ffi-chap.rst 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
.. _ffi:

Foreign function interface (FFI)
================================

.. index::
   single: Foreign function interface
   single: interfacing with native code

10 11
.. extension:: ForeignFunctionInterface
    :shortdesc: Enable foreign function interface.
12 13

    :since: 6.8.1
Ben Gamari's avatar
Ben Gamari committed
14 15 16

    Allow use of the Haskell foreign function interface.

17 18
GHC (mostly) conforms to the Haskell Foreign Function Interface as specified
in the Haskell Report. Refer to the `relevant chapter
19
<https://www.haskell.org/onlinereport/haskell2010/haskellch8.html>`__
20
of the Haskell Report for more details.
21 22

FFI support is enabled by default, but can be enabled or disabled
23
explicitly with the :extension:`ForeignFunctionInterface` flag.
24

25 26 27
GHC implements a number of GHC-specific extensions to the FFI Chapter of the
Haskell 2010 Report. These extensions are described in :ref:`ffi-ghcexts`, but
please note that programs using these features are not portable. Hence, these
28 29
features should be avoided where possible.

30 31
The FFI libraries are documented in the accompanying  library
documentation; see for example the :base-ref:`Foreign.` module.
32

33 34
GHC differences to the FFI Chapter
----------------------------------
35 36 37 38

Guaranteed call safety
~~~~~~~~~~~~~~~~~~~~~~

David Feuer's avatar
David Feuer committed
39 40 41 42 43 44 45
The Haskell 2010 Report specifies that ``safe`` FFI calls must allow foreign
calls to safely call into Haskell code. In practice, this means that the
garbage collector must be able to run while these calls are in progress,
moving heap-allocated Haskell values around arbitrarily.

This greatly constrains library authors since it implies that it is not safe to
pass any heap object reference to a ``safe`` foreign function call.  For
46 47 48 49
instance, it is often desirable to pass an :ref:`unpinned <pinned-byte-arrays>`
``ByteArray#``\s directly to native code to avoid making an otherwise-unnecessary
copy. However, this can only be done safely if the array is guaranteed not to be
moved by the garbage collector in the middle of the call.
50

David Feuer's avatar
David Feuer committed
51 52 53 54
The Chapter does *not* require implementations to refrain from doing the
same for ``unsafe`` calls, so strictly Haskell 2010-conforming programs
cannot pass heap-allocated references to ``unsafe`` FFI calls either.

55
In previous releases, GHC would take advantage of the freedom afforded by the
56
Chapter by performing ``safe`` foreign calls in place of ``unsafe`` calls in
57 58 59 60 61
the bytecode interpreter. This meant that some packages which worked when
compiled would fail under GHCi (e.g. :ghc-ticket:`13730`).

However, since version 8.4 this is no longer the case: GHC **guarantees** that
garbage collection will never occur during an ``unsafe`` call, even in the
David Feuer's avatar
David Feuer committed
62 63
bytecode interpreter, and further guarantees that ``unsafe`` calls will be
performed in the calling thread.
64 65


66 67
.. _ffi-ghcexts:

68 69
GHC extensions to the FFI Chapter
---------------------------------
70 71 72 73

The FFI features that are described in this section are specific to GHC.
Your code will not be portable to other compilers if you use them.

74 75
.. _ffi-unlifted-types:

76 77 78 79 80 81 82 83 84 85 86
Unlifted FFI Types
~~~~~~~~~~~~~~~~~~

.. extension:: UnliftedFFITypes
    :shortdesc: Enable unlifted FFI types

    :since: 6.8.1

The following unlifted unboxed types may be used as basic foreign
types (see FFI Chapter, Section 8.6) for both ``safe`` and
``unsafe`` foreign calls: ``Int#``, ``Word#``, ``Char#``, ``Float#``,
87 88
``Double#``, ``Addr#``, and ``StablePtr# a``. Several unlifted boxed
types may be used as arguments to FFI calls, subject to these
89 90
restrictions:

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
* Valid arguments for ``foreign import unsafe`` FFI calls: ``Array#``,
  ``SmallArray#``, ``ArrayArray#``, ``ByteArray#``, and the mutable
  counterparts of these types.
* Valid arguments for ``foreign import safe`` FFI calls: ``ByteArray#``
  and ``MutableByteArray#``. The byte array must be
  :ref:`pinned <pinned-byte-arrays>`.
* Mutation: In both ``foreign import unsafe`` and ``foreign import safe``
  FFI calls, it is safe to mutate a ``MutableByteArray``. Mutating any
  other type of array leads to undefined behavior. Reason: Mutable arrays
  of heap objects record writes for the purpose of garbage collection.
  An array of heap objects is passed to a foreign C function, the
  runtime does not record any writes. Consequently, it is not safe to
  write to an array of heap objects in a foreign function. 
  Since the runtime has no facilities for tracking mutation of a
  ``MutableByteArray#``, these can be safely mutated in any foreign
  function.

