RetainerProfile.c 65 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 2001
 * Author: Sungwoo Park
 *
 * Retainer profiling.
 *
 * ---------------------------------------------------------------------------*/

#ifdef PROFILING

12 13 14 15 16 17 18
// Turn off inlining when debugging - it obfuscates things
#ifdef DEBUG
#define INLINE
#else
#define INLINE inline
#endif

Simon Marlow's avatar
Simon Marlow committed
19
#include "PosixSource.h"
20
#include "Rts.h"
Simon Marlow's avatar
Simon Marlow committed
21

22 23 24 25 26 27
#include "RtsUtils.h"
#include "RetainerProfile.h"
#include "RetainerSet.h"
#include "Schedule.h"
#include "Printer.h"
#include "Weak.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "sm/Sanity.h"
29 30 31
#include "Profiling.h"
#include "Stats.h"
#include "ProfHeap.h"
32
#include "Apply.h"
Simon Marlow's avatar
Simon Marlow committed
33
#include "sm/Storage.h" // for END_OF_STATIC_LIST
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

/*
  Note: what to change in order to plug-in a new retainer profiling scheme?
    (1) type retainer in ../includes/StgRetainerProf.h
    (2) retainer function R(), i.e., getRetainerFrom()
    (3) the two hashing functions, hashKeySingleton() and hashKeyAddElement(),
        in RetainerSet.h, if needed.
    (4) printRetainer() and printRetainerSetShort() in RetainerSet.c.
 */

/* -----------------------------------------------------------------------------
 * Declarations...
 * -------------------------------------------------------------------------- */

static nat retainerGeneration;	// generation

static nat numObjectVisited;	// total number of objects visited
static nat timesAnyObjectVisited; // number of times any objects are visited

/*
  The rs field in the profile header of any object points to its retainer
  set in an indirect way: if flip is 0, it points to the retainer set;
  if flip is 1, it points to the next byte after the retainer set (even
  for NULL pointers). Therefore, with flip 1, (rs ^ 1) is the actual
  pointer. See retainerSetOf().
 */

61
StgWord flip = 0;     // flip bit
62 63 64 65 66
                      // must be 0 if DEBUG_RETAINER is on (for static closures)

#define setRetainerSetToNull(c)   \
  (c)->header.prof.hp.rs = (RetainerSet *)((StgWord)NULL | flip)

67
static void retainStack(StgClosure *, retainer, StgPtr, StgPtr);
68
static void retainClosure(StgClosure *, StgClosure *, retainer);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#ifdef DEBUG_RETAINER
static void belongToHeap(StgPtr p);
#endif

#ifdef DEBUG_RETAINER
/*
  cStackSize records how many times retainStack() has been invoked recursively,
  that is, the number of activation records for retainStack() on the C stack.
  maxCStackSize records its max value.
  Invariants:
    cStackSize <= maxCStackSize
 */
static nat cStackSize, maxCStackSize;

static nat sumOfNewCost;	// sum of the cost of each object, computed
				// when the object is first visited
static nat sumOfNewCostExtra;   // for those objects not visited during
                                // retainer profiling, e.g., MUT_VAR
static nat costArray[N_CLOSURE_TYPES];

nat sumOfCostLinear;		// sum of the costs of all object, computed
				// when linearly traversing the heap after
				// retainer profiling
nat costArrayLinear[N_CLOSURE_TYPES];
#endif

/* -----------------------------------------------------------------------------
 * Retainer stack - header
 *   Note:
 *     Although the retainer stack implementation could be separated *
 *     from the retainer profiling engine, there does not seem to be
 *     any advantage in doing that; retainer stack is an integral part
 *     of retainer profiling engine and cannot be use elsewhere at
 *     all.
 * -------------------------------------------------------------------------- */

typedef enum {
    posTypeStep,
    posTypePtrs,
    posTypeSRT,
109
    posTypeLargeSRT,
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
} nextPosType;

typedef union {
    // fixed layout or layout specified by a field in the closure
    StgWord step;

    // layout.payload
    struct {
    // See StgClosureInfo in InfoTables.h
#if SIZEOF_VOID_P == 8
	StgWord32 pos;
	StgWord32 ptrs;
#else
	StgWord16 pos;
	StgWord16 ptrs;
#endif
	StgPtr payload;
    } ptrs;

    // SRT
    struct {
	StgClosure **srt;
132
	StgWord    srt_bitmap;
133
    } srt;
134 135 136 137 138 139 140

    // Large SRT
    struct {
	StgLargeSRT *srt;
	StgWord offset;
    } large_srt;
	
