TcInteract.lhs 95.2 KB
Newer Older
1 2
\begin{code}
module TcInteract ( 
3 4 5
     solveInteract, solveInteractGiven, solveInteractWanted,
     AtomicInert, tyVarsOfInert, 
     InertSet, emptyInert, updInertSet, extractUnsolved, solveOne,
6 7 8 9
  ) where  

#include "HsVersions.h"

10

11 12 13 14
import BasicTypes 
import TcCanonical
import VarSet
import Type
dimitris's avatar
dimitris committed
15
import Unify
16 17 18 19 20

import Id 
import Var

import TcType
21
import HsBinds
22

23
import Inst( tyVarsOfEvVar )
24 25
import Class
import TyCon
26 27 28 29 30 31 32
import Name

import FunDeps

import Coercion
import Outputable

33
import TcRnTypes
dimitris's avatar
dimitris committed
34
import TcMType ( isSilentEvVar )
35
import TcErrors
36
import TcSMonad
37
import Bag
38
import qualified Data.Map as Map
39

40 41
import Control.Monad( when )

42 43 44 45
import FastString ( sLit ) 
import DynFlags
\end{code}

46
Note [InertSet invariants]
47 48 49 50 51 52 53 54 55 56 57 58 59 60
~~~~~~~~~~~~~~~~~~~~~~~~~~~
An InertSet is a bag of canonical constraints, with the following invariants:

  1 No two constraints react with each other. 
    
    A tricky case is when there exists a given (solved) dictionary 
    constraint and a wanted identical constraint in the inert set, but do 
    not react because reaction would create loopy dictionary evidence for 
    the wanted. See note [Recursive dictionaries]

  2 Given equalities form an idempotent substitution [none of the
    given LHS's occur in any of the given RHS's or reactant parts]

  3 Wanted equalities also form an idempotent substitution
61

62 63 64 65 66 67
  4 The entire set of equalities is acyclic.

  5 Wanted dictionaries are inert with the top-level axiom set 

  6 Equalities of the form tv1 ~ tv2 always have a touchable variable
    on the left (if possible).
68 69

  7 No wanted constraints tv1 ~ tv2 with tv1 touchable. Such constraints
70 71
    will be marked as solved right before being pushed into the inert set. 
    See note [Touchables and givens].
72

dimitris's avatar
dimitris committed
73 74 75 76 77
  8 No Given constraint mentions a touchable unification variable, but 
    Given/Solved may do so. 

  9 Given constraints will also have their superclasses in the inert set, 
    but Given/Solved will not. 
78 79 80 81 82 83 84 85 86 87 88 89 90 91
 
Note that 6 and 7 are /not/ enforced by canonicalization but rather by 
insertion in the inert list, ie by TcInteract. 

During the process of solving, the inert set will contain some
previously given constraints, some wanted constraints, and some given
constraints which have arisen from solving wanted constraints. For
now we do not distinguish between given and solved constraints.

Note that we must switch wanted inert items to given when going under an
implication constraint (when in top-level inference mode).

\begin{code}

92 93 94 95
data CCanMap a = CCanMap { cts_given   :: Map.Map a CanonicalCts
                                          -- Invariant: all Given
                         , cts_derived :: Map.Map a CanonicalCts 
                                          -- Invariant: all Derived
96 97
                         , cts_wanted  :: Map.Map a CanonicalCts } 
                                          -- Invariant: all Wanted
98

99
cCanMapToBag :: Ord a => CCanMap a -> CanonicalCts 
100 101 102
cCanMapToBag cmap = Map.fold unionBags rest_wder (cts_given cmap)
  where rest_wder = Map.fold unionBags rest_der  (cts_wanted cmap) 
        rest_der  = Map.fold unionBags emptyCCan (cts_derived cmap)
103 104

emptyCCanMap :: CCanMap a 
105 106
emptyCCanMap = CCanMap { cts_given = Map.empty
                       , cts_derived = Map.empty, cts_wanted = Map.empty } 
107 108 109 110 111 112

updCCanMap:: Ord a => (a,CanonicalCt) -> CCanMap a -> CCanMap a 
updCCanMap (a,ct) cmap 
  = case cc_flavor ct of 
      Wanted {} 
          -> cmap { cts_wanted = Map.insertWith unionBags a this_ct (cts_wanted cmap) } 
113 114 115 116
      Given {} 
          -> cmap { cts_given = Map.insertWith unionBags a this_ct (cts_given cmap) }
      Derived {}
          -> cmap { cts_derived = Map.insertWith unionBags a this_ct (cts_derived cmap) }
117 118 119 120 121
  where this_ct = singleCCan ct 

getRelevantCts :: Ord a => a -> CCanMap a -> (CanonicalCts, CCanMap a) 
-- Gets the relevant constraints and returns the rest of the CCanMap
getRelevantCts a cmap 
122 123 124
    = let relevant = unionManyBags [ Map.findWithDefault emptyCCan a (cts_wanted cmap)
                                   , Map.findWithDefault emptyCCan a (cts_given cmap)
                                   , Map.findWithDefault emptyCCan a (cts_derived cmap) ]
125
          residual_map = cmap { cts_wanted = Map.delete a (cts_wanted cmap) 
126 127
                              , cts_given = Map.delete a (cts_given cmap) 
                              , cts_derived = Map.delete a (cts_derived cmap) }
128 129
      in (relevant, residual_map) 

130 131 132 133 134 135 136 137 138
extractUnsolvedCMap :: Ord a => CCanMap a -> (CanonicalCts, CCanMap a)
-- Gets the wanted or derived constraints and returns a residual
-- CCanMap with only givens.
extractUnsolvedCMap cmap =
  let wntd = Map.fold unionBags emptyCCan (cts_wanted cmap)
      derd = Map.fold unionBags emptyCCan (cts_derived cmap)
  in (wntd `unionBags` derd, 
           cmap { cts_wanted = Map.empty, cts_derived = Map.empty })

139

140
-- See Note [InertSet invariants]
141
data InertSet 
142
  = IS { inert_eqs          :: CanonicalCts               -- Equalities only (CTyEqCan)
143
       , inert_dicts        :: CCanMap Class              -- Dictionaries only
144
       , inert_ips          :: CCanMap (IPName Name)      -- Implicit parameters 
145 146
       , inert_frozen       :: CanonicalCts
       , inert_funeqs       :: CCanMap TyCon              -- Type family equalities only
147 148
               -- This representation allows us to quickly get to the relevant 
               -- inert constraints when interacting a work item with the inert set.
149
       }
150

151 152 153 154
tyVarsOfInert :: InertSet -> TcTyVarSet 
tyVarsOfInert (IS { inert_eqs    = eqs
                  , inert_dicts  = dictmap
                  , inert_ips    = ipmap
155 156 157 158 159
                  , inert_frozen = frozen
                  , inert_funeqs = funeqmap }) = tyVarsOfCanonicals cts
  where
    cts = eqs `andCCan` frozen `andCCan` cCanMapToBag dictmap
              `andCCan` cCanMapToBag ipmap `andCCan` cCanMapToBag funeqmap
160

161
instance Outputable InertSet where
162
  ppr is = vcat [ vcat (map ppr (Bag.bagToList $ inert_eqs is))
163
                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_dicts is)))
164 165
                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_ips is))) 
                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_funeqs is)))
166 167
                , text "Frozen errors =" <+> -- Clearly print frozen errors
                    vcat (map ppr (Bag.bagToList $ inert_frozen is))
168 169
                ]
                       
170
emptyInert :: InertSet
171
emptyInert = IS { inert_eqs    = Bag.emptyBag
172
                , inert_frozen = Bag.emptyBag
173 174
                , inert_dicts  = emptyCCanMap
                , inert_ips    = emptyCCanMap
175
                , inert_funeqs = emptyCCanMap }
176 177

updInertSet :: InertSet -> AtomicInert -> InertSet 
178 179 180 181 182 183 184 185 186 187
updInertSet is item 
  | isCTyEqCan item                     -- Other equality 
  = let eqs' = inert_eqs is `Bag.snocBag` item 
    in is { inert_eqs = eqs' } 
  | Just cls <- isCDictCan_Maybe item   -- Dictionary 
  = is { inert_dicts = updCCanMap (cls,item) (inert_dicts is) } 
  | Just x  <- isCIPCan_Maybe item      -- IP 
  = is { inert_ips   = updCCanMap (x,item) (inert_ips is) }  
  | Just tc <- isCFunEqCan_Maybe item   -- Function equality 
  = is { inert_funeqs = updCCanMap (tc,item) (inert_funeqs is) }
188
  | otherwise 
189
  = is { inert_frozen = inert_frozen is `Bag.snocBag` item }
190

191
extractUnsolved :: InertSet -> (InertSet, CanonicalCts)
192
-- Postcondition: the returned canonical cts are either Derived, or Wanted.
193
extractUnsolved is@(IS {inert_eqs = eqs}) 
194 195 196
  = let is_solved  = is { inert_eqs    = solved_eqs
                        , inert_dicts  = solved_dicts
                        , inert_ips    = solved_ips
197 198
                        , inert_frozen = emptyCCan
                        , inert_funeqs = solved_funeqs }
199
    in (is_solved, unsolved)
200

dimitris's avatar
dimitris committed
201
  where (unsolved_eqs, solved_eqs)       = Bag.partitionBag (not.isGivenOrSolvedCt) eqs
202 203 204
        (unsolved_ips, solved_ips)       = extractUnsolvedCMap (inert_ips is) 
        (unsolved_dicts, solved_dicts)   = extractUnsolvedCMap (inert_dicts is) 
        (unsolved_funeqs, solved_funeqs) = extractUnsolvedCMap (inert_funeqs is) 
205

206
        unsolved = unsolved_eqs `unionBags` inert_frozen is `unionBags`
207
                   unsolved_ips `unionBags` unsolved_dicts `unionBags` unsolved_funeqs
208 209 210 211 212 213 214 215 216 217 218 219 220 221
\end{code}

%*********************************************************************
%*                                                                   * 
*                      Main Interaction Solver                       *
*                                                                    *
**********************************************************************

Note [Basic plan] 
~~~~~~~~~~~~~~~~~
1. Canonicalise (unary)
2. Pairwise interaction (binary)
    * Take one from work list 
    * Try all pair-wise interactions with each constraint in inert
222 223 224 225
   
