DsBinds.hs 41 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsEvBinds
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38 39
import UniqSupply
import Unique( Unique )
40
import Digraph
41

42

43
import TyCon      ( isTupleTyCon, tyConDataCons_maybe )
44
import TcEvidence
45
import TcType
46
import Type
batterseapower's avatar
batterseapower committed
47
import Coercion hiding (substCo)
Joachim Breitner's avatar
Joachim Breitner committed
48
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, tupleCon )
Simon Marlow's avatar
Simon Marlow committed
49
import Id
50
import Class
51
import DataCon  ( dataConWorkId )
52
import Name
53
import MkId     ( seqId )
54
import IdInfo   ( IdDetails(..) )
55
import Var
56
import VarSet
Simon Marlow's avatar
Simon Marlow committed
57
import Rules
58
import VarEnv
59
import Outputable
Simon Marlow's avatar
Simon Marlow committed
60 61
import SrcLoc
import Maybes
62
import OrdList
Simon Marlow's avatar
Simon Marlow committed
63 64
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
65
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
66
import FastString
67
import ErrUtils( MsgDoc )
68
import ListSetOps( getNth )
69
import Util
70
import Control.Monad( when )
71
import MonadUtils
72
import Control.Monad(liftM)
73

Austin Seipp's avatar
Austin Seipp committed
74 75 76
{-
************************************************************************
*                                                                      *
77
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
Austin Seipp's avatar
Austin Seipp committed
78 79 80
*                                                                      *
************************************************************************
-}
81

82 83
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
84

85
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
86
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
87
                      ; return (fromOL binds') }
88 89

------------------------
90
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
91

92 93
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
                        ; return (foldBag appOL id nilOL ds_bs) }
94

95 96
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
97

98
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
99

100
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
101 102
  = do  { dflags <- getDynFlags
        ; core_expr <- dsLExpr expr
103

104 105
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
106
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
107
                   | otherwise         = var
108

109
        ; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
110

111 112 113
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
                  , fun_co_fn = co_fn, fun_tick = tick
                  , fun_infix = inf })
114
 = do   { dflags <- getDynFlags
115
        ; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
116
        ; let body' = mkOptTickBox tick body
117
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
118
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
119
           return (unitOL (makeCorePair dflags fun False 0 rhs)) }
120 121 122

dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
                  , pat_ticks = (rhs_tick, var_ticks) })
123
  = do  { body_expr <- dsGuarded grhss ty
124 125
        ; let body' = mkOptTickBox rhs_tick body_expr
        ; sel_binds <- mkSelectorBinds var_ticks pat body'
126 127
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
128
    ; return (toOL sel_binds) }
sof's avatar
sof committed
129

130 131 132 133
        -- A common case: one exported variable
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
134 135 136
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
137 138
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
139 140
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
141
        ; let   core_bind = Rec (fromOL bind_prs)
142 143
        ; ds_binds <- dsTcEvBinds ev_binds
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
144 145
                            mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_binds $
146 147
                            Let core_bind $
                            Var local
148

149 150 151 152 153 154 155
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

        ; return (main_bind `consOL` spec_binds) }
sof's avatar
sof committed
156

157 158 159
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
160
         -- See Note [Desugaring AbsBinds]
161 162 163
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
164
                              | (lcl_id, rhs) <- fromOL bind_prs ]
165
                -- Monomorphic recursion possible, hence Rec
166

167 168 169
              locals       = map abe_mono exports
              tup_expr     = mkBigCoreVarTup locals
              tup_ty       = exprType tup_expr
170
        ; ds_binds <- dsTcEvBinds ev_binds
171 172 173 174
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
175

176
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
177

178
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
179
                           , abe_mono = local, abe_prags = spec_prags })
180 181
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
182
                                 mkLams tyvars $ mkLams dicts $
183 184
                                 mkTupleSelector locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
185
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
186 187
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
188 189 190
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
191 192
                           -- Id is just the selector.  Hmm.
                     ; return ((global', rhs) `consOL` spec_binds) }
193

194
        ; export_binds_s <- mapM mk_bind exports
195

196 197
        ; return ((poly_tup_id, poly_tup_rhs) `consOL`
                    concatOL export_binds_s) }
198 199 200 201 202 203 204 205 206 207 208
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
209

Gergő Érdi's avatar
Gergő Érdi committed
210 211
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"

212
------------------------
213 214
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
215
  | is_default_method                 -- Default methods are *always* inlined
216 217
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

218 219 220
  | DFunId _ is_newtype <- idDetails gbl_id
  = (mk_dfun_w_stuff is_newtype, rhs)

221 222
  | otherwise
  = case inlinePragmaSpec inline_prag of
223 224 225
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
226
          Inline          -> inline_pair
227

228 229
  where
    inline_prag   = idInlinePragma gbl_id
230
    inlinable_unf = mkInlinableUnfolding dflags rhs
231 232
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
233 234
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
235
       , let real_arity = dict_arity + arity
236
        -- NB: The arity in the InlineRule takes account of the dictionaries
237 238 239 240 241 242
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
243