141 142 143 144 145 146 147 148 149
} nextPos;

typedef struct {
    nextPosType type;
    nextPos next;
} stackPos;

typedef struct {
    StgClosure *c;
150
    retainer c_child_r;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    stackPos info;
} stackElement;

/*
  Invariants:
    firstStack points to the first block group.
    currentStack points to the block group currently being used.
    currentStack->free == stackLimit.
    stackTop points to the topmost byte in the stack of currentStack.
    Unless the whole stack is empty, stackTop must point to the topmost
    object (or byte) in the whole stack. Thus, it is only when the whole stack
    is empty that stackTop == stackLimit (not during the execution of push()
    and pop()).
    stackBottom == currentStack->start.
    stackLimit == currentStack->start + BLOCK_SIZE_W * currentStack->blocks.
  Note:
    When a current stack becomes empty, stackTop is set to point to
    the topmost element on the previous block group so as to satisfy
    the invariants described above.
 */
sof's avatar
sof committed
171
static bdescr *firstStack = NULL;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static bdescr *currentStack;
static stackElement *stackBottom, *stackTop, *stackLimit;

/*
  currentStackBoundary is used to mark the current stack chunk.
  If stackTop == currentStackBoundary, it means that the current stack chunk
  is empty. It is the responsibility of the user to keep currentStackBoundary
  valid all the time if it is to be employed.
 */
static stackElement *currentStackBoundary;

/*
  stackSize records the current size of the stack.
  maxStackSize records its high water mark.
  Invariants:
    stackSize <= maxStackSize
  Note:
    stackSize is just an estimate measure of the depth of the graph. The reason
    is that some heap objects have only a single child and may not result
    in a new element being pushed onto the stack. Therefore, at the end of
    retainer profiling, maxStackSize + maxCStackSize is some value no greater
    than the actual depth of the graph.
 */
#ifdef DEBUG_RETAINER
static int stackSize, maxStackSize;
#endif

// number of blocks allocated for one stack
#define BLOCKS_IN_STACK 1

/* -----------------------------------------------------------------------------
 * Add a new block group to the stack.
 * Invariants:
 *  currentStack->link == s.
 * -------------------------------------------------------------------------- */
207
static INLINE void
208 209 210 211 212 213 214 215 216 217 218 219 220 221
newStackBlock( bdescr *bd )
{
    currentStack = bd;
    stackTop     = (stackElement *)(bd->start + BLOCK_SIZE_W * bd->blocks);
    stackBottom  = (stackElement *)bd->start;
    stackLimit   = (stackElement *)stackTop;
    bd->free     = (StgPtr)stackLimit;
}

/* -----------------------------------------------------------------------------
 * Return to the previous block group.
 * Invariants:
 *   s->link == currentStack.
 * -------------------------------------------------------------------------- */
222
static INLINE void
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
returnToOldStack( bdescr *bd )
{
    currentStack = bd;
    stackTop = (stackElement *)bd->free;
    stackBottom = (stackElement *)bd->start;
    stackLimit = (stackElement *)(bd->start + BLOCK_SIZE_W * bd->blocks);
    bd->free = (StgPtr)stackLimit;
}

/* -----------------------------------------------------------------------------
 *  Initializes the traverse stack.
 * -------------------------------------------------------------------------- */
static void
initializeTraverseStack( void )
{
    if (firstStack != NULL) {
	freeChain(firstStack);
    }

    firstStack = allocGroup(BLOCKS_IN_STACK);
    firstStack->link = NULL;
    firstStack->u.back = NULL;

    newStackBlock(firstStack);
}

/* -----------------------------------------------------------------------------
 * Frees all the block groups in the traverse stack.
 * Invariants:
 *   firstStack != NULL
 * -------------------------------------------------------------------------- */
static void
closeTraverseStack( void )
{
    freeChain(firstStack);
    firstStack = NULL;
}

/* -----------------------------------------------------------------------------
 * Returns rtsTrue if the whole stack is empty.
 * -------------------------------------------------------------------------- */
264
static INLINE rtsBool
265 266 267 268 269
isEmptyRetainerStack( void )
{
    return (firstStack == currentStack) && stackTop == stackLimit;
}

sof's avatar
sof committed
270 271 272
/* -----------------------------------------------------------------------------
 * Returns size of stack
 * -------------------------------------------------------------------------- */
273
#ifdef DEBUG
sof's avatar
sof committed
274
lnat
275
retainerStackBlocks( void )
sof's avatar
sof committed
276 277 278 279 280 281 282 283 284
{
    bdescr* bd;
    lnat res = 0;

    for (bd = firstStack; bd != NULL; bd = bd->link) 
      res += bd->blocks;

    return res;
}
285
#endif
sof's avatar
sof committed
286

287 288 289 290
/* -----------------------------------------------------------------------------
 * Returns rtsTrue if stackTop is at the stack boundary of the current stack,
 * i.e., if the current stack chunk is empty.
 * -------------------------------------------------------------------------- */
291
static INLINE rtsBool
292 293 294 295 296 297 298 299 300 301
isOnBoundary( void )
{
    return stackTop == currentStackBoundary;
}