None of these restrictions are enforced at compile time. Failure
to heed these restrictions will lead to runtime errors that can be
very difficult to track down. (The errors likely will not manifest
until garbage collection happens.) In tabular form, these restrictions
are:

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
+--------------------------------+-----------------------------------------------------+
|                                | When value is used as argument to FFI call that is  |
+--------------------------------+-------------------------+---------------------------+
|                                | ``foreign import safe`` | ``foreign import unsafe`` |
+--------------------------------+-----------+-------------+-----------+---------------+
| Argument Type                  | reads are | writes are  | reads are | writes are    |
+--------------------------------+-----------+-------------+-----------+---------------+
| ``Array#``                     | Unsound   | Unsound     | Sound     | Unsound       |
| ``MutableArray#``              | Unsound   | Unsound     | Sound     | Unsound       |
| ``SmallArray#``                | Unsound   | Unsound     | Sound     | Unsound       |
| ``MutableSmallArray#``         | Unsound   | Unsound     | Sound     | Unsound       |
| ``ArrayArray#``                | Unsound   | Unsound     | Sound     | Unsound       |
| ``MutableArrayArray#``         | Unsound   | Unsound     | Sound     | Unsound       |
| unpinned ``ByteArray#``        | Unsound   | Unsound     | Sound     | Unsound       |
| unpinned ``MutableByteArray#`` | Unsound   | Unsound     | Sound     | Sound         |
| pinned ``ByteArray#``          | Sound     | Unsound     | Sound     | Unsound       |
| pinned ``MutableByteArray#``   | Sound     | Sound       | Sound     | Sound         |
+--------------------------------+-----------+-------------+-----------+---------------+
132 133 134 135 136

When passing any of the unlifted array types as an argument to
a foreign C call, a foreign function sees a pointer that refers to the
payload of the array, not to the
``StgArrBytes``/``StgMutArrPtrs``/``StgSmallMutArrPtrs`` heap object
137 138 139 140 141 142
containing it [1]_. By contrast, a :ref:`foreign Cmm call <ffi-prim>`,
introduced by ``foreign import prim``, sees the heap object, not just
the payload. This means that, in some situations, the foreign C function
might not need any knowledge of the RTS closure types. The following example
sums the first three bytes in a ``MutableByteArray#`` [2]_ without using
anything from ``Rts.h``::
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    // C source
    uint8_t add_triplet(uint8_t* arr) {
      return (arr[0] + arr[1] + arr[2]);
    }

    -- Haskell source
    foreign import ccall unsafe "add_triplet"
      addTriplet :: MutableByteArray# RealWorld -> IO Word8

In other situations, the C function may need knowledge of the RTS
closure types. The following example sums the first element of
each ``ByteArray#`` (interpreting the bytes as an array of ``CInt``)
element of an ``ArrayArray##`` [3]_::
    
158 159
    // C source, must include the RTS to make the struct StgArrBytes
    // available along with its fields: ptrs and payload.
160 161 162 163 164 165 166 167 168
    #include "Rts.h"
    int sum_first (StgArrBytes **bufs) {
      StgArrBytes **bufs = (StgArrBytes**)bufsTmp;
      int res = 0;
      for(StgWord ix = 0;ix < arr->ptrs;ix++) {
        res = res + ((int*)(bufs[ix]->payload))[0];
      }
      return res;
    }
169

170 171 172
    -- Haskell source, all elements in the argument array must be
    -- either ByteArray# or MutableByteArray#. This is not enforced
    -- by the type system in this example since ArrayArray is untyped.
173 174 175 176 177 178 179
    foreign import ccall unsafe "sum_first"
      sumFirst :: ArrayArray# -> IO CInt

Although GHC allows the user to pass all unlifted boxed types to
foreign functions, some of them are not amenable to useful work.
Although ``Array#`` is unlifted, the elements in its payload are
lifted, and a foreign C function cannot safely force thunks. Consequently,
180 181
a foreign C function cannot dereference any of the addresses that comprise
the payload of the ``Array#``.
182 183 184 185 186 187 188

.. _ffi-newtype-io:

Newtype wrapping of the IO monad
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The FFI spec requires the IO monad to appear in various places, but it
189
can sometimes be convenient to wrap the IO monad in a ``newtype``, thus: ::
190

191
       newtype MyIO a = MIO (IO a)
192 193 194 195 196 197 198 199 200

(A reason for doing so might be to prevent the programmer from calling
arbitrary IO procedures in some part of the program.)

The Haskell FFI already specifies that arguments and results of foreign
imports and exports will be automatically unwrapped if they are newtypes
(Section 3.2 of the FFI addendum). GHC extends the FFI by automatically
unwrapping any newtypes that wrap the IO monad itself. More precisely,
wherever the FFI specification requires an ``IO`` type, GHC will accept any
201 202
newtype-wrapping of an ``IO`` type. For example, these declarations are
OK: ::
203 204 205 206

       foreign import foo :: Int -> MyIO Int
       foreign import "dynamic" baz :: (Int -> MyIO Int) -> CInt -> MyIO Int

207 208
.. _ffi-foralls:

209 210
Explicit "forall"s in foreign types
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211 212 213 214 215

The type variables in the type of a foreign declaration may be quantified with
an explicit ``forall`` by using the :extension:`ExplicitForAll` language
extension, as in the following example: ::

216 217
       {-# LANGUAGE ExplicitForAll #-}
       foreign import ccall "mmap" c_mmap :: forall a. CSize -> IO (Ptr a)
218 219 220 221 222