   As an optimisation, we prioritize the equalities both in the 
   worklist and in the inerts. 

226 227 228 229 230 231 232 233
3. Try to solve spontaneously for equalities involving touchables 
4. Top-level interaction (binary wrt top-level)
   Superclass decomposition belongs in (4), see note [Superclasses]

\begin{code}
type AtomicInert = CanonicalCt     -- constraint pulled from InertSet
type WorkItem    = CanonicalCt     -- constraint pulled from WorkList

234
------------------------
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
data StopOrContinue 
  = Stop			-- Work item is consumed
  | ContinueWith WorkItem	-- Not consumed

instance Outputable StopOrContinue where
  ppr Stop             = ptext (sLit "Stop")
  ppr (ContinueWith w) = ptext (sLit "ContinueWith") <+> ppr w

-- Results after interacting a WorkItem as far as possible with an InertSet
data StageResult
  = SR { sr_inerts     :: InertSet
           -- The new InertSet to use (REPLACES the old InertSet)
       , sr_new_work   :: WorkList
           -- Any new work items generated (should be ADDED to the old WorkList)
           -- Invariant: 
           --    sr_stop = Just workitem => workitem is *not* in sr_inerts and
           --                               workitem is inert wrt to sr_inerts
       , sr_stop       :: StopOrContinue
       }

instance Outputable StageResult where
  ppr (SR { sr_inerts = inerts, sr_new_work = work, sr_stop = stop })
    = ptext (sLit "SR") <+> 
      braces (sep [ ptext (sLit "inerts =") <+> ppr inerts <> comma
             	  , ptext (sLit "new work =") <+> ppr work <> comma
             	  , ptext (sLit "stop =") <+> ppr stop])

262 263 264
type SubGoalDepth = Int	  -- Starts at zero; used to limit infinite
     		    	  -- recursion of sub-goals
type SimplifierStage = SubGoalDepth -> WorkItem -> InertSet -> TcS StageResult 
265 266

-- Combine a sequence of simplifier 'stages' to create a pipeline 
267 268 269
runSolverPipeline :: SubGoalDepth
                  -> [(String, SimplifierStage)]
		  -> InertSet -> WorkItem 
270 271
                  -> TcS (InertSet, WorkList)
-- Precondition: non-empty list of stages 
272
runSolverPipeline depth pipeline inerts workItem
273 274 275 276 277
  = do { traceTcS "Start solver pipeline" $ 
            vcat [ ptext (sLit "work item =") <+> ppr workItem
                 , ptext (sLit "inerts    =") <+> ppr inerts]

       ; let itr_in = SR { sr_inerts = inerts
278 279
                         , sr_new_work = emptyWorkList
                         , sr_stop = ContinueWith workItem }
280 281 282 283
       ; itr_out <- run_pipeline pipeline itr_in
       ; let new_inert 
              = case sr_stop itr_out of 
       	          Stop              -> sr_inerts itr_out
284
                  ContinueWith item -> sr_inerts itr_out `updInertSet` item
285 286 287 288 289 290 291 292 293 294 295
       ; return (new_inert, sr_new_work itr_out) }
  where 
    run_pipeline :: [(String, SimplifierStage)]
                 -> StageResult -> TcS StageResult
    run_pipeline [] itr                         = return itr
    run_pipeline _  itr@(SR { sr_stop = Stop }) = return itr

    run_pipeline ((name,stage):stages) 
                 (SR { sr_new_work = accum_work
                     , sr_inerts   = inerts
                     , sr_stop     = ContinueWith work_item })
296
      = do { itr <- stage depth work_item inerts 
297
           ; traceTcS ("Stage result (" ++ name ++ ")") (ppr itr)
298
           ; let itr' = itr { sr_new_work = accum_work `unionWorkList` sr_new_work itr }
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
           ; run_pipeline stages itr' }
\end{code}

Example 1:
  Inert:   {c ~ d, F a ~ t, b ~ Int, a ~ ty} (all given)
  Reagent: a ~ [b] (given)

React with (c~d)     ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~ t) ==> IR (ContinueWith (a~[b]))  False   [F [b] ~ t]
React with (b ~ Int) ==> IR (ContinueWith (a~[Int]) True    []

Example 2:
  Inert:  {c ~w d, F a ~g t, b ~w Int, a ~w ty}
  Reagent: a ~w [b]

React with (c ~w d)   ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~g t) ==> IR (ContinueWith (a~[b]))  True    []    (can't rewrite given with wanted!)
etc.