244 245 246
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
247
       | is_newtype
248 249 250 251 252 253 254 255 256 257 258 259
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

260 261 262 263

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
264

Austin Seipp's avatar
Austin Seipp committed
265
{-
266 267 268 269 270 271 272 273 274 275
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

276 277 278 279 280
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
281 282
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
283
But we don't want that, because if M.f isn't exported,
284 285
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
286 287 288
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
289 290 291
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
292 293 294 295
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
296
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
297
Although I'm a bit worried about whether full laziness might
298
float the f_lcl binding out and then inline M.f at its call site
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

314
The top-level AbsBinds for $cround has no tyvars or dicts (because the
315 316 317 318 319 320 321
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

322 323 324 325 326
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
327 328 329

and desugar it to

330 331 332
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
333 334

where B is the *non-recursive* binding
335 336 337
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
338 339

Notice (a) g has a different number of type variables to f, so we must
340 341
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
342

343 344 345 346
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
347

348 349 350 351
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
352 353

Why got to this trouble?  It's a common case, and it removes the
354
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
355 356 357 358
compilation, especially in a case where there are a *lot* of
bindings.


359 360 361 362 363 364 365 366
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
367
happen as a result of method sharing), there's a danger that we never
368 369 370 371
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
372
has the arity with which it is declared in the source code.  In this
373
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
374
should mean that (foo d) is a PAP and we don't share it.
375 376 377

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
378 379 380 381 382 383 384 385 386 387 388 389 390 391
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
392

393 394 395
Note [Implementing SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Example:
396 397
        f :: (Eq a, Ix b) => a -> b -> Bool
        {-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
398
        f = <poly_rhs>
399 400 401 402 403 404 405 406

From this the typechecker generates

    AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds

    SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
                      -> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])

407
Note that wrap_fn can transform *any* function with the right type prefix
408 409
    forall ab. (Eq a, Ix b) => XXX
regardless of XXX.  It's sort of polymorphic in XXX.  This is
410 411 412 413 414
useful: we use the same wrapper to transform each of the class ops, as
well as the dict.

From these we generate:

415
    Rule:       forall p, q, (dp:Ix p), (dq:Ix q).
416 417
                    f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq

418
    Spec bind:  f_spec = wrap_fn <poly_rhs>
419

420
Note that
421 422 423 424 425

  * The LHS of the rule may mention dictionary *expressions* (eg
    $dfIxPair dp dq), and that is essential because the dp, dq are
    needed on the RHS.

426
  * The RHS of f_spec, <poly_rhs> has a *copy* of 'binds', so that it
427
    can fully specialise it.
Austin Seipp's avatar
Austin Seipp committed
428
-}
429

430
------------------------
431
dsSpecs :: CoreExpr     -- Its rhs
432
        -> TcSpecPrags
433 434
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
435
-- See Note [Implementing SPECIALISE pragmas]
436 437 438 439 440 441
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

442 443 444
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
445 446 447
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
448
  | isJust (isClassOpId_maybe poly_id)
449 450
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
451 452
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
453 454
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
455

456 457
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
458 459 460
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
461
                            -- See Note [Activation pragmas for SPECIALISE]
462

463
  | otherwise
464
  = putSrcSpanDs loc $
465 466
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
467 468
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
469 470 471
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
472 473 474 475
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
476
           Left msg -> do { warnDs msg; return Nothing } ;
477
           Right (rule_bndrs, _fn, args) -> do
478

479
       { dflags <- getDynFlags
Simon Peyton Jones's avatar
Simon Peyton Jones committed
480 481 482 483
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
484 485 486
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
487
             rule =  mkRule False {- Not auto -} is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
488
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
489 490 491
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
492

493
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
494

Ian Lynagh's avatar
Ian Lynagh committed
495 496
       ; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags)
              (warnDs (specOnInline poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
497 498 499 500 501

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
502 503 504 505
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
506
             = rhs          -- Local Id; this is its rhs
507 508
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
509 510 511
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
512
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
513
                            -- The type checker has checked that it *has* an unfolding
514

515 516 517 518 519
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
520
                                 -- in OccurAnal
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


specOnInline :: Name -> MsgDoc
539
specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
540
                 <+> quotes (ppr f)
541

Austin Seipp's avatar
Austin Seipp committed
542
{-
543 544 545 546 547 548 549 550
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

551
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
573
SPEC [n] f :: ty            [n]   INLINE [k]
574 575 576 577 578 579 580 581 582 583
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
584 585
************************************************************************
*                                                                      *
586
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
587 588 589
*                                                                      *
************************************************************************
-}
590

