InfoTable.hsc 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
{-# LANGUAGE CPP, MagicHash, ScopedTypeVariables #-}

-- |
-- Run-time info table support.  This module provides support for
-- creating and reading info tables /in the running program/.
-- We use the RTS data structures directly via hsc2hs.
--
module GHCi.InfoTable
  ( mkConInfoTable
  , peekItbl, StgInfoTable(..)
  , conInfoPtr
  ) where

14
15
16
#if !defined(TABLES_NEXT_TO_CODE)
import Data.Maybe (fromJust)
#endif
17
18
19
20
21
22
23
24
25
26
27
import Foreign
import Foreign.C
import GHC.Ptr
import GHC.Exts
import System.IO.Unsafe

mkConInfoTable
   :: Int     -- ptr words
   -> Int     -- non-ptr words
   -> Int     -- constr tag
   -> [Word8]  -- con desc
28
   -> IO (Ptr StgInfoTable)
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
      -- resulting info table is allocated with allocateExec(), and
      -- should be freed with freeExec().

mkConInfoTable ptr_words nonptr_words tag con_desc =
  castFunPtrToPtr <$> newExecConItbl itbl con_desc
  where
     entry_addr = stg_interp_constr_entry
     code' = mkJumpToAddr entry_addr
     itbl  = StgInfoTable {
                 entry = if ghciTablesNextToCode
                         then Nothing
                         else Just entry_addr,
                 ptrs  = fromIntegral ptr_words,
                 nptrs = fromIntegral nonptr_words,
                 tipe  = fromIntegral cONSTR,
                 srtlen = fromIntegral tag,
                 code  = if ghciTablesNextToCode
                         then Just code'
                         else Nothing
              }


-- -----------------------------------------------------------------------------
-- Building machine code fragments for a constructor's entry code

type ItblCodes = Either [Word8] [Word32]

funPtrToInt :: FunPtr a -> Int
funPtrToInt (FunPtr a) = I## (addr2Int## a)

59
60
61
62
63
64
65
66
67
68
data Arch = ArchSPARC
          | ArchPPC
          | ArchX86
          | ArchX86_64
          | ArchAlpha
          | ArchARM
          | ArchARM64
          | ArchPPC64
          | ArchPPC64LE
          | ArchUnknown
69
70
71
72
73
 deriving Show

platform :: Arch
platform =
#if defined(sparc_HOST_ARCH)
74
       ArchSPARC
Erik de Castro Lopo's avatar
Erik de Castro Lopo committed
75
#elif defined(powerpc_HOST_ARCH)
76
       ArchPPC
77
#elif defined(i386_HOST_ARCH)
78
79
80
81
82
83
84
       ArchX86
#elif defined(x86_64_HOST_ARCH)
       ArchX86_64
#elif defined(alpha_HOST_ARCH)
       ArchAlpha
#elif defined(arm_HOST_ARCH)
       ArchARM
85
86
#elif defined(aarch64_HOST_ARCH)
       ArchARM64
87
88
89
90
#elif defined(powerpc64_HOST_ARCH)
       ArchPPC64
#elif defined(powerpc64le_HOST_ARCH)
       ArchPPC64LE
91
#else
92
93
94
95
96
#    if defined(TABLES_NEXT_TO_CODE)
#        error Unimplemented architecture
#    else
       ArchUnknown
#    endif
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#endif

mkJumpToAddr :: EntryFunPtr -> ItblCodes
mkJumpToAddr a = case platform of
    ArchSPARC ->
        -- After some consideration, we'll try this, where
        -- 0x55555555 stands in for the address to jump to.
        -- According to includes/rts/MachRegs.h, %g3 is very
        -- likely indeed to be baggable.
        --
        --   0000 07155555              sethi   %hi(0x55555555), %g3
        --   0004 8610E155              or      %g3, %lo(0x55555555), %g3
        --   0008 81C0C000              jmp     %g3
        --   000c 01000000              nop

        let w32 = fromIntegral (funPtrToInt a)

            hi22, lo10 :: Word32 -> Word32
            lo10 x = x .&. 0x3FF
            hi22 x = (x `shiftR` 10) .&. 0x3FFFF

        in Right [ 0x07000000 .|. (hi22 w32),
                   0x8610E000 .|. (lo10 w32),
                   0x81C0C000,
                   0x01000000 ]

