VectVar.hs 3.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

-- | Vectorise variables and literals.
module VectVar (
	vectBndr,
	vectBndrNew,
	vectBndrIn,
	vectBndrNewIn,
	vectBndrsIn,
	vectVar,
	vectPolyVar,
	vectLiteral
) where
import VectUtils
import VectMonad
import VectType
16
import Vectorise.Env
17
import Vectorise.Vect
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import CoreSyn
import Type
import Var
import VarEnv
import Literal
import Id
import FastString
import Control.Monad


-- Binders ----------------------------------------------------------------------------------------
-- | Vectorise a binder variable, along with its attached type.
vectBndr :: Var -> VM VVar
vectBndr v
 = do (vty, lty) <- vectAndLiftType (idType v)
      let vv = v `Id.setIdType` vty
          lv = v `Id.setIdType` lty

      updLEnv (mapTo vv lv)

      return  (vv, lv)
  where
    mapTo vv lv env = env { local_vars = extendVarEnv (local_vars env) v (vv, lv) }


-- | Vectorise a binder variable, along with its attached type, 
--   but give the result a new name.
vectBndrNew :: Var -> FastString -> VM VVar
vectBndrNew v fs
 = do vty <- vectType (idType v)
      vv  <- newLocalVVar fs vty
      updLEnv (upd vv)
      return vv
  where
    upd vv env = env { local_vars = extendVarEnv (local_vars env) v vv }


-- | Vectorise a binder then run a computation with that binder in scope.
vectBndrIn :: Var -> VM a -> VM (VVar, a)
vectBndrIn v p
 = localV
 $ do vv <- vectBndr v
      x <- p
      return (vv, x)


-- | Vectorise a binder, give it a new name, then run a computation with that binder in scope.
vectBndrNewIn :: Var -> FastString -> VM a -> VM (VVar, a)
vectBndrNewIn v fs p
 = localV
 $ do vv <- vectBndrNew v fs
      x  <- p
      return (vv, x)


-- | Vectorise some binders, then run a computation with them in scope.
vectBndrsIn :: [Var] -> VM a -> VM ([VVar], a)
vectBndrsIn vs p
 = localV
 $ do vvs <- mapM vectBndr vs
      x	  <- p
      return (vvs, x)


-- Variables --------------------------------------------------------------------------------------
-- | Vectorise a variable, producing the vectorised and lifted versions.
vectVar :: Var -> VM VExpr
vectVar v
 = do 
      -- lookup the variable from the environment.
      r	<- lookupVar v

      case r of
        -- If it's been locally bound then we'll already have both versions available.
        Local (vv,lv) 
         -> return (Var vv, Var lv)

        -- To create the lifted version of a global variable we replicate it
	-- using the integer context in the VM state for the number of elements.
        Global vv     
         -> do let vexpr = Var vv
               lexpr <- liftPD vexpr
               return (vexpr, lexpr)


-- | Like `vectVar` but also add type applications to the variables.
vectPolyVar :: Var -> [Type] -> VM VExpr
vectPolyVar v tys
 = do vtys	<- mapM vectType tys
      r		<- lookupVar v
      case r of
        Local (vv, lv) 
         -> liftM2 (,) (polyApply (Var vv) vtys)
                       (polyApply (Var lv) vtys)

        Global poly    
         -> do vexpr <- polyApply (Var poly) vtys
               lexpr <- liftPD vexpr
               return (vexpr, lexpr)


-- Literals ---------------------------------------------------------------------------------------
-- | Lifted literals are created by replicating them
--   We use the the integer context in the `VM` state for the number
--   of elements in the output array.
vectLiteral :: Literal -> VM VExpr
vectLiteral lit
 = do lexpr <- liftPD (Lit lit)
      return (Lit lit, lexpr)