591
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
592 593
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
594
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
595
--
596
-- Returns Nothing if the LHS isn't of the expected shape
597 598 599 600 601 602 603 604
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

  | Var fn_var <- fun
  , not (fn_var `elemVarSet` orig_bndr_set)
605 606 607 608 609 610 611
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
    --                                  , ptext (sLit "bndrs1:") <+> ppr bndrs1
    --                                  , ptext (sLit "fn_var:") <+> ppr fn_var
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
    Right (bndrs1, fn_var, args)
612 613

  | Case scrut bndr ty [(DEFAULT, _, body)] <- fun
614
  , isDeadBinder bndr   -- Note [Matching seqId]
615 616 617
  , let args' = [Type (idType bndr), Type ty, scrut, body]
  = Right (bndrs1, seqId, args' ++ args)

618
  | otherwise
619
  = Left bad_shape_msg
620
 where
621 622 623 624 625 626
   lhs1       = drop_dicts orig_lhs
   lhs2       = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun,args) = collectArgs lhs2
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
   bndrs1     = orig_bndrs ++ extra_dict_bndrs
627

628
   orig_bndr_set = mkVarSet orig_bndrs
629

630
        -- Add extra dict binders: Note [Free dictionaries]
631 632 633
   extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d)
                      | d <- varSetElems (lhs_fvs `delVarSetList` orig_bndrs)
                      , isDictId d ]
634 635

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
636 637
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
638
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
639
                             , ptext (sLit "is not bound in RULE lhs")])
640 641 642
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
643
   pp_bndr bndr
644 645 646
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
647 648

   drop_dicts :: CoreExpr -> CoreExpr
649
   drop_dicts e
650 651 652
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
653
       (bnds, body) = split_lets (occurAnalyseExpr e)
654
           -- The occurAnalyseExpr drops dead bindings which is
655 656
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
675

Austin Seipp's avatar
Austin Seipp committed
676
{-
677
Note [Decomposing the left-hand side of a RULE]
678
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
679
There are several things going on here.
680 681
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
682
* extra_dict_bndrs: see Note [Free dictionaries]
683 684 685

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
686
drop_dicts drops dictionary bindings on the LHS where possible.
687 688
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
689
   Reasoning here is that there is only one d:Eq [Int], and so we can
690 691 692 693
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
694
         one of the orig_bndrs, which we assume occur on RHS.
695 696 697 698 699 700 701 702
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
         to match, but ther is no other way to get d:Eq a

703
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
704 705 706 707 708 709
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
710
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
711 712 713 714 715 716 717 718 719
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
             RULE forall s (d :: MonadBstractIOST (ReaderT s)).
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

720 721 722
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

723 724 725 726 727 728 729 730 731 732
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
733
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
734 735 736 737 738 739
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


740 741 742 743
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

744
   (a) Inline any remaining dictionary bindings (which hopefully
745 746 747
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
748
       Note that we substitute the function too; we might
749 750
       have this as a LHS:  let f71 = M.f Int in f71

751
   (c) Do eta reduction.  To see why, consider the fold/build rule,
752 753 754 755
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
756
         augment g (build h)
757
       we do not want to get
758
         augment (\a. g a) (build h)
759 760
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
761

762
Note [Matching seqId]
763 764
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
765
and this code turns it back into an application of seq!
766 767
See Note [Rules for seq] in MkId for the details.

768 769 770
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
771
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
772
        ... SPECIALISE f :: Eq a => a -> a ...
773 774
It's true that this *is* a more specialised type, but the rule
we get is something like this:
775 776
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
777 778
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
779 780 781 782
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

783 784
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
785 786
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
787 788 789
over it too.  *Any* dict with that type will do.

So for example when you have
790 791
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
792
        ... SPECIALISE f :: Int -> Int ...
793 794

Then we get the SpecPrag
795
        SpecPrag (f Int dInt)
796 797

And from that we want the rule
798 799 800

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
801 802 803 804 805 806 807

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

808

Austin Seipp's avatar
Austin Seipp committed
809 810
************************************************************************
*                                                                      *
811
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
812 813
*                                                                      *
************************************************************************
814

Austin Seipp's avatar
Austin Seipp committed
815
-}
816

817
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
818
dsHsWrapper WpHole            e = return e
819 820 821
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
822 823 824 825 826 827
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)
                                      ; e2 <- dsHsWrapper c2 (e `mkCoreAppDs` e1)
                                      ; return (Lam x e2) }
828
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
Joachim Breitner's avatar
Joachim Breitner committed
829
                                  dsTcCoercion co (mkCast e)
830 831
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e
832
dsHsWrapper (WpEvApp    tm)   e = liftM (App e) (dsEvTerm tm)
833 834

--------------------------------------
835
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
836
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
837 838
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

839
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
840
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
841
  where
842 843
    ds_scc (AcyclicSCC (EvBind v r)) = liftM (NonRec v) (dsEvTerm r)
    ds_scc (CyclicSCC bs)            = liftM Rec (mapM ds_pair bs)
844

845
    ds_pair (EvBind v r) = liftM ((,) v) (dsEvTerm r)
846 847 848 849 850

sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
  where
    edges :: [(EvBind, EvVar, [EvVar])]
851
    edges = foldrBag ((:) . mk_node) [] bs
852 853

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
854
    mk_node b@(EvBind var term) = (b, var, varSetElems (evVarsOfTerm term))