/* -----------------------------------------------------------------------------
 * Initializes *info from ptrs and payload.
 * Invariants:
 *   payload[] begins with ptrs pointers followed by non-pointers.
 * -------------------------------------------------------------------------- */
302
static INLINE void
303 304 305 306 307 308 309 310 311 312 313
init_ptrs( stackPos *info, nat ptrs, StgPtr payload )
{
    info->type              = posTypePtrs;
    info->next.ptrs.pos     = 0;
    info->next.ptrs.ptrs    = ptrs;
    info->next.ptrs.payload = payload;
}

/* -----------------------------------------------------------------------------
 * Find the next object from *info.
 * -------------------------------------------------------------------------- */
314
static INLINE StgClosure *
315 316 317 318 319 320 321 322 323 324 325 326
find_ptrs( stackPos *info )
{
    if (info->next.ptrs.pos < info->next.ptrs.ptrs) {
	return (StgClosure *)info->next.ptrs.payload[info->next.ptrs.pos++];
    } else {
	return NULL;
    }
}

/* -----------------------------------------------------------------------------
 *  Initializes *info from SRT information stored in *infoTable.
 * -------------------------------------------------------------------------- */
327
static INLINE void
328
init_srt_fun( stackPos *info, StgFunInfoTable *infoTable )
329
{
330 331
    if (infoTable->i.srt_bitmap == (StgHalfWord)(-1)) {
	info->type = posTypeLargeSRT;
332
	info->next.large_srt.srt = (StgLargeSRT *)GET_FUN_SRT(infoTable);
333 334 335
	info->next.large_srt.offset = 0;
    } else {
	info->type = posTypeSRT;
336
	info->next.srt.srt = (StgClosure **)GET_FUN_SRT(infoTable);
337 338
	info->next.srt.srt_bitmap = infoTable->i.srt_bitmap;
    }
339 340
}

341
static INLINE void
342 343
init_srt_thunk( stackPos *info, StgThunkInfoTable *infoTable )
{
344 345
    if (infoTable->i.srt_bitmap == (StgHalfWord)(-1)) {
	info->type = posTypeLargeSRT;
346
	info->next.large_srt.srt = (StgLargeSRT *)GET_SRT(infoTable);
347 348 349
	info->next.large_srt.offset = 0;
    } else {
	info->type = posTypeSRT;
350
	info->next.srt.srt = (StgClosure **)GET_SRT(infoTable);
351 352
	info->next.srt.srt_bitmap = infoTable->i.srt_bitmap;
    }
353 354 355 356 357
}

/* -----------------------------------------------------------------------------
 * Find the next object from *info.
 * -------------------------------------------------------------------------- */
358
static INLINE StgClosure *
359 360 361
find_srt( stackPos *info )
{
    StgClosure *c;
362
    StgWord bitmap;
363

364 365 366 367 368
    if (info->type == posTypeSRT) {
	// Small SRT bitmap
	bitmap = info->next.srt.srt_bitmap;
	while (bitmap != 0) {
	    if ((bitmap & 1) != 0) {
369
#if defined(__PIC__) && defined(mingw32_TARGET_OS)
370 371 372 373
		if ((unsigned long)(*(info->next.srt.srt)) & 0x1)
		    c = (* (StgClosure **)((unsigned long)*(info->next.srt.srt)) & ~0x1);
		else
		    c = *(info->next.srt.srt);
374
#else
375
		c = *(info->next.srt.srt);
376
#endif
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		bitmap = bitmap >> 1;
		info->next.srt.srt++;
		info->next.srt.srt_bitmap = bitmap;
		return c;
	    }
	    bitmap = bitmap >> 1;
	    info->next.srt.srt++;
	}
	// bitmap is now zero...
	return NULL;
    }
    else {
	// Large SRT bitmap
	nat i = info->next.large_srt.offset;
	StgWord bitmap;