    ArchPPC ->
        -- We'll use r12, for no particular reason.
        -- 0xDEADBEEF stands for the address:
        -- 3D80DEAD lis r12,0xDEAD
        -- 618CBEEF ori r12,r12,0xBEEF
        -- 7D8903A6 mtctr r12
        -- 4E800420 bctr

        let w32 = fromIntegral (funPtrToInt a)
            hi16 x = (x `shiftR` 16) .&. 0xFFFF
            lo16 x = x .&. 0xFFFF
        in Right [ 0x3D800000 .|. hi16 w32,
                   0x618C0000 .|. lo16 w32,
                   0x7D8903A6, 0x4E800420 ]

    ArchX86 ->
        -- Let the address to jump to be 0xWWXXYYZZ.
        -- Generate   movl $0xWWXXYYZZ,%eax  ;  jmp *%eax
        -- which is
        -- B8 ZZ YY XX WW FF E0

        let w32 = fromIntegral (funPtrToInt a) :: Word32
            insnBytes :: [Word8]
            insnBytes
               = [0xB8, byte0 w32, byte1 w32,
                        byte2 w32, byte3 w32,
                  0xFF, 0xE0]
        in
            Left insnBytes

    ArchX86_64 ->
        -- Generates:
        --      jmpq *.L1(%rip)
        --      .align 8
        -- .L1:
        --      .quad <addr>
        --
        -- which looks like:
        --     8:   ff 25 02 00 00 00     jmpq   *0x2(%rip)      # 10 <f+0x10>
        -- with addr at 10.
        --
        -- We need a full 64-bit pointer (we can't assume the info table is
        -- allocated in low memory).  Assuming the info pointer is aligned to
        -- an 8-byte boundary, the addr will also be aligned.

        let w64 = fromIntegral (funPtrToInt a) :: Word64
            insnBytes :: [Word8]
            insnBytes
               = [0xff, 0x25, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
                  byte0 w64, byte1 w64, byte2 w64, byte3 w64,
                  byte4 w64, byte5 w64, byte6 w64, byte7 w64]
        in
            Left insnBytes

    ArchAlpha ->
        let w64 = fromIntegral (funPtrToInt a) :: Word64
        in Right [ 0xc3800000      -- br   at, .+4
                 , 0xa79c000c      -- ldq  at, 12(at)
                 , 0x6bfc0000      -- jmp  (at)    # with zero hint -- oh well
                 , 0x47ff041f      -- nop
                 , fromIntegral (w64 .&. 0x0000FFFF)
                 , fromIntegral ((w64 `shiftR` 32) .&. 0x0000FFFF) ]

    ArchARM { } ->
        -- Generates Arm sequence,
        --      ldr r1, [pc, #0]
        --      bx r1
        --
        -- which looks like:
        --     00000000 <.addr-0x8>:
        --     0:       00109fe5    ldr    r1, [pc]      ; 8 <.addr>
        --     4:       11ff2fe1    bx     r1
        let w32 = fromIntegral (funPtrToInt a) :: Word32
        in Left [ 0x00, 0x10, 0x9f, 0xe5
                , 0x11, 0xff, 0x2f, 0xe1
                , byte0 w32, byte1 w32, byte2 w32, byte3 w32]

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    ArchARM64 { } ->
        -- Generates:
        --
        --      ldr     x1, label
        --      br      x1
        -- label:
        --      .quad <addr>
        --
        -- which looks like:
        --     0:       58000041        ldr     x1, <label>
        --     4:       d61f0020        br      x1
       let w64 = fromIntegral (funPtrToInt a) :: Word64
       in Right [ 0x58000041
                , 0xd61f0020
                , fromIntegral w64
                , fromIntegral (w64 `shiftR` 32) ]
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    ArchPPC64 ->
        -- We use the compiler's register r12 to read the function
        -- descriptor and the linker's register r11 as a temporary
        -- register to hold the function entry point.
        -- In the medium code model the function descriptor
        -- is located in the first two gigabytes, i.e. the address
        -- of the function pointer is a non-negative 32 bit number.
        -- 0x0EADBEEF stands for the address of the function pointer:
        --    0:   3d 80 0e ad     lis     r12,0x0EAD
        --    4:   61 8c be ef     ori     r12,r12,0xBEEF
        --    8:   e9 6c 00 00     ld      r11,0(r12)
        --    c:   e8 4c 00 08     ld      r2,8(r12)
        --   10:   7d 69 03 a6     mtctr   r11
        --   14:   e9 6c 00 10     ld      r11,16(r12)
        --   18:   4e 80 04 20     bctr
       let  w32 = fromIntegral (funPtrToInt a)
            hi16 x = (x `shiftR` 16) .&. 0xFFFF
            lo16 x = x .&. 0xFFFF
       in Right [ 0x3D800000 .|. hi16 w32,
                  0x618C0000 .|. lo16 w32,
                  0xE96C0000,
                  0xE84C0008,
                  0x7D6903A6,
                  0xE96C0010,
                  0x4E800420]