Note that an explicit ``forall`` must appear at the front of the type signature
and is not permitted to appear nested within the type, as in the following
(erroneous) examples: ::

223 224
       foreign import ccall "mmap" c_mmap' :: CSize -> forall a. IO (Ptr a)
       foreign import ccall quux :: (forall a. Ptr a) -> IO ()
225

226 227 228 229 230 231
.. _ffi-prim:

Primitive imports
~~~~~~~~~~~~~~~~~

GHC extends the FFI with an additional calling convention ``prim``,
232
e.g.: ::
233 234 235 236 237 238 239 240 241 242 243

       foreign import prim "foo" foo :: ByteArray# -> (# Int#, Int# #)

This is used to import functions written in Cmm code that follow an
internal GHC calling convention. The arguments and results must be
unboxed types, except that an argument may be of type ``Any`` (by way of
``unsafeCoerce#``) and the result type is allowed to be an unboxed tuple
or the type ``Any``.

This feature is not intended for use outside of the core libraries that
come with GHC. For more details see the
244
:ghc-wiki:`GHC developer wiki <commentary/prim-ops>`.
245 246 247 248 249 250

.. _ffi-interruptible:

Interruptible foreign calls
~~~~~~~~~~~~~~~~~~~~~~~~~~~

251
.. extension:: InterruptibleFFI
252 253 254 255
    :shortdesc: Enable interruptible FFI.

    :since: 7.2.1

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
This concerns the interaction of foreign calls with
``Control.Concurrent.throwTo``. Normally when the target of a
``throwTo`` is involved in a foreign call, the exception is not raised
until the call returns, and in the meantime the caller is blocked. This
can result in unresponsiveness, which is particularly undesirable in the
case of user interrupt (e.g. Control-C). The default behaviour when a
Control-C signal is received (``SIGINT`` on Unix) is to raise the
``UserInterrupt`` exception in the main thread; if the main thread is
blocked in a foreign call at the time, then the program will not respond
to the user interrupt.

The problem is that it is not possible in general to interrupt a foreign
call safely. However, GHC does provide a way to interrupt blocking
system calls which works for most system calls on both Unix and Windows.
When the ``InterruptibleFFI`` extension is enabled, a foreign call can
271
be annotated with ``interruptible`` instead of ``safe`` or ``unsafe``: ::
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

    foreign import ccall interruptible
       "sleep" sleepBlock :: CUint -> IO CUint

``interruptible`` behaves exactly as ``safe``, except that when a
``throwTo`` is directed at a thread in an interruptible foreign call, an
OS-specific mechanism will be used to attempt to cause the foreign call
to return:

Unix systems
    The thread making the foreign call is sent a ``SIGPIPE`` signal
    using ``pthread_kill()``. This is usually enough to cause a blocking
    system call to return with ``EINTR`` (GHC by default installs an
    empty signal handler for ``SIGPIPE``, to override the default
    behaviour which is to terminate the process immediately).

Windows systems
    [Vista and later only] The RTS calls the Win32 function
290
    ``CancelSynchronousIo``, which will cause a blocking I/O operation
291 292 293 294 295 296 297 298 299 300 301 302 303 304
    to return with the error ``ERROR_OPERATION_ABORTED``.

If the system call is successfully interrupted, it will return to
Haskell whereupon the exception can be raised. Be especially careful
when using ``interruptible`` that the caller of the foreign function is
prepared to deal with the consequences of the call being interrupted; on
Unix it is good practice to check for ``EINTR`` always, but on Windows
it is not typically necessary to handle ``ERROR_OPERATION_ABORTED``.

.. _ffi-capi:

The CAPI calling convention
~~~~~~~~~~~~~~~~~~~~~~~~~~~

305 306
.. extension:: CApiFFI
    :shortdesc: Enable the CAPI calling convention.
307 308 309

    :since: 7.10.1

310
The ``CApiFFI`` extension allows a calling convention of ``capi`` to be
311
used in foreign declarations, e.g. ::
312 313 314 315 316 317 318 319 320

    foreign import capi "header.h f" f :: CInt -> IO CInt

Rather than generating code to call ``f`` according to the platform's
ABI, we instead call ``f`` using the C API defined in the header
``header.h``. Thus ``f`` can be called even if it may be defined as a
CPP ``#define`` rather than a proper function.

When using ``capi``, it is also possible to import values, rather than
321
functions. For example, ::
322 323 324 325 326

    foreign import capi "pi.h value pi" c_pi :: CDouble

will work regardless of whether ``pi`` is defined as

327
.. code-block:: c
328 329 330 331 332

    const double pi = 3.14;

or with

333
.. code-block:: c
334 335 336 337 338 339

    #define pi 3.14

In order to tell GHC the C type that a Haskell type corresponds to when
it is used with the CAPI, a ``CTYPE`` pragma can be used on the type
definition. The header which defines the type can optionally also be
340
specified. The syntax looks like: ::
341 342 343 344 345 346 347

    data    {-# CTYPE "unistd.h" "useconds_t" #-} T = ...
    newtype {-# CTYPE            "useconds_t" #-} T = ...

``hs_thread_done()``
~~~~~~~~~~~~~~~~~~~~

348
.. code-block:: c
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    void hs_thread_done(void);

GHC allocates a small amount of thread-local memory when a thread calls
a Haskell function via a ``foreign export``. This memory is not normally
freed until ``hs_exit()``; the memory is cached so that subsequent calls
into Haskell are fast. However, if your application is long-running and
repeatedly creates new threads that call into Haskell, you probably want
to arrange that this memory is freed in those threads that have finished
calling Haskell functions. To do this, call ``hs_thread_done()`` from
the thread whose memory you want to free.