	// Follow the pattern from GC.c:scavenge_large_srt_bitmap().
	bitmap = info->next.large_srt.srt->l.bitmap[i / BITS_IN(W_)];
	bitmap = bitmap >> (i % BITS_IN(StgWord));
	while (i < info->next.large_srt.srt->l.size) {
	    if ((bitmap & 1) != 0) {
		c = ((StgClosure **)info->next.large_srt.srt->srt)[i];
		i++;
		info->next.large_srt.offset = i;
		return c;
	    }
	    i++;
	    if (i % BITS_IN(W_) == 0) {
		bitmap = info->next.large_srt.srt->l.bitmap[i / BITS_IN(W_)];
	    } else {
		bitmap = bitmap >> 1;
	    }
	}
	// reached the end of this bitmap.
	info->next.large_srt.offset = i;
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	return NULL;
    }
}

/* -----------------------------------------------------------------------------
 *  push() pushes a stackElement representing the next child of *c
 *  onto the traverse stack. If *c has no child, *first_child is set
 *  to NULL and nothing is pushed onto the stack. If *c has only one
 *  child, *c_chlid is set to that child and nothing is pushed onto
 *  the stack.  If *c has more than two children, *first_child is set
 *  to the first child and a stackElement representing the second
 *  child is pushed onto the stack.

 *  Invariants:
 *     *c_child_r is the most recent retainer of *c's children.
427
 *     *c is not any of TSO, AP, PAP, AP_STACK, which means that
428 429 430
 *        there cannot be any stack objects.
 *  Note: SRTs are considered to  be children as well.
 * -------------------------------------------------------------------------- */
431
static INLINE void
432
push( StgClosure *c, retainer c_child_r, StgClosure **first_child )
433 434 435 436 437
{
    stackElement se;
    bdescr *nbd;      // Next Block Descriptor

#ifdef DEBUG_RETAINER
438
    // debugBelch("push(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", stackTop, currentStackBoundary);
439 440 441
#endif

    ASSERT(get_itbl(c)->type != TSO);
442
    ASSERT(get_itbl(c)->type != AP_STACK);
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

    //
    // fill in se
    //

    se.c = c;
    se.c_child_r = c_child_r;

    // fill in se.info
    switch (get_itbl(c)->type) {
	// no child, no SRT
    case CONSTR_0_1:
    case CONSTR_0_2:
    case CAF_BLACKHOLE:
    case BLACKHOLE:
    case ARR_WORDS:
	*first_child = NULL;
	return;

	// one child (fixed), no SRT
463 464
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY:
465 466 467 468 469 470 471 472
	*first_child = ((StgMutVar *)c)->var;
	return;
    case THUNK_SELECTOR:
	*first_child = ((StgSelector *)c)->selectee;
	return;
    case IND_PERM:
    case IND_OLDGEN_PERM:
    case IND_OLDGEN:
473
	*first_child = ((StgInd *)c)->indirectee;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	return;
    case CONSTR_1_0:
    case CONSTR_1_1:
	*first_child = c->payload[0];
	return;

	// For CONSTR_2_0 and MVAR, we use se.info.step to record the position
	// of the next child. We do not write a separate initialization code.
	// Also we do not have to initialize info.type;

	// two children (fixed), no SRT
	// need to push a stackElement, but nothing to store in se.info
    case CONSTR_2_0:
	*first_child = c->payload[0];         // return the first pointer
	// se.info.type = posTypeStep;
	// se.info.next.step = 2;            // 2 = second
	break;

	// three children (fixed), no SRT
	// need to push a stackElement
494 495
    case MVAR_CLEAN:
    case MVAR_DIRTY:
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	// head must be TSO and the head of a linked list of TSOs.
	// Shoule it be a child? Seems to be yes.
	*first_child = (StgClosure *)((StgMVar *)c)->head;
	// se.info.type = posTypeStep;
	se.info.next.step = 2;            // 2 = second
	break;

	// three children (fixed), no SRT
    case WEAK:
	*first_child = ((StgWeak *)c)->key;
	// se.info.type = posTypeStep;
	se.info.next.step = 2;
	break;

	// layout.payload.ptrs, no SRT
    case CONSTR:
512
    case PRIM:
513 514 515 516 517 518 519 520 521 522
    case BCO:
    case CONSTR_STATIC:
	init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs,
		  (StgPtr)c->payload);
	*first_child = find_ptrs(&se.info);
	if (*first_child == NULL)
	    return;   // no child
	break;

	// StgMutArrPtr.ptrs, no SRT
523 524
    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
525
    case MUT_ARR_PTRS_FROZEN:
526
    case MUT_ARR_PTRS_FROZEN0:
527 528 529 530 531 532 533 534 535 536
	init_ptrs(&se.info, ((StgMutArrPtrs *)c)->ptrs,
		  (StgPtr)(((StgMutArrPtrs *)c)->payload));
	*first_child = find_ptrs(&se.info);
	if (*first_child == NULL)
	    return;
	break;