Example 3:
  Inert:  {a ~ Int, F Int ~ b} (given)
  Reagent: F a ~ b (wanted)

React with (a ~ Int)   ==> IR (ContinueWith (F Int ~ b)) True []
React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canonicalize and get nothing

\begin{code}
-- Main interaction solver: we fully solve the worklist 'in one go', 
-- returning an extended inert set.
--
-- See Note [Touchables and givens].
330 331 332 333 334 335
solveInteractGiven :: InertSet -> GivenLoc -> [EvVar] -> TcS InertSet
solveInteractGiven inert gloc evs
  = do { (_, inert_ret) <- solveInteract inert $ listToBag $
                           map mk_given evs
       ; return inert_ret }
  where
dimitris's avatar
dimitris committed
336
    flav = Given gloc GivenOrig
337 338 339 340 341 342 343 344 345 346 347 348
    mk_given ev = mkEvVarX ev flav

solveInteractWanted :: InertSet -> [WantedEvVar] -> TcS InertSet
solveInteractWanted inert wvs
  = do { (_,inert_ret) <- solveInteract inert $ listToBag $
                          map wantedToFlavored wvs
       ; return inert_ret }

solveInteract :: InertSet -> Bag FlavoredEvVar -> TcS (Bool, InertSet)
-- Post: (True,  inert_set) means we managed to discharge all constraints
--                          without actually doing any interactions!
--       (False, inert_set) means some interactions occurred
349 350
solveInteract inert ws 
  = do { dyn_flags <- getDynFlags
351 352 353 354 355 356 357
       ; sctx <- getTcSContext

       ; traceTcS "solveInteract, before clever canonicalization:" $
         vcat [ text "ws = " <+>  ppr (mapBag (\(EvVarX ev ct)
                                                   -> (ct,evVarPred ev)) ws)
              , text "inert = " <+> ppr inert ]

358 359 360 361
       ; can_ws <- mkCanonicalFEVs ws

       ; (flag, inert_ret)
           <- foldrWorkListM (tryPreSolveAndInteract sctx dyn_flags) (True,inert) can_ws
362 363 364 365 366 367 368 369 370

       ; traceTcS "solveInteract, after clever canonicalization (and interaction):" $
         vcat [ text "No interaction happened = " <+> ppr flag
              , text "inert_ret = " <+> ppr inert_ret ]

       ; return (flag, inert_ret) }

tryPreSolveAndInteract :: SimplContext
                       -> DynFlags
371
                       -> CanonicalCt
372
                       -> (Bool, InertSet)
373 374
                       -> TcS (Bool, InertSet)
-- Returns: True if it was able to discharge this constraint AND all previous ones
375
tryPreSolveAndInteract sctx dyn_flags ct (all_previous_discharged, inert)
376 377
  = do { let inert_cts = get_inert_cts (evVarPred ev_var)

378 379 380 381 382
       ; this_one_discharged <- 
           if isCFrozenErr ct then 
               return False
           else
               dischargeFromCCans inert_cts ev_var fl
383 384 385

       ; if this_one_discharged
         then return (all_previous_discharged, inert)
386

387
         else do
388
       { inert_ret <- solveOneWithDepth (ctxtStkDepth dyn_flags,0,[]) ct inert
389 390 391
       ; return (False, inert_ret) } }

  where
392 393 394
    ev_var = cc_id ct
    fl = cc_flavor ct 

395 396 397 398 399 400 401 402 403 404
    get_inert_cts (ClassP clas _)
      | simplEqsOnly sctx = emptyCCan
      | otherwise         = fst (getRelevantCts clas (inert_dicts inert))
    get_inert_cts (IParam {})
      = emptyCCan -- We must not do the same thing for IParams, because (contrary
                  -- to dictionaries), work items /must/ override inert items.
                 -- See Note [Overriding implicit parameters] in TcInteract.
    get_inert_cts (EqPred {})
      = inert_eqs inert `unionBags` cCanMapToBag (inert_funeqs inert)

405
dischargeFromCCans :: CanonicalCts -> EvVar -> CtFlavor -> TcS Bool
406 407 408 409
-- See if this (pre-canonicalised) work-item is identical to a 
-- one already in the inert set. Reasons:
--    a) Avoid creating superclass constraints for millions of incoming (Num a) constraints
--    b) Termination for improve_eqs in TcSimplify.simpl_loop
410
dischargeFromCCans cans ev fl
411 412 413 414 415 416
  = Bag.foldrBag discharge_ct (return False) cans
  where 
    the_pred = evVarPred ev

    discharge_ct :: CanonicalCt -> TcS Bool -> TcS Bool
    discharge_ct ct _rest
417
      | evVarPred (cc_id ct) `eqPred` the_pred
418
      , cc_flavor ct `canSolve` fl
419
      = do { when (isWanted fl) $ setEvBind ev (evVarTerm (cc_id ct))
420 421 422 423 424
           	 -- Deriveds need no evidence
    	         -- For Givens, we already have evidence, and we don't need it twice 
           ; return True }

    discharge_ct _ct rest = rest
425 426 427 428
\end{code}

Note [Avoiding the superclass explosion] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
429 430 431 432 433 434 435 436 437 438 439 440
This note now is not as significant as it used to be because we no
longer add the superclasses of Wanted as Derived, except only if they
have equality superclasses or superclasses with functional
dependencies. The fear was that hundreds of identical wanteds would
give rise each to the same superclass or equality Derived's which
would lead to a blo-up in the number of interactions.

Instead, what we do with tryPreSolveAndCanon, is when we encounter a
new constraint, we very quickly see if it can be immediately
discharged by a class constraint in our inert set or the previous
canonicals. If so, we add nothing to the returned canonical
constraints.
441 442

\begin{code}
443 444
solveOne :: WorkItem -> InertSet -> TcS InertSet 
solveOne workItem inerts 
445
  = do { dyn_flags <- getDynFlags
446
       ; solveOneWithDepth (ctxtStkDepth dyn_flags,0,[]) workItem inerts
447 448 449 450
       }

-----------------
solveInteractWithDepth :: (Int, Int, [WorkItem])
451 452
                       -> WorkList -> InertSet -> TcS InertSet
solveInteractWithDepth ctxt@(max_depth,n,stack) ws inert
453 454 455 456 457 458 459 460
  | isEmptyWorkList ws
  = return inert

  | n > max_depth 
  = solverDepthErrorTcS n stack

  | otherwise 
  = do { traceTcS "solveInteractWithDepth" $ 
461
              vcat [ text "Current depth =" <+> ppr n
462 463
                   , text "Max depth =" <+> ppr max_depth
                   , text "ws =" <+> ppr ws ]
464