Calling ``hs_thread_done()`` is entirely optional. You can call it as
often or as little as you like. It is safe to call it from a thread that
has never called any Haskell functions, or one that never will. If you
forget to call it, the worst that can happen is that some memory remains
allocated until ``hs_exit()`` is called. If you call it too often, the
worst that can happen is that the next call to a Haskell function incurs
some extra overhead.

David Feuer's avatar
David Feuer committed
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
.. _ffi-stable-ptr-extras:

Freeing many stable pointers efficiently
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The standard function ``hs_free_stable_ptr`` locks the stable pointer
table, frees the given stable pointer, and then unlocks the stable pointer
table again. When freeing many stable pointers at once, it is usually
more efficient to lock and unlock the table only once.

.. code-block:: c

    extern void hs_lock_stable_ptr_table (void);

    extern void hs_unlock_stable_ptr_table (void);

    extern void hs_free_stable_ptr_unsafe (HsStablePtr sp);

``hs_free_stable_ptr_unsafe`` must be used *only* when the table has been
locked using ``hs_lock_stable_ptr_table``. It must be unlocked afterwards
using ``hs_unlock_stable_ptr_table``. The Haskell garbage collector cannot
run while the table is locked, so it should be unlocked promptly. The
following operations are forbidden while the stable pointer table is locked:

* Calling any Haskell function, whether or not that function
  manipulates stable pointers.

* Calling any FFI function that deals with the stable pointer table
  except for arbitrarily many calls to ``hs_free_stable_ptr_unsafe``
  and the final call to ``hs_unlock_stable_ptr_table``.

* Calling ``hs_free_fun_ptr``.

.. note::

    GHC versions before 8.8 defined undocumented functions
    ``hs_lock_stable_tables`` and ``hs_unlock_stable_tables`` instead
    of ``hs_lock_stable_ptr_table`` and ``hs_unlock_stable_ptr_table``.
    Those names are now deprecated.

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
.. _ffi-ghc:

Using the FFI with GHC
----------------------

The following sections also give some hints and tips on the use of the
foreign function interface in GHC.

.. _foreign-export-ghc:

Using ``foreign export`` and ``foreign import ccall "wrapper"`` with GHC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. index::
   single: foreign export; with GHC

When GHC compiles a module (say ``M.hs``) which uses ``foreign export``
or ``foreign import "wrapper"``, it generates a ``M_stub.h`` for use by
C programs.

For a plain ``foreign export``, the file ``M_stub.h`` contains a C
prototype for the foreign exported function. For example, if we compile
431
the following module: ::
432 433 434 435 436 437 438 439 440 441 442 443 444 445

    module Foo where

    foreign export ccall foo :: Int -> IO Int

    foo :: Int -> IO Int
    foo n = return (length (f n))

    f :: Int -> [Int]
    f 0 = []
    f n = n:(f (n-1))

Then ``Foo_stub.h`` will contain something like this:

446
.. code-block:: c
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

    #include "HsFFI.h"
    extern HsInt foo(HsInt a0);

To invoke ``foo()`` from C, just ``#include "Foo_stub.h"`` and call
``foo()``.

The ``Foo_stub.h`` file can be redirected using the ``-stubdir`` option;
see :ref:`options-output`.

.. _using-own-main:

Using your own ``main()``
^^^^^^^^^^^^^^^^^^^^^^^^^

Normally, GHC's runtime system provides a ``main()``, which arranges to
invoke ``Main.main`` in the Haskell program. However, you might want to
link some Haskell code into a program which has a main function written
in another language, say C. In order to do this, you have to initialize
the Haskell runtime system explicitly.

Let's take the example from above, and invoke it from a standalone C
program. Here's the C code:

471
.. code-block:: c
472 473 474 475

    #include <stdio.h>
    #include "HsFFI.h"

476
    #if defined(__GLASGOW_HASKELL__)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    #include "Foo_stub.h"
    #endif

    int main(int argc, char *argv[])
    {
      int i;

      hs_init(&argc, &argv);

      for (i = 0; i < 5; i++) {
        printf("%d\n", foo(2500));
      }

      hs_exit();
      return 0;
    }

We've surrounded the GHC-specific bits with
495
``#if defined(__GLASGOW_HASKELL__)``; the rest of the code should be portable
496 497 498 499 500 501 502 503 504 505 506 507 508
across Haskell implementations that support the FFI standard.

The call to ``hs_init()`` initializes GHC's runtime system. Do NOT try
to invoke any Haskell functions before calling ``hs_init()``: bad things
will undoubtedly happen.

