771

    enum_index
772 773 774 775 776 777 778 779 780 781 782 783 784 785
      = mk_easy_FunBind loc unsafeIndex_RDR
                [noLoc (AsPat (noLoc c_RDR)
                           (nlTuplePat [a_Pat, nlWildPat] Boxed)),
                                d_Pat] (
           untag_Expr tycon [(a_RDR, ah_RDR)] (
           untag_Expr tycon [(d_RDR, dh_RDR)] (
           let
                rhs = nlHsVarApps intDataCon_RDR [c_RDR]
           in
           nlHsCase
             (genOpApp (nlHsVar dh_RDR) minusInt_RDR (nlHsVar ah_RDR))
             [mkSimpleHsAlt (nlVarPat c_RDR) rhs]
           ))
        )
786 787

    enum_inRange
788
      = mk_easy_FunBind loc inRange_RDR [nlTuplePat [a_Pat, b_Pat] Boxed, c_Pat] $
789 790 791
          untag_Expr tycon [(a_RDR, ah_RDR)] (
          untag_Expr tycon [(b_RDR, bh_RDR)] (
          untag_Expr tycon [(c_RDR, ch_RDR)] (
792 793
          nlHsIf (genPrimOpApp (nlHsVar ch_RDR) geInt_RDR (nlHsVar ah_RDR)) (
             (genPrimOpApp (nlHsVar ch_RDR) leInt_RDR (nlHsVar bh_RDR))
794 795 796
          ) {-else-} (
             false_Expr
          ))))
797 798

    --------------------------------------------------------------
799
    single_con_ixes
dreixel's avatar
dreixel committed
800
      = listToBag [single_con_range, single_con_index, single_con_inRange]
801 802

    data_con
803 804 805
      = case tyConSingleDataCon_maybe tycon of -- just checking...
          Nothing -> panic "get_Ix_binds"
          Just dc -> dc
806

807
    con_arity    = dataConSourceArity data_con
808
    data_con_RDR = getRdrName data_con
809

810 811 812
    as_needed = take con_arity as_RDRs
    bs_needed = take con_arity bs_RDRs
    cs_needed = take con_arity cs_RDRs
813

814 815
    con_pat  xs  = nlConVarPat data_con_RDR xs
    con_expr     = nlHsVarApps data_con_RDR cs_needed
sof's avatar
sof committed
816

817 818
    --------------------------------------------------------------
    single_con_range
819 820 821
      = mk_easy_FunBind loc range_RDR
          [nlTuplePat [con_pat as_needed, con_pat bs_needed] Boxed] $
        noLoc (mkHsComp ListComp stmts con_expr)
822
      where
823
        stmts = zipWith3Equal "single_con_range" mk_qual as_needed bs_needed cs_needed
824

825 826 827
        mk_qual a b c = noLoc $ mkBindStmt (nlVarPat c)
                                 (nlHsApp (nlHsVar range_RDR)
                                          (mkLHsVarTuple [a,b]))
828 829 830

    ----------------
    single_con_index
831 832 833
      = mk_easy_FunBind loc unsafeIndex_RDR
                [nlTuplePat [con_pat as_needed, con_pat bs_needed] Boxed,
                 con_pat cs_needed]
834 835 836 837
        -- We need to reverse the order we consider the components in
        -- so that
        --     range (l,u) !! index (l,u) i == i   -- when i is in range
        -- (from http://haskell.org/onlinereport/ix.html) holds.
838
                (mk_index (reverse $ zip3 as_needed bs_needed cs_needed))
839
      where
840 841 842 843 844 845 846 847 848 849 850 851 852 853
        -- index (l1,u1) i1 + rangeSize (l1,u1) * (index (l2,u2) i2 + ...)
        mk_index []        = nlHsIntLit 0
        mk_index [(l,u,i)] = mk_one l u i
        mk_index ((l,u,i) : rest)
          = genOpApp (
                mk_one l u i
            ) plus_RDR (
                genOpApp (
                    (nlHsApp (nlHsVar unsafeRangeSize_RDR)
                             (mkLHsVarTuple [l,u]))
                ) times_RDR (mk_index rest)
           )
        mk_one l u i
          = nlHsApps unsafeIndex_RDR [mkLHsVarTuple [l,u], nlHsVar i]
854 855 856

    ------------------
    single_con_inRange
857 858 859 860
      = mk_easy_FunBind loc inRange_RDR
                [nlTuplePat [con_pat as_needed, con_pat bs_needed] Boxed,
                 con_pat cs_needed] $
          foldl1 and_Expr (zipWith3Equal "single_con_inRange" in_range as_needed bs_needed cs_needed)
861
      where
862
        in_range a b c = nlHsApps inRange_RDR [mkLHsVarTuple [a,b], nlHsVar c]
863

Austin Seipp's avatar
Austin Seipp committed
864 865 866
{-
************************************************************************
*                                                                      *
867
        Read instances
Austin Seipp's avatar
Austin Seipp committed
868 869
*                                                                      *
************************************************************************
870

871 872 873 874
Example

  infix 4 %%
  data T = Int %% Int
875 876
         | T1 { f1 :: Int }
         | T2 T
877 878 879

instance Read T where
  readPrec =
880
    parens
881
    ( prec 4 (
882 883 884
        do x <- ReadP.step Read.readPrec
           expectP (Symbol "%%")
           y <- ReadP.step Read.readPrec
885 886
           return (x %% y))
      +++
887
      prec (appPrec+1) (
888 889
        -- Note the "+1" part; "T2 T1 {f1=3}" should parse ok
        -- Record construction binds even more tightly than application
890 891 892 893
        do expectP (Ident "T1")
           expectP (Punc '{')
           expectP (Ident "f1")
           expectP (Punc '=')
894
           x          <- ReadP.reset Read.readPrec
895
           expectP (Punc '}')
896
           return (T1 { f1 = x }))
897 898
      +++
      prec appPrec (
899 900
        do expectP (Ident "T2")
           x <- ReadP.step Read.readPrec