465 466 467

       ; foldrWorkListM (solveOneWithDepth ctxt) inert ws }
              -- use foldr to preserve the order
468 469 470 471 472

------------------
-- Fully interact the given work item with an inert set, and return a
-- new inert set which has assimilated the new information.
solveOneWithDepth :: (Int, Int, [WorkItem])
473 474
                  -> WorkItem -> InertSet -> TcS InertSet
solveOneWithDepth (max_depth, depth, stack) work inert
475 476
  = do { traceFireTcS depth (text "Solving {" <+> ppr work)
       ; (new_inert, new_work) <- runSolverPipeline depth thePipeline inert work
477 478 479
         
	 -- Recursively solve the new work generated 
         -- from workItem, with a greater depth
480
       ; res_inert <- solveInteractWithDepth (max_depth, depth+1, work:stack) new_work new_inert 
481

482 483
       ; traceFireTcS depth (text "Done }" <+> ppr work) 

484 485 486
       ; return res_inert }

thePipeline :: [(String,SimplifierStage)]
487 488 489 490
thePipeline = [ ("interact with inert eqs", interactWithInertEqsStage)
              , ("interact with inerts",    interactWithInertsStage)
              , ("spontaneous solve",       spontaneousSolveStage)
              , ("top-level reactions",     topReactionsStage) ]
491 492 493 494 495 496 497 498
\end{code}

*********************************************************************************
*                                                                               * 
                       The spontaneous-solve Stage
*                                                                               *
*********************************************************************************

499 500 501 502 503 504
Note [Efficient Orientation] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two cases where we have to be careful about 
orienting equalities to get better efficiency. 

505
Case 1: In Rewriting Equalities (function rewriteEqLHS) 
506

507 508 509 510 511 512 513 514 515 516
    When rewriting two equalities with the same LHS:
          (a)  (tv ~ xi1) 
          (b)  (tv ~ xi2) 
    We have a choice of producing work (xi1 ~ xi2) (up-to the
    canonicalization invariants) However, to prevent the inert items
    from getting kicked out of the inerts first, we prefer to
    canonicalize (xi1 ~ xi2) if (b) comes from the inert set, or (xi2
    ~ xi1) if (a) comes from the inert set.
    
    This choice is implemented using the WhichComesFromInert flag. 
517

518 519 520 521 522
Case 2: Functional Dependencies 
    Again, we should prefer, if possible, the inert variables on the RHS

Case 3: IP improvement work
    We must always rewrite so that the inert type is on the right. 
523

524 525
\begin{code}
spontaneousSolveStage :: SimplifierStage 
526
spontaneousSolveStage depth workItem inerts 
527 528
  = do { mSolve <- trySpontaneousSolve workItem

529
       ; case mSolve of 
530
           SPCantSolve -> -- No spontaneous solution for him, keep going
531 532
               return $ SR { sr_new_work   = emptyWorkList
                           , sr_inerts     = inerts
533 534
                           , sr_stop       = ContinueWith workItem }

535
           SPSolved workItem'
dimitris's avatar
dimitris committed
536
               | not (isGivenOrSolvedCt workItem) 
537 538 539 540 541
	       	 -- Original was wanted or derived but we have now made him 
                 -- given so we have to interact him with the inerts due to
                 -- its status change. This in turn may produce more work.
		 -- We do this *right now* (rather than just putting workItem'
		 -- back into the work-list) because we've solved 
542 543 544
               -> do { bumpStepCountTcS
	       	     ; traceFireTcS depth (ptext (sLit "Spontaneous (w/d)") <+> ppr workItem)
                     ; (new_inert, new_work) <- runSolverPipeline depth
545 546 547
                             [ ("recursive interact with inert eqs", interactWithInertEqsStage)
                             , ("recursive interact with inerts", interactWithInertsStage)
                             ] inerts workItem'
548 549 550
                     ; return $ SR { sr_new_work = new_work 
                                   , sr_inerts   = new_inert -- will include workItem' 
                                   , sr_stop     = Stop }
551
                     }
552 553 554
               | otherwise 
                   -> -- Original was given; he must then be inert all right, and
                      -- workList' are all givens from flattening
555 556 557 558 559
                      do { bumpStepCountTcS
	       	         ; traceFireTcS depth (ptext (sLit "Spontaneous (g)") <+> ppr workItem)
                         ; return $ SR { sr_new_work = emptyWorkList
                                       , sr_inerts   = inerts `updInertSet` workItem' 
                                       , sr_stop     = Stop } }
560 561 562 563
           SPError -> -- Return with no new work
               return $ SR { sr_new_work = emptyWorkList
                           , sr_inerts   = inerts
                           , sr_stop     = Stop }
564
       }
565

566 567 568 569 570 571
data SPSolveResult = SPCantSolve | SPSolved WorkItem | SPError
-- SPCantSolve means that we can't do the unification because e.g. the variable is untouchable
-- SPSolved workItem' gives us a new *given* to go on 
-- SPError means that it's completely impossible to solve this equality, eg due to a kind error


572
-- @trySpontaneousSolve wi@ solves equalities where one side is a
573
-- touchable unification variable.
574
--     	    See Note [Touchables and givens] 
575 576
trySpontaneousSolve :: WorkItem -> TcS SPSolveResult
trySpontaneousSolve workItem@(CTyEqCan { cc_id = cv, cc_flavor = gw, cc_tyvar = tv1, cc_rhs = xi })
dimitris's avatar
dimitris committed
577
  | isGivenOrSolved gw
578
  = return SPCantSolve
579 580 581 582
  | Just tv2 <- tcGetTyVar_maybe xi
  = do { tch1 <- isTouchableMetaTyVar tv1
       ; tch2 <- isTouchableMetaTyVar tv2
       ; case (tch1, tch2) of
583 584 585 586
           (True,  True)  -> trySpontaneousEqTwoWay cv gw tv1 tv2
           (True,  False) -> trySpontaneousEqOneWay cv gw tv1 xi
           (False, True)  -> trySpontaneousEqOneWay cv gw tv2 (mkTyVarTy tv1)
	   _ -> return SPCantSolve }
587 588
  | otherwise
  = do { tch1 <- isTouchableMetaTyVar tv1
589
       ; if tch1 then trySpontaneousEqOneWay cv gw tv1 xi
590 591
                 else do { traceTcS "Untouchable LHS, can't spontaneously solve workitem:" 
                                    (ppr workItem) 
592
                         ; return SPCantSolve }
593
       }
594 595 596 597

  -- No need for 
  --      trySpontaneousSolve (CFunEqCan ...) = ...
  -- See Note [No touchables as FunEq RHS] in TcSMonad
598
trySpontaneousSolve _ = return SPCantSolve
599 600