We pass references to ``argc`` and ``argv`` to ``hs_init()`` so that it
can separate out any arguments for the RTS (i.e. those arguments between
``+RTS...-RTS``).

After we've finished invoking our Haskell functions, we can call
``hs_exit()``, which terminates the RTS.

David Feuer's avatar
David Feuer committed
509 510 511 512
There can be multiple calls to ``hs_init()``, but each one should be matched by
one (and only one) call to ``hs_exit()``. The outermost ``hs_exit()`` will
actually de-initialise the system.  Note that currently GHC's runtime cannot
reliably re-initialise after this has happened; see :ref:`infelicities-ffi`.
513 514 515 516

.. note::
    When linking the final program, it is normally easiest to do the
    link using GHC, although this isn't essential. If you do use GHC, then
517
    don't forget the flag :ghc-flag:`-no-hs-main`, otherwise GHC
518 519
    will try to link to the ``Main`` Haskell module.

520 521 522 523 524 525
.. note::
    On Windows hs_init treats argv as UTF8-encoded. Passing other encodings
    might lead to unexpected results. Passing NULL as argv is valid but can
    lead to <unknown> showing up in error messages instead of the name of the
    executable.

526
To use ``+RTS`` flags with ``hs_init()``, we have to modify the example
527
slightly. By default, GHC's RTS will only accept "safe" ``+RTS`` flags (see
Ben Gamari's avatar
Ben Gamari committed
528 529 530 531
:ref:`options-linker`), and the :ghc-flag:`-rtsopts[=⟨none|some|all|ignore|ignoreAll⟩]`
link-time flag overrides this. However,
:ghc-flag:`-rtsopts[=⟨none|some|all|ignore|ignoreAll⟩]` has no effect when
:ghc-flag:`-no-hs-main` is in use (and the same goes for
532 533
:ghc-flag:`-with-rtsopts=⟨opts⟩`). To set these options we have to call a
GHC-specific API instead of ``hs_init()``:
534

535
.. code-block:: c
536 537 538 539

    #include <stdio.h>
    #include "HsFFI.h"

540
    #if defined(__GLASGOW_HASKELL__)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    #include "Foo_stub.h"
    #include "Rts.h"
    #endif

    int main(int argc, char *argv[])
    {
      int i;

    #if __GLASGOW_HASKELL__ >= 703
      {
          RtsConfig conf = defaultRtsConfig;
          conf.rts_opts_enabled = RtsOptsAll;
          hs_init_ghc(&argc, &argv, conf);
      }
    #else
      hs_init(&argc, &argv);
    #endif

      for (i = 0; i < 5; i++) {
        printf("%d\n", foo(2500));
      }

      hs_exit();
      return 0;
    }

Note two changes: we included ``Rts.h``, which defines the GHC-specific
external RTS interface, and we called ``hs_init_ghc()`` instead of
``hs_init()``, passing an argument of type ``RtsConfig``. ``RtsConfig``
is a struct with various fields that affect the behaviour of the runtime
system. Its definition is:

573
.. code-block:: c
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

    typedef struct {
        RtsOptsEnabledEnum rts_opts_enabled;
        const char *rts_opts;
    } RtsConfig;

    extern const RtsConfig defaultRtsConfig;

    typedef enum {
        RtsOptsNone,         // +RTS causes an error
        RtsOptsSafeOnly,     // safe RTS options allowed; others cause an error
        RtsOptsAll           // all RTS options allowed
      } RtsOptsEnabledEnum;

There is a default value ``defaultRtsConfig`` that should be used to
initialise variables of type ``RtsConfig``. More fields will undoubtedly
be added to ``RtsConfig`` in the future, so in order to keep your code
forwards-compatible it is best to initialise with ``defaultRtsConfig``
and then modify the required fields, as in the code sample above.

.. _ffi-library:

Making a Haskell library that can be called from foreign code
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The scenario here is much like in :ref:`using-own-main`, except that the
aim is not to link a complete program, but to make a library from
Haskell code that can be deployed in the same way that you would deploy
a library of C code.

The main requirement here is that the runtime needs to be initialized
before any Haskell code can be called, so your library should provide
initialisation and deinitialisation entry points, implemented in C or
C++. For example:

609
.. code-block:: c
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

    #include <stdlib.h>
    #include "HsFFI.h"

    HsBool mylib_init(void){
      int argc = 2;
      char *argv[] = { "+RTS", "-A32m", NULL };
      char **pargv = argv;

      // Initialize Haskell runtime
      hs_init(&argc, &pargv);

      // do any other initialization here and
      // return false if there was a problem
      return HS_BOOL_TRUE;
    }

    void mylib_end(void){
      hs_exit();
    }

The initialisation routine, ``mylib_init``, calls ``hs_init()`` as
normal to initialise the Haskell runtime, and the corresponding
deinitialisation function ``mylib_end()`` calls ``hs_exit()`` to shut
down the runtime.