    ArchPPC64LE ->
        -- The ABI requires r12 to point to the function's entry point.
        -- We use the medium code model where code resides in the first
        -- two gigabytes, so loading a non-negative32 bit address
        -- with lis followed by ori is fine.
        -- 0x0EADBEEF stands for the address:
        -- 3D800EAD lis r12,0x0EAD
        -- 618CBEEF ori r12,r12,0xBEEF
        -- 7D8903A6 mtctr r12
        -- 4E800420 bctr

        let w32 = fromIntegral (funPtrToInt a)
            hi16 x = (x `shiftR` 16) .&. 0xFFFF
            lo16 x = x .&. 0xFFFF
        in Right [ 0x3D800000 .|. hi16 w32,
                   0x618C0000 .|. lo16 w32,
                   0x7D8903A6, 0x4E800420 ]
259

260
261
262
263
264
    -- This code must not be called. You either need to
    -- add your architecture as a distinct case or
    -- use non-TABLES_NEXT_TO_CODE mode
    ArchUnknown -> error "mkJumpToAddr: ArchUnknown is unsupported"

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
byte0 :: (Integral w) => w -> Word8
byte0 w = fromIntegral w

byte1, byte2, byte3, byte4, byte5, byte6, byte7
       :: (Integral w, Bits w) => w -> Word8
byte1 w = fromIntegral (w `shiftR` 8)
byte2 w = fromIntegral (w `shiftR` 16)
byte3 w = fromIntegral (w `shiftR` 24)
byte4 w = fromIntegral (w `shiftR` 32)
byte5 w = fromIntegral (w `shiftR` 40)
byte6 w = fromIntegral (w `shiftR` 48)
byte7 w = fromIntegral (w `shiftR` 56)


-- -----------------------------------------------------------------------------
-- read & write intfo tables

-- Get definitions for the structs, constants & config etc.
#include "Rts.h"

-- entry point for direct returns for created constr itbls
foreign import ccall "&stg_interp_constr_entry"
    stg_interp_constr_entry :: EntryFunPtr

-- Ultra-minimalist version specially for constructors
#if SIZEOF_VOID_P == 8
type HalfWord = Word32
#elif SIZEOF_VOID_P == 4
type HalfWord = Word16
#else
#error Uknown SIZEOF_VOID_P
#endif

data StgConInfoTable = StgConInfoTable {
   conDesc   :: Ptr Word8,
   infoTable :: StgInfoTable
}

type EntryFunPtr = FunPtr (Ptr () -> IO (Ptr ()))

data StgInfoTable = StgInfoTable {
   entry  :: Maybe EntryFunPtr, -- Just <=> not ghciTablesNextToCode
   ptrs   :: HalfWord,
   nptrs  :: HalfWord,
   tipe   :: HalfWord,
   srtlen :: HalfWord,
   code   :: Maybe ItblCodes -- Just <=> ghciTablesNextToCode
  }

pokeConItbl
  :: Ptr StgConInfoTable -> Ptr StgConInfoTable -> StgConInfoTable
  -> IO ()
pokeConItbl wr_ptr ex_ptr itbl = do
  let _con_desc = conDesc itbl `minusPtr` (ex_ptr `plusPtr` conInfoTableSizeB)
#if defined(TABLES_NEXT_TO_CODE)
  (#poke StgConInfoTable, con_desc) wr_ptr _con_desc
#else
  (#poke StgConInfoTable, con_desc) wr_ptr (conDesc itbl)
#endif
  pokeItbl (wr_ptr `plusPtr` (#offset StgConInfoTable, i)) (infoTable itbl)

sizeOfEntryCode :: Int
sizeOfEntryCode
  | not ghciTablesNextToCode = 0
  | otherwise =
     case mkJumpToAddr undefined of
       Left  xs -> sizeOf (head xs) * length xs
       Right xs -> sizeOf (head xs) * length xs