----------------
601
trySpontaneousEqOneWay :: CoVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
602
-- tv is a MetaTyVar, not untouchable
603
trySpontaneousEqOneWay cv gw tv xi	
604
  | not (isSigTyVar tv) || isTyVarTy xi 
605 606
  = do { let kxi = typeKind xi -- NB: 'xi' is fully rewritten according to the inerts 
                               -- so we have its more specific kind in our hands
607
       ; if kxi `isSubKind` tyVarKind tv then
608
             solveWithIdentity cv gw tv xi
609 610 611
         else return SPCantSolve
{-
         else if tyVarKind tv `isSubKind` kxi then
612 613 614 615 616 617
             return SPCantSolve -- kinds are compatible but we can't solveWithIdentity this way
                                -- This case covers the  a_touchable :: * ~ b_untouchable :: ?? 
                                -- which has to be deferred or floated out for someone else to solve 
                                -- it in a scope where 'b' is no longer untouchable.
         else do { addErrorTcS KindError gw (mkTyVarTy tv) xi -- See Note [Kind errors]
                 ; return SPError }
618
-}
619
       }
620
  | otherwise -- Still can't solve, sig tyvar and non-variable rhs
621
  = return SPCantSolve
622 623

----------------
624
trySpontaneousEqTwoWay :: CoVar -> CtFlavor -> TcTyVar -> TcTyVar -> TcS SPSolveResult
625
-- Both tyvars are *touchable* MetaTyvars so there is only a chance for kind error here
626
trySpontaneousEqTwoWay cv gw tv1 tv2
627
  | k1 `isSubKind` k2
628
  , nicer_to_update_tv2 = solveWithIdentity cv gw tv2 (mkTyVarTy tv1)
629
  | k2 `isSubKind` k1 
630
  = solveWithIdentity cv gw tv1 (mkTyVarTy tv2)
631
  | otherwise -- None is a subkind of the other, but they are both touchable! 
632 633 634
  = return SPCantSolve
    -- do { addErrorTcS KindError gw (mkTyVarTy tv1) (mkTyVarTy tv2)
    --   ; return SPError }
635 636 637 638 639 640
  where
    k1 = tyVarKind tv1
    k2 = tyVarKind tv2
    nicer_to_update_tv2 = isSigTyVar tv1 || isSystemName (Var.varName tv2)
\end{code}

641 642 643 644 645 646
Note [Kind errors] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the wanted problem: 
      alpha ~ (# Int, Int #) 
where alpha :: ?? and (# Int, Int #) :: (#). We can't spontaneously solve this constraint, 
but we should rather reject the program that give rise to it. If 'trySpontaneousEqTwoWay' 
647
simply returns @CantSolve@ then that wanted constraint is going to propagate all the way and 
648
get quantified over in inference mode. That's bad because we do know at this point that the 
649
constraint is insoluble. Instead, we call 'recKindErrorTcS' here, which will fail later on.
650 651

The same applies in canonicalization code in case of kind errors in the givens. 
652

653
However, when we canonicalize givens we only check for compatibility (@compatKind@). 
654
If there were a kind error in the givens, this means some form of inconsistency or dead code.
655

656 657 658 659 660
You may think that when we spontaneously solve wanteds we may have to look through the 
bindings to determine the right kind of the RHS type. E.g one may be worried that xi is 
@alpha@ where alpha :: ? and a previous spontaneous solving has set (alpha := f) with (f :: *).
But we orient our constraints so that spontaneously solved ones can rewrite all other constraint
so this situation can't happen. 
661

662 663
Note [Spontaneous solving and kind compatibility] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
664 665 666
Note that our canonical constraints insist that *all* equalities (tv ~
xi) or (F xis ~ rhs) require the LHS and the RHS to have *compatible*
the same kinds.  ("compatible" means one is a subKind of the other.)
667

668 669 670 671 672 673 674 675 676 677 678 679 680 681
  - It can't be *equal* kinds, because
     b) wanted constraints don't necessarily have identical kinds
               eg   alpha::? ~ Int
     b) a solved wanted constraint becomes a given

  - SPJ thinks that *given* constraints (tv ~ tau) always have that
    tau has a sub-kind of tv; and when solving wanted constraints
    in trySpontaneousEqTwoWay we re-orient to achieve this.

  - Note that the kind invariant is maintained by rewriting.
    Eg wanted1 rewrites wanted2; if both were compatible kinds before,
       wanted2 will be afterwards.  Similarly givens.

Caveat:
682 683 684 685 686 687 688 689 690
  - Givens from higher-rank, such as: 
          type family T b :: * -> * -> * 
          type instance T Bool = (->) 

          f :: forall a. ((T a ~ (->)) => ...) -> a -> ... 
          flop = f (...) True 
     Whereas we would be able to apply the type instance, we would not be able to 
     use the given (T Bool ~ (->)) in the body of 'flop' 

691 692 693 694 695 696 697

Note [Avoid double unifications] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The spontaneous solver has to return a given which mentions the unified unification
variable *on the left* of the equality. Here is what happens if not: 
  Original wanted:  (a ~ alpha),  (alpha ~ Int) 
We spontaneously solve the first wanted, without changing the order! 
698
      given : a ~ alpha      [having unified alpha := a] 
699 700 701
Now the second wanted comes along, but he cannot rewrite the given, so we simply continue.
At the end we spontaneously solve that guy, *reunifying*  [alpha := Int] 

702
We avoid this problem by orienting the resulting given so that the unification
703 704
variable is on the left.  [Note that alternatively we could attempt to
enforce this at canonicalization]
705

706 707 708
See also Note [No touchables as FunEq RHS] in TcSMonad; avoiding
double unifications is the main reason we disallow touchable
unification variables as RHS of type family equations: F xis ~ alpha.
709 710 711

\begin{code}
----------------
712 713

solveWithIdentity :: CoVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
714 715
-- Solve with the identity coercion 
-- Precondition: kind(xi) is a sub-kind of kind(tv)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
716 717 718
-- Precondition: CtFlavor is Wanted or Derived
-- See [New Wanted Superclass Work] to see why solveWithIdentity 
--     must work for Derived as well as Wanted
719
-- Returns: workItem where 
720
--        workItem = the new Given constraint
721 722 723
solveWithIdentity cv wd tv xi 
  = do { traceTcS "Sneaky unification:" $ 
                       vcat [text "Coercion variable:  " <+> ppr wd, 
724 725 726
                             text "Coercion:           " <+> pprEq (mkTyVarTy tv) xi,
                             text "Left  Kind is     : " <+> ppr (typeKind (mkTyVarTy tv)),
                             text "Right Kind is     : " <+> ppr (typeKind xi)
727
                  ]
728

729
       ; setWantedTyBind tv xi
730 731
       ; let refl_xi = mkReflCo xi
       ; cv_given <- newGivenCoVar (mkTyVarTy tv) xi refl_xi
732

733
       ; when (isWanted wd) (setCoBind cv refl_xi)
734
           -- We don't want to do this for Derived, that's why we use 'when (isWanted wd)'
735
       ; return $ SPSolved (CTyEqCan { cc_id = cv_given
dimitris's avatar
dimitris committed
736
                                     , cc_flavor = mkSolvedFlavor wd UnkSkol
737
                                     , cc_tyvar  = tv, cc_rhs = xi }) }
738 739 740 741 742 743 744 745 746
\end{code}


*********************************************************************************
*                                                                               * 
                       The interact-with-inert Stage
*                                                                               *
*********************************************************************************

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
Note [The Solver Invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We always add Givens first.  So you might think that the solver has
the invariant

   If the work-item is Given, 
   then the inert item must Given

But this isn't quite true.  Suppose we have, 
    c1: [W] beta ~ [alpha], c2 : [W] blah, c3 :[W] alpha ~ Int
After processing the first two, we get
     c1: [G] beta ~ [alpha], c2 : [W] blah
Now, c3 does not interact with the the given c1, so when we spontaneously
solve c3, we must re-react it with the inert set.  So we can attempt a 
reaction between inert c2 [W] and work-item c3 [G].