.. _glasgow-foreign-headers:

Using header files
~~~~~~~~~~~~~~~~~~

.. index::
   single: C calls, function headers

C functions are normally declared using prototypes in a C header file.
Earlier versions of GHC (6.8.3 and earlier) ``#include``\ d the header
file in the C source file generated from the Haskell code, and the C
compiler could therefore check that the C function being called via the
FFI was being called at the right type.

GHC no longer includes external header files when compiling via C, so
this checking is not performed. The change was made for compatibility
652
with the :ref:`native code generator <native-code-gen>` (:ghc-flag:`-fasm`) and to
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
comply strictly with the FFI specification, which requires that FFI calls are
not subject to macro expansion and other CPP conversions that may be applied
when using C header files. This approach also simplifies the inlining of foreign
calls across module and package boundaries: there's no need for the header file
to be available when compiling an inlined version of a foreign call, so the
compiler is free to inline foreign calls in any context.

The ``-#include`` option is now deprecated, and the ``include-files``
field in a Cabal package specification is ignored.

Memory Allocation
~~~~~~~~~~~~~~~~~

The FFI libraries provide several ways to allocate memory for use with
the FFI, and it isn't always clear which way is the best. This decision
may be affected by how efficient a particular kind of allocation is on a
given compiler/platform, so this section aims to shed some light on how
the different kinds of allocation perform with GHC.

``alloca``
    Useful for short-term allocation when the allocation is intended to
    scope over a given ``IO`` computation. This kind of allocation is
    commonly used when marshalling data to and from FFI functions.

    In GHC, ``alloca`` is implemented using ``MutableByteArray#``, so
    allocation and deallocation are fast: much faster than C's
    ``malloc/free``, but not quite as fast as stack allocation in C. Use
    ``alloca`` whenever you can.

``mallocForeignPtr``
    Useful for longer-term allocation which requires garbage collection.
    If you intend to store the pointer to the memory in a foreign data
    structure, then ``mallocForeignPtr`` is *not* a good choice,
    however.

    In GHC, ``mallocForeignPtr`` is also implemented using
    ``MutableByteArray#``. Although the memory is pointed to by a
    ``ForeignPtr``, there are no actual finalizers involved (unless you
    add one with ``addForeignPtrFinalizer``), and the deallocation is
    done using GC, so ``mallocForeignPtr`` is normally very cheap.

``malloc/free``
    If all else fails, then you need to resort to ``Foreign.malloc`` and
    ``Foreign.free``. These are just wrappers around the C functions of
    the same name, and their efficiency will depend ultimately on the
    implementations of these functions in your platform's C library. We
    usually find ``malloc`` and ``free`` to be significantly slower than
    the other forms of allocation above.

``Foreign.Marshal.Pool``
    Pools are currently implemented using ``malloc/free``, so while they
    might be a more convenient way to structure your memory allocation
    than using one of the other forms of allocation, they won't be any
    more efficient. We do plan to provide an improved-performance
    implementation of Pools in the future, however.

.. _ffi-threads:

Multi-threading and the FFI
~~~~~~~~~~~~~~~~~~~~~~~~~~~

In order to use the FFI in a multi-threaded setting, you must use the
715
:ghc-flag:`-threaded` option (see :ref:`options-linker`).
716 717 718 719 720

Foreign imports and multi-threading
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When you call a ``foreign import``\ ed function that is annotated as
721
``safe`` (the default), and the program was linked using :ghc-flag:`-threaded`,
722
then the call will run concurrently with other running Haskell threads.
723
If the program was linked without :ghc-flag:`-threaded`, then the other Haskell
724 725 726 727
threads will be blocked until the call returns.

This means that if you need to make a foreign call to a function that
takes a long time or blocks indefinitely, then you should mark it
728
``safe`` and use :ghc-flag:`-threaded`. Some library functions make such calls
729 730 731
internally; their documentation should indicate when this is the case.

If you are making foreign calls from multiple Haskell threads and using
732
:ghc-flag:`-threaded`, make sure that the foreign code you are calling is
733 734 735 736 737 738 739 740
thread-safe. In particularly, some GUI libraries are not thread-safe and
require that the caller only invokes GUI methods from a single thread.
If this is the case, you may need to restrict your GUI operations to a
single Haskell thread, and possibly also use a bound thread (see
:ref:`haskell-threads-and-os-threads`).

Note that foreign calls made by different Haskell threads may execute in
*parallel*, even when the ``+RTS -N`` flag is not being used
741
(:ref:`parallel-options`). The :rts-flag:`-N ⟨x⟩` flag controls parallel
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
execution of Haskell threads, but there may be an arbitrary number of
foreign calls in progress at any one time, regardless of the ``+RTS -N``
value.

If a call is annotated as ``interruptible`` and the program was
multithreaded, the call may be interrupted in the event that the Haskell
thread receives an exception. The mechanism by which the interrupt
occurs is platform dependent, but is intended to cause blocking system
calls to return immediately with an interrupted error code. The
underlying operating system thread is not to be destroyed. See
:ref:`ffi-interruptible` for more details.

.. _haskell-threads-and-os-threads:

The relationship between Haskell threads and OS threads
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Normally there is no fixed relationship between Haskell threads and OS
threads. This means that when you make a foreign call, that call may
take place in an unspecified OS thread. Furthermore, there is no
guarantee that multiple calls made by one Haskell thread will be made by
the same OS thread.

This usually isn't a problem, and it allows the GHC runtime system to
make efficient use of OS thread resources. However, there are cases
where it is useful to have more control over which OS thread is used,
for example when calling foreign code that makes use of thread-local
state. For cases like this, we provide *bound threads*, which are
Haskell threads tied to a particular OS thread. For information on bound
771
threads, see the documentation for the :base-ref:`Control.Concurrent.` module.
772 773 774 775

Foreign exports and multi-threading
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

776
When the program is linked with :ghc-flag:`-threaded`, then you may invoke
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
``foreign export``\ ed functions from multiple OS threads concurrently.
The runtime system must be initialised as usual by calling
``hs_init()``, and this call must complete before invoking any
``foreign export``\ ed functions.

.. _hs-exit:

On the use of ``hs_exit()``
^^^^^^^^^^^^^^^^^^^^^^^^^^^

``hs_exit()`` normally causes the termination of any running Haskell
threads in the system, and when ``hs_exit()`` returns, there will be no
more Haskell threads running. The runtime will then shut down the system
in an orderly way, generating profiling output and statistics if
necessary, and freeing all the memory it owns.

It isn't always possible to terminate a Haskell thread forcibly: for
example, the thread might be currently executing a foreign call, and we
have no way to force the foreign call to complete. What's more, the
runtime must assume that in the worst case the Haskell code and runtime
are about to be removed from memory (e.g. if this is a
:ref:`Windows DLL <win32-dlls>`, ``hs_exit()`` is normally called before unloading
the DLL). So ``hs_exit()`` *must* wait until all outstanding foreign
calls return before it can return itself.

The upshot of this is that if you have Haskell threads that are blocked
in foreign calls, then ``hs_exit()`` may hang (or possibly busy-wait)
until the calls return. Therefore it's a good idea to make sure you
don't have any such threads in the system when calling ``hs_exit()``.
This includes any threads doing I/O, because I/O may (or may not,
depending on the type of I/O and the platform) be implemented using
blocking foreign calls.

The GHC runtime treats program exit as a special case, to avoid the need
to wait for blocked threads when a standalone executable exits. Since
the program and all its threads are about to terminate at the same time
that the code is removed from memory, it isn't necessary to ensure that
814 815 816 817 818 819 820 821 822 823 824 825 826
the threads have exited first.  If you want this fast and loose
version of ``hs_exit()``, you can call:

.. code-block:: c

   void hs_exit_nowait(void);

instead.  This is particularly useful if you have foreign libraries
that need to call ``hs_exit()`` at program exit (perhaps via a C++
destructor): in this case you should use ``hs_exit_nowait()``, because
the thread that called ``exit()`` and is running C++ destructors is in
a foreign call from Haskell that will never return, so ``hs_exit()``
would deadlock.
827

Simon Marlow's avatar
Simon Marlow committed
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
.. _hs_try_putmvar:

Waking up Haskell threads from C
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Sometimes we want to be able to wake up a Haskell thread from some C
code.  For example, when using a callback-based C API, we register a C
callback and then we need to wait for the callback to run.

One way to do this is to create a ``foreign export`` that will do
whatever needs to be done to wake up the Haskell thread - perhaps
``putMVar`` - and then call this from our C callback.  There are a
couple of problems with this:

1. Calling a foreign export has a lot of overhead: it creates a
   complete new Haskell thread, for example.
2. The call may block for a long time if a GC is in progress.  We
   can't use this method if the C API we're calling doesn't allow
   blocking in the callback.

For these reasons GHC provides an external API to ``tryPutMVar``,
``hs_try_putmvar``, which you can use to cheaply and asynchronously
wake up a Haskell thread from C/C++.

.. code-block:: c

  void hs_try_putmvar (int capability, HsStablePtr sp);

The C call ``hs_try_putmvar(cap, mvar)`` is equivalent to the Haskell
call ``tryPutMVar mvar ()``, except that it is

* non-blocking: takes a bounded, short, amount of time

* asynchronous: the actual putMVar may be performed after the call
  returns (for example, if the RTS is currently garbage collecting).
  That's why ``hs_try_putmvar()`` doesn't return a result to say
  whether the put succeeded.  It is your responsibility to ensure that
  the ``MVar`` is empty; if it is full, ``hs_try_putmvar()`` will have
  no effect.

**Example**. Suppose we have a C/C++ function to call that will return and then
invoke a callback at some point in the future, passing us some data.
We want to wait in Haskell for the callback to be called, and retrieve
the data.  We can do it like this:

.. code-block:: haskell

     import GHC.Conc (newStablePtrPrimMVar, PrimMVar)

     makeExternalCall = mask_ $ do
       mvar <- newEmptyMVar
       sp <- newStablePtrPrimMVar mvar
       fp <- mallocForeignPtr
       withForeignPtr fp $ \presult -> do
         cap <- threadCapability =<< myThreadId
         scheduleCallback sp cap presult
         takeMVar mvar `onException`
           forkIO (do takeMVar mvar; touchForeignPtr fp)
         peek presult

     foreign import ccall "scheduleCallback"
         scheduleCallback :: StablePtr PrimMVar
                          -> Int
                          -> Ptr Result
                          -> IO ()

And inside ``scheduleCallback``, we create a callback that will in due
course store the result data in the ``Ptr Result``, and then call
``hs_try_putmvar()``.

There are a few things to note here.

* There's a special function to create the ``StablePtr``:
  ``newStablePtrPrimMVar``, because the RTS needs a ``StablePtr`` to
  the primitive ``MVar#`` object, and we can't create that directly.
  Do *not* just use ``newStablePtr`` on the ``MVar``: your program
  will crash.

* The ``StablePtr`` is freed by ``hs_try_putmvar()``.  This is because
  it would otherwise be difficult to arrange to free the ``StablePtr``
  reliably: we can't free it in Haskell, because if the ``takeMVar``
  is interrupted by an asynchronous exception, then the callback will
  fire at a later time.  We can't free it in C, because we don't know
  when to free it (not when ``hs_try_putmvar()`` returns, because that
  is an async call that uses the ``StablePtr`` at some time in the
  future).

* The ``mask_`` is to avoid asynchronous exceptions before the
  ``scheduleCallback`` call, which would leak the ``StablePtr``.

* We find out the current capability number and pass it to C.  This is
  passed back to ``hs_try_putmvar``, and helps the RTS to know which
  capability it should try to perform the ``tryPutMVar`` on.  If you
  don't care, you can pass ``-1`` for the capability to
  ``hs_try_putmvar``, and it will pick an arbitrary one.

  Picking the right capability will help avoid unnecessary context
  switches.  Ideally you should pass the capability that the thread
  that will be woken up last ran on, which you can find by calling
  ``threadCapability`` in Haskell.

* If you want to also pass some data back from the C callback to
  Haskell, this is best done by first allocating some memory in
  Haskell to receive the data, and passing the address to C, as we did
  in the above example.

* ``takeMVar`` can be interrupted by an asynchronous exception.  If
  this happens, the callback in C will still run at some point in the
  future, will still write the result, and will still call
  ``hs_try_putmvar()``.  Therefore we have to arrange that the memory
  for the result stays alive until the callback has run, so if an
  exception is thrown during ``takeMVar`` we fork another thread to
  wait for the callback and hold the memory alive using
  ``touchForeignPtr``.

For a fully working example, see
``testsuite/tests/concurrent/should_run/hs_try_putmvar001.hs`` in the
GHC source tree.

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
.. _ffi-floating-point:

Floating point and the FFI
~~~~~~~~~~~~~~~~~~~~~~~~~~