pokeItbl :: Ptr StgInfoTable -> StgInfoTable -> IO ()
pokeItbl a0 itbl = do
#if !defined(TABLES_NEXT_TO_CODE)
  (#poke StgInfoTable, entry) a0 (fromJust (entry itbl))
#endif
  (#poke StgInfoTable, layout.payload.ptrs) a0 (ptrs itbl)
  (#poke StgInfoTable, layout.payload.nptrs) a0 (nptrs itbl)
  (#poke StgInfoTable, type) a0 (tipe itbl)
  (#poke StgInfoTable, srt_bitmap) a0 (srtlen itbl)
#if defined(TABLES_NEXT_TO_CODE)
  let code_offset = (a0 `plusPtr` (#offset StgInfoTable, code))
  case code itbl of
    Nothing -> return ()
    Just (Left xs) -> pokeArray code_offset xs
    Just (Right xs) -> pokeArray code_offset xs
#endif

peekItbl :: Ptr StgInfoTable -> IO StgInfoTable
peekItbl a0 = do
#if defined(TABLES_NEXT_TO_CODE)
  let entry' = Nothing
#else
  entry' <- Just <$> (#peek StgInfoTable, entry) a0
#endif
  ptrs' <- (#peek StgInfoTable, layout.payload.ptrs) a0
  nptrs' <- (#peek StgInfoTable, layout.payload.nptrs) a0
  tipe' <- (#peek StgInfoTable, type) a0
  srtlen' <- (#peek StgInfoTable, srt_bitmap) a0
  return StgInfoTable
    { entry  = entry'
    , ptrs   = ptrs'
    , nptrs  = nptrs'
    , tipe   = tipe'
    , srtlen = srtlen'
    , code   = Nothing
    }

newExecConItbl :: StgInfoTable -> [Word8] -> IO (FunPtr ())
newExecConItbl obj con_desc
   = alloca $ \pcode -> do
        let lcon_desc = length con_desc + 1{- null terminator -}
            sz = fromIntegral ((#size StgConInfoTable) + sizeOfEntryCode)
               -- Note: we need to allocate the conDesc string next to the info
               -- table, because on a 64-bit platform we reference this string
               -- with a 32-bit offset relative to the info table, so if we
               -- allocated the string separately it might be out of range.
        wr_ptr <- _allocateExec (sz + fromIntegral lcon_desc) pcode
        ex_ptr <- peek pcode
        let cinfo = StgConInfoTable { conDesc = ex_ptr `plusPtr` fromIntegral sz
                                    , infoTable = obj }
        pokeConItbl wr_ptr ex_ptr cinfo
        pokeArray0 0 (castPtr wr_ptr `plusPtr` fromIntegral sz) con_desc
        _flushExec sz ex_ptr -- Cache flush (if needed)
        return (castPtrToFunPtr ex_ptr)

foreign import ccall unsafe "allocateExec"
  _allocateExec :: CUInt -> Ptr (Ptr a) -> IO (Ptr a)

foreign import ccall unsafe "flushExec"
  _flushExec :: CUInt -> Ptr a -> IO ()

-- | Convert a pointer to an StgConInfo into an info pointer that can be
-- used in the header of a closure.
conInfoPtr :: Ptr () -> Ptr ()
conInfoPtr ptr
 | ghciTablesNextToCode = ptr `plusPtr` (#size StgConInfoTable)
 | otherwise            = ptr

-- -----------------------------------------------------------------------------
-- Constants and config

wORD_SIZE :: Int
wORD_SIZE = (#const SIZEOF_HSINT)

fixedInfoTableSizeB :: Int
fixedInfoTableSizeB = 2 * wORD_SIZE

profInfoTableSizeB :: Int
profInfoTableSizeB = (#size StgProfInfo)

stdInfoTableSizeB :: Int
stdInfoTableSizeB
  = (if ghciTablesNextToCode then 0 else wORD_SIZE)
  + (if rtsIsProfiled then profInfoTableSizeB else 0)
  + fixedInfoTableSizeB

conInfoTableSizeB :: Int
conInfoTableSizeB = stdInfoTableSizeB + wORD_SIZE

foreign import ccall unsafe "rts_isProfiled" rtsIsProfiledIO :: IO CInt

rtsIsProfiled :: Bool
rtsIsProfiled = unsafeDupablePerformIO rtsIsProfiledIO /= 0

cONSTR :: Int   -- Defined in ClosureTypes.h
cONSTR = (#const CONSTR)

ghciTablesNextToCode :: Bool
#ifdef TABLES_NEXT_TO_CODE
ghciTablesNextToCode = True
#else
ghciTablesNextToCode = False
#endif