It *is* true that [Solver Invariant]
   If the work-item is Given, 
   AND there is a reaction
   then the inert item must Given
or, equivalently,
   If the work-item is Given, 
   and the inert item is Wanted/Derived
   then there is no reaction

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
\begin{code}
-- Interaction result of  WorkItem <~> AtomicInert
data InteractResult
   = IR { ir_stop         :: StopOrContinue
            -- Stop
            --   => Reagent (work item) consumed.
            -- ContinueWith new_reagent
            --   => Reagent transformed but keep gathering interactions. 
            --      The transformed item remains inert with respect 
            --      to any previously encountered inerts.

        , ir_inert_action :: InertAction
            -- Whether the inert item should remain in the InertSet.

        , ir_new_work     :: WorkList
            -- new work items to add to the WorkList
788 789

        , ir_fire :: Maybe String    -- Tells whether a rule fired, and if so what
790 791 792
        }

-- What to do with the inert reactant.
793
data InertAction = KeepInert | DropInert 
794

795 796 797 798
mkIRContinue :: String -> WorkItem -> InertAction -> WorkList -> TcS InteractResult
mkIRContinue rule wi keep newWork 
  = return $ IR { ir_stop = ContinueWith wi, ir_inert_action = keep
                , ir_new_work = newWork, ir_fire = Just rule }
799

800 801
mkIRStopK :: String -> WorkList -> TcS InteractResult
mkIRStopK rule newWork
802 803
  = return $ IR { ir_stop = Stop, ir_inert_action = KeepInert
                , ir_new_work = newWork, ir_fire = Just rule }
804

805 806 807 808 809
mkIRStopD :: String -> WorkList -> TcS InteractResult
mkIRStopD rule newWork
  = return $ IR { ir_stop = Stop, ir_inert_action = DropInert
                , ir_new_work = newWork, ir_fire = Just rule }

810
noInteraction :: Monad m => WorkItem -> m InteractResult
811 812 813
noInteraction wi
  = return $ IR { ir_stop = ContinueWith wi, ir_inert_action = KeepInert
                , ir_new_work = emptyWorkList, ir_fire = Nothing }
814

dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
815
data WhichComesFromInert = LeftComesFromInert | RightComesFromInert 
816
     -- See Note [Efficient Orientation] 
817

818

819
---------------------------------------------------
820 821 822
-- Interact a single WorkItem with the equalities of an inert set as
-- far as possible, i.e. until we get a Stop result from an individual
-- reaction (i.e. when the WorkItem is consumed), or until we've
823 824 825
-- interact the WorkItem with the entire equalities of the InertSet

interactWithInertEqsStage :: SimplifierStage 
826
interactWithInertEqsStage depth workItem inert
827
  = Bag.foldrBagM (interactNext depth) initITR (inert_eqs inert)
828
                        -- use foldr to preserve the order          
829 830 831 832
  where
    initITR = SR { sr_inerts   = inert { inert_eqs = emptyCCan }
                 , sr_new_work = emptyWorkList
                 , sr_stop     = ContinueWith workItem }
833

834 835 836 837
---------------------------------------------------
-- Interact a single WorkItem with *non-equality* constraints in the inert set. 
-- Precondition: equality interactions must have already happened, hence we have 
-- to pick up some information from the incoming inert, before folding over the 
838 839
-- "Other" constraints it contains!

840
interactWithInertsStage :: SimplifierStage
841
interactWithInertsStage depth workItem inert
842 843 844 845
  = let (relevant, inert_residual) = getISRelevant workItem inert 
        initITR = SR { sr_inerts   = inert_residual
                     , sr_new_work = emptyWorkList
                     , sr_stop     = ContinueWith workItem } 
846 847
    in Bag.foldrBagM (interactNext depth) initITR relevant 
                        -- use foldr to preserve the order
848
  where 
849
    getISRelevant :: CanonicalCt -> InertSet -> (CanonicalCts, InertSet) 
850 851 852 853 854 855
    getISRelevant (CFrozenErr {}) is = (emptyCCan, is)
                  -- Nothing s relevant; we have alread interacted
                  -- it with the equalities in the inert set

    getISRelevant (CDictCan { cc_class = cls } ) is
      = let (relevant, residual_map) = getRelevantCts cls (inert_dicts is)
856 857 858 859 860 861 862 863 864 865 866 867 868
        in (relevant, is { inert_dicts = residual_map }) 
    getISRelevant (CFunEqCan { cc_fun = tc } ) is 
      = let (relevant, residual_map) = getRelevantCts tc (inert_funeqs is) 
        in (relevant, is { inert_funeqs = residual_map })
    getISRelevant (CIPCan { cc_ip_nm = nm }) is 
      = let (relevant, residual_map) = getRelevantCts nm (inert_ips is)
        in (relevant, is { inert_ips = residual_map }) 
    -- An equality, finally, may kick everything except equalities out 
    -- because we have already interacted the equalities in interactWithInertEqsStage
    getISRelevant _eq_ct is  -- Equality, everything is relevant for this one 
                             -- TODO: if we were caching variables, we'd know that only 
                             --       some are relevant. Experiment with this for now. 
      = let cts = cCanMapToBag (inert_ips is) `unionBags` 
869 870 871
                    cCanMapToBag (inert_dicts is) `unionBags` cCanMapToBag (inert_funeqs is)
        in (cts, is { inert_dicts  = emptyCCanMap
                    , inert_ips    = emptyCCanMap
872
                    , inert_funeqs = emptyCCanMap })
873

874 875
interactNext :: SubGoalDepth -> AtomicInert -> StageResult -> TcS StageResult 
interactNext depth inert it
876 877 878 879 880 881 882 883 884 885 886
  | ContinueWith work_item <- sr_stop it
  = do { let inerts = sr_inerts it 

       ; IR { ir_new_work = new_work, ir_inert_action = inert_action
            , ir_fire = fire_info, ir_stop = stop } 
            <- interactWithInert inert work_item

       ; let mk_msg rule 
      	       = text rule <+> keep_doc
      	         <+> vcat [ ptext (sLit "Inert =") <+> ppr inert
      	                  , ptext (sLit "Work =")  <+> ppr work_item
887
      	                  , ppUnless (isEmptyWorkList new_work) $
888 889 890 891 892 893 894 895 896 897 898 899 900
                            ptext (sLit "New =") <+> ppr new_work ]
             keep_doc = case inert_action of
                 	  KeepInert -> ptext (sLit "[keep]")
                 	  DropInert -> ptext (sLit "[drop]")
       ; case fire_info of
           Just rule -> do { bumpStepCountTcS
                           ; traceFireTcS depth (mk_msg rule) }
           Nothing  -> return ()