.. index::
   single: Floating point; and the FFI

The standard C99 ``fenv.h`` header provides operations for inspecting
and modifying the state of the floating point unit. In particular, the
rounding mode used by floating point operations can be changed, and the
exception flags can be tested.

In Haskell, floating-point operations have pure types, and the
evaluation order is unspecified. So strictly speaking, since the
``fenv.h`` functions let you change the results of, or observe the
effects of floating point operations, use of ``fenv.h`` renders the
behaviour of floating-point operations anywhere in the program
undefined.

Having said that, we *can* document exactly what GHC does with respect
to the floating point state, so that if you really need to use
``fenv.h`` then you can do so with full knowledge of the pitfalls:

-  GHC completely ignores the floating-point environment, the runtime
   neither modifies nor reads it.

-  The floating-point environment is not saved over a normal thread
   context-switch. So if you modify the floating-point state in one
   thread, those changes may be visible in other threads. Furthermore,
   testing the exception state is not reliable, because a context switch
   may change it. If you need to modify or test the floating point state
   and use threads, then you must use bound threads
   (``Control.Concurrent.forkOS``), because a bound thread has its own
   OS thread, and OS threads do save and restore the floating-point
   state.

-  It is safe to modify the floating-point unit state temporarily during
   a foreign call, because foreign calls are never pre-empted by GHC.

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
.. _pinned-byte-arrays:

Pinned Byte Arrays
~~~~~~~~~~~~~~~~~~

A pinned byte array is one that the garbage collector is not allowed
to move. Consequently, it has a stable address that can be safely
requested with ``byteArrayContents#``. There are a handful of
primitive functions in :ghc-prim-ref:`GHC.Prim <GHC-Prim.html>`
used to enforce or check for pinnedness: ``isByteArrayPinned#``,
``isMutableByteArrayPinned#``, and ``newPinnedByteArray#``. A
byte array can be pinned as a result of three possible causes:

1. It was allocated by ``newPinnedByteArray#``.
2. It is large. Currently, GHC defines large object to be one
   that is at least as large as 80% of a 4KB block (i.e. at
   least 3277 bytes).
3. It has been copied into a compact region. The documentation
   for ``ghc-compact`` and ``compact`` describes this process.

1007 1008 1009 1010 1011 1012 1013 1014
.. [1] Prior to GHC 8.10, when passing an ``ArrayArray#`` argument
  to a foreign function, the foreign function would see a pointer
  to the ``StgMutArrPtrs`` rather than just the payload.
.. [2] In practice, the FFI should not be used for a task as simple
  as reading bytes from a ``MutableByteArray#``. Users should prefer
  ``GHC.Exts.readWord8Array#`` for this.
.. [3] As in [2]_, the FFI is not actually needed for this. ``GHC.Exts``
  includes primitives for reading from on ``ArrayArray#``.