       -- New inerts depend on whether we KeepInert or not 
       ; let inerts_new = case inert_action of
                            KeepInert -> inerts `updInertSet` inert
                            DropInert -> inerts
901 902

       ; return $ SR { sr_inerts   = inerts_new
903
                     , sr_new_work = sr_new_work it `unionWorkList` new_work
904
                     , sr_stop     = stop } }
905 906
  | otherwise 
  = return $ it { sr_inerts = (sr_inerts it) `updInertSet` inert }
907 908

-- Do a single interaction of two constraints.
909
interactWithInert :: AtomicInert -> WorkItem -> TcS InteractResult
910 911 912
interactWithInert inert workItem 
  = do { ctxt <- getTcSContext
       ; let is_allowed  = allowedInteraction (simplEqsOnly ctxt) inert workItem 
913

914 915
       ; if is_allowed then 
              doInteractWithInert inert workItem 
916
          else 
917 918
              noInteraction workItem 
       }
919 920 921 922 923 924 925 926

allowedInteraction :: Bool -> AtomicInert -> WorkItem -> Bool 
-- Allowed interactions 
allowedInteraction eqs_only (CDictCan {}) (CDictCan {}) = not eqs_only
allowedInteraction eqs_only (CIPCan {})   (CIPCan {})   = not eqs_only
allowedInteraction _ _ _ = True 

--------------------------------------------
927
doInteractWithInert :: CanonicalCt -> CanonicalCt -> TcS InteractResult
928 929
-- Identical class constraints.

930
doInteractWithInert
931 932
  inertItem@(CDictCan { cc_id = d1, cc_flavor = fl1, cc_class = cls1, cc_tyargs = tys1 }) 
   workItem@(CDictCan { cc_id = d2, cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
933

934 935
  | cls1 == cls2  
  = do { let pty1 = ClassP cls1 tys1
936 937
             pty2 = ClassP cls2 tys2
             inert_pred_loc     = (pty1, pprFlavorArising fl1)
938
             work_item_pred_loc = (pty2, pprFlavorArising fl2)
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

       ; any_fundeps 
           <- if isGivenOrSolved fl1 && isGivenOrSolved fl2 then return Nothing
              -- NB: We don't create fds for given (and even solved), have not seen a useful
              -- situation for these and even if we did we'd have to be very careful to only
              -- create Derived's and not Wanteds. 

              else let fd_eqns = improveFromAnother inert_pred_loc work_item_pred_loc
                       wloc    = get_workitem_wloc fl2 
                   in rewriteWithFunDeps fd_eqns tys2 wloc
                      -- See Note [Efficient Orientation], [When improvement happens]

       ; case any_fundeps of
           -- No Functional Dependencies 
           Nothing             
               | eqTypes tys1 tys2 -> solveOneFromTheOther "Cls/Cls" (EvId d1,fl1) workItem
               | otherwise         -> noInteraction workItem

           -- Actual Functional Dependencies
           Just (rewritten_tys2,cos2,fd_work) 
               | not (eqTypes tys1 rewritten_tys2) 
               -- Standard thing: create derived fds and keep on going. Importantly we don't
               -- throw workitem back in the worklist because this can cause loops. See #5236.
               -> do { fd_cans <- mkCanonicalFDAsDerived fd_work
                     ; mkIRContinue "Cls/Cls fundep (not solved)" workItem KeepInert fd_cans }

               -- This WHOLE otherwise branch is an optimization where the fd made the things match
               | otherwise  
               , let dict_co = mkTyConAppCo (classTyCon cls1) cos2
               -> case fl2 of
                    Given {} 
                        -> pprPanic "Unexpected given!" (ppr inertItem $$ ppr workItem)
                           -- The only way to have created a fundep is if the inert was
                           -- wanted or derived, in which case the workitem can't be given!
                    Derived {}
                        -- The types were made to exactly match so we don't need 
                        -- the workitem any longer.
                        -> do { fd_cans <- mkCanonicalFDAsDerived fd_work
                               -- No rewriting really, so let's create deriveds fds
                              ; mkIRStopK "Cls/Cls fundep (solved)" fd_cans }
		    Wanted  {} 
		        | isDerived fl1 
                            -> do { setDictBind d2 (EvCast d1 dict_co)
			          ; let inert_w = inertItem { cc_flavor = fl2 }
983 984 985
			   -- A bit naughty: we take the inert Derived, 
			   -- turn it into a Wanted, use it to solve the work-item
			   -- and put it back into the work-list
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
			   -- Maybe rather than starting again, we could keep going 
                           -- with the rewritten workitem, having dropped the inert, but its
                           -- safe to restart.
                          
                           -- Also: we have rewriting so lets create wanted fds
                                  ; fd_cans <- mkCanonicalFDAsWanted fd_work
                                  ; mkIRStopD "Cls/Cls fundep (solved)" $ 
                                    workListFromNonEq inert_w `unionWorkList` fd_cans }
		        | otherwise
                        -> do { setDictBind d2 (EvCast d1 dict_co)
                          -- Rewriting is happening, so we have to create wanted fds
                              ; fd_cans <- mkCanonicalFDAsWanted fd_work
                              ; mkIRStopK "Cls/Cls fundep (solved)" fd_cans }
       }
  where get_workitem_wloc (Wanted wl)  = wl 
        get_workitem_wloc (Derived wl) = wl 
        get_workitem_wloc (Given {})   = panic "Unexpected given!"

1004 1005 1006

-- Class constraint and given equality: use the equality to rewrite
-- the class constraint. 
1007
doInteractWithInert (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
1008 1009 1010
                    (CDictCan { cc_id = dv, cc_flavor = wfl, cc_class = cl, cc_tyargs = xis }) 
  | ifl `canRewrite` wfl 
  , tv `elemVarSet` tyVarsOfTypes xis
1011
  = do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,wfl,cl,xis)
1012 1013
            -- Continue with rewritten Dictionary because we can only be in the 
            -- interactWithEqsStage, so the dictionary is inert. 
1014
       ; mkIRContinue "Eq/Cls" rewritten_dict KeepInert emptyWorkList }
1015
    
1016
doInteractWithInert (CDictCan { cc_id = dv, cc_flavor = ifl, cc_class = cl, cc_tyargs = xis }) 
1017 1018 1019
           workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfTypes xis
1020
  = do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,ifl,cl,xis)
1021
       ; mkIRContinue "Cls/Eq" workItem DropInert (workListFromNonEq rewritten_dict) }
1022 1023 1024

-- Class constraint and given equality: use the equality to rewrite
-- the class constraint.
1025
doInteractWithInert (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
1026 1027 1028 1029
                    (CIPCan { cc_id = ipid, cc_flavor = wfl, cc_ip_nm = nm, cc_ip_ty = ty }) 
  | ifl `canRewrite` wfl
  , tv `elemVarSet` tyVarsOfType ty 
  = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,wfl,nm,ty) 
1030
       ; mkIRContinue "Eq/IP" rewritten_ip KeepInert emptyWorkList } 
1031

1032
doInteractWithInert (CIPCan { cc_id = ipid, cc_flavor = ifl, cc_ip_nm = nm, cc_ip_ty = ty }) 
1033 1034 1035 1036
           workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfType ty
  = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,ifl,nm,ty) 
1037
       ; mkIRContinue "IP/Eq" workItem DropInert (workListFromNonEq rewritten_ip) }
1038 1039 1040 1041 1042 1043

-- Two implicit parameter constraints.  If the names are the same,
-- but their types are not, we generate a wanted type equality 
-- that equates the type (this is "improvement").  
-- However, we don't actually need the coercion evidence,
-- so we just generate a fresh coercion variable that isn't used anywhere.
1044
doInteractWithInert (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
1045
           workItem@(CIPCan { cc_flavor = wfl, cc_ip_nm = nm2, cc_ip_ty = ty2 })
dimitris's avatar
dimitris committed
1046
  | nm1 == nm2 && isGivenOrSolved wfl && isGivenOrSolved ifl
1047 1048 1049
  = 	-- See Note [Overriding implicit parameters]
        -- Dump the inert item, override totally with the new one
	-- Do not require type equality
1050 1051 1052
	-- For example, given let ?x::Int = 3 in let ?x::Bool = True in ...
	--              we must *override* the outer one with the inner one
    mkIRContinue "IP/IP override" workItem DropInert emptyWorkList
1053

1054
  | nm1 == nm2 && ty1 `eqType` ty2 
1055
  = solveOneFromTheOther "IP/IP" (EvId id1,ifl) workItem 
1056

1057
  | nm1 == nm2
1058
  =  	-- See Note [When improvement happens]
1059
    do { co_var <- newCoVar ty2 ty1 -- See Note [Efficient Orientation]
1060 1061 1062 1063 1064 1065 1066
       ; let flav = Wanted (combineCtLoc ifl wfl)
       ; cans <- mkCanonical flav co_var
       ; case wfl of
           Given   {} -> pprPanic "Unexpected given IP" (ppr workItem)
           Derived {} -> pprPanic "Unexpected derived IP" (ppr workItem)
           Wanted  {} ->
               do { setIPBind (cc_id workItem) $
1067
                    EvCast id1 (mkSymCo (mkCoVarCo co_var))
1068 1069
                  ; mkIRStopK "IP/IP interaction (solved)" cans }
       }
1070 1071

-- Never rewrite a given with a wanted equality, and a type function
1072 1073 1074
-- equality can never rewrite an equality. We rewrite LHS *and* RHS 
-- of function equalities so that our inert set exposes everything that 
-- we know about equalities.
1075

1076
-- Inert: equality, work item: function equality
1077
doInteractWithInert (CTyEqCan { cc_id = cv1, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi1 }) 
1078 1079 1080
                    (CFunEqCan { cc_id = cv2, cc_flavor = wfl, cc_fun = tc
                               , cc_tyargs = args, cc_rhs = xi2 })
  | ifl `canRewrite` wfl 
1081
  , tv `elemVarSet` tyVarsOfTypes (xi2:args) -- Rewrite RHS as well
1082
  = do { rewritten_funeq <- rewriteFunEq (cv1,tv,xi1) (cv2,wfl,tc,args,xi2) 
1083
       ; mkIRStopK "Eq/FunEq" (workListFromEq rewritten_funeq) } 
1084
         -- Must Stop here, because we may no longer be inert after the rewritting.
1085 1086

-- Inert: function equality, work item: equality
1087
doInteractWithInert (CFunEqCan {cc_id = cv1, cc_flavor = ifl, cc_fun = tc
1088 1089 1090
                              , cc_tyargs = args, cc_rhs = xi1 }) 
           workItem@(CTyEqCan { cc_id = cv2, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi2 })
  | wfl `canRewrite` ifl
1091
  , tv `elemVarSet` tyVarsOfTypes (xi1:args) -- Rewrite RHS as well
1092
  = do { rewritten_funeq <- rewriteFunEq (cv2,tv,xi2) (cv1,ifl,tc,args,xi1) 
1093
       ; mkIRContinue "FunEq/Eq" workItem DropInert (workListFromEq rewritten_funeq) } 
1094 1095 1096 1097 1098 1099 1100 1101
         -- One may think that we could (KeepTransformedInert rewritten_funeq) 
         -- but that is wrong, because it may end up not being inert with respect 
         -- to future inerts. Example: 
         -- Original inert = {    F xis ~  [a], b ~ Maybe Int } 
         -- Work item comes along = a ~ [b] 
         -- If we keep { F xis ~ [b] } in the inert set we will end up with: 
         --      { F xis ~ [b], b ~ Maybe Int, a ~ [Maybe Int] } 
         -- At the end, which is *not* inert. So we should unfortunately DropInert here.
1102

1103
doInteractWithInert (CFunEqCan { cc_id = cv1, cc_flavor = fl1, cc_fun = tc1
1104 1105 1106
                               , cc_tyargs = args1, cc_rhs = xi1 }) 
           workItem@(CFunEqCan { cc_id = cv2, cc_flavor = fl2, cc_fun = tc2
                               , cc_tyargs = args2, cc_rhs = xi2 })
dimitris's avatar
dimitris committed
1107
  | tc1 == tc2 && and (zipWith eqType args1 args2) 
dimitris's avatar
dimitris committed
1108 1109
  , Just GivenSolved <- isGiven_maybe fl1 
  = mkIRContinue "Funeq/Funeq" workItem DropInert emptyWorkList
dimitris's avatar
dimitris committed
1110
  | tc1 == tc2 && and (zipWith eqType args1 args2) 
dimitris's avatar
dimitris committed
1111 1112 1113
  , Just GivenSolved <- isGiven_maybe fl2 
  = mkIRStopK "Funeq/Funeq" emptyWorkList

1114
  | fl1 `canSolve` fl2 && lhss_match
1115
  = do { cans <- rewriteEqLHS LeftComesFromInert  (mkCoVarCo cv1,xi1) (cv2,fl2,xi2) 
1116
       ; mkIRStopK "FunEq/FunEq" cans } 
1117
  | fl2 `canSolve` fl1 && lhss_match
1118
  = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCo cv2,xi2) (cv1,fl1,xi1) 
1119
       ; mkIRContinue "FunEq/FunEq" workItem DropInert cans }
1120
  where
1121
    lhss_match = tc1 == tc2 && eqTypes args1 args2 
1122

1123
doInteractWithInert (CTyEqCan { cc_id = cv1, cc_flavor = fl1, cc_tyvar = tv1, cc_rhs = xi1 }) 
1124 1125
           workItem@(CTyEqCan { cc_id = cv2, cc_flavor = fl2, cc_tyvar = tv2, cc_rhs = xi2 })
-- Check for matching LHS 
1126
  | fl1 `canSolve` fl2 && tv1 == tv2 
1127
  = do { cans <- rewriteEqLHS LeftComesFromInert (mkCoVarCo cv1,xi1) (cv2,fl2,xi2) 
1128
       ; mkIRStopK "Eq/Eq lhs" cans } 
1129

1130
  | fl2 `canSolve` fl1 && tv1 == tv2