    // layout.payload.ptrs, SRT
    case FUN:           // *c is a heap object.
    case FUN_2_0:
537 538 539 540 541 542 543
	init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs, (StgPtr)c->payload);
	*first_child = find_ptrs(&se.info);
	if (*first_child == NULL)
	    // no child from ptrs, so check SRT
	    goto fun_srt_only;
	break;

544 545
    case THUNK:
    case THUNK_2_0:
546 547
	init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs, 
		  (StgPtr)((StgThunk *)c)->payload);
548 549 550
	*first_child = find_ptrs(&se.info);
	if (*first_child == NULL)
	    // no child from ptrs, so check SRT
551
	    goto thunk_srt_only;
552 553 554 555 556
	break;

	// 1 fixed child, SRT
    case FUN_1_0:
    case FUN_1_1:
557 558 559 560 561
	*first_child = c->payload[0];
	ASSERT(*first_child != NULL);
	init_srt_fun(&se.info, get_fun_itbl(c));
	break;

562 563
    case THUNK_1_0:
    case THUNK_1_1:
564
	*first_child = ((StgThunk *)c)->payload[0];
565
	ASSERT(*first_child != NULL);
566
	init_srt_thunk(&se.info, get_thunk_itbl(c));
567 568 569
	break;

    case FUN_STATIC:      // *c is a heap object.
570
	ASSERT(get_itbl(c)->srt_bitmap != 0);
571 572
    case FUN_0_1:
    case FUN_0_2:
573 574 575 576 577 578 579 580 581
    fun_srt_only:
        init_srt_fun(&se.info, get_fun_itbl(c));
	*first_child = find_srt(&se.info);
	if (*first_child == NULL)
	    return;     // no child
	break;

    // SRT only
    case THUNK_STATIC:
582
	ASSERT(get_itbl(c)->srt_bitmap != 0);
583 584
    case THUNK_0_1:
    case THUNK_0_2:
585 586
    thunk_srt_only:
        init_srt_thunk(&se.info, get_thunk_itbl(c));
587 588 589 590
	*first_child = find_srt(&se.info);
	if (*first_child == NULL)
	    return;     // no child
	break;
591
	
tharris@microsoft.com's avatar
tharris@microsoft.com committed
592 593
    case TVAR_WATCH_QUEUE:
	*first_child = (StgClosure *)((StgTVarWatchQueue *)c)->closure;
594 595 596 597 598 599 600 601 602 603 604 605
	se.info.next.step = 2;            // 2 = second
	break;
    case TVAR:
	*first_child = (StgClosure *)((StgTVar *)c)->current_value;
	break;
    case TREC_HEADER:
	*first_child = (StgClosure *)((StgTRecHeader *)c)->enclosing_trec;
	break;
    case TREC_CHUNK:
	*first_child = (StgClosure *)((StgTRecChunk *)c)->prev_chunk;
	se.info.next.step = 0;  // entry no.
	break;
606 607 608

	// cannot appear
    case PAP:
609 610
    case AP:
    case AP_STACK:
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    case TSO:
    case IND_STATIC:
    case CONSTR_NOCAF_STATIC:
	// stack objects
    case UPDATE_FRAME:
    case CATCH_FRAME:
    case STOP_FRAME:
    case RET_DYN:
    case RET_BCO:
    case RET_SMALL:
    case RET_BIG:
	// invalid objects
    case IND:
    case INVALID_OBJECT:
    default:
	barf("Invalid object *c in push()");
	return;
    }

    if (stackTop - 1 < stackBottom) {
#ifdef DEBUG_RETAINER
632
	// debugBelch("push() to the next stack.\n");
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
#endif
	// currentStack->free is updated when the active stack is switched
	// to the next stack.
	currentStack->free = (StgPtr)stackTop;

	if (currentStack->link == NULL) {
	    nbd = allocGroup(BLOCKS_IN_STACK);
	    nbd->link = NULL;
	    nbd->u.back = currentStack;
	    currentStack->link = nbd;
	} else
	    nbd = currentStack->link;

	newStackBlock(nbd);
    }

    // adjust stackTop (acutal push)
    stackTop--;
    // If the size of stackElement was huge, we would better replace the
    // following statement by either a memcpy() call or a switch statement
    // on the type of the element. Currently, the size of stackElement is
    // small enough (5 words) that this direct assignment seems to be enough.
655 656 657 658 659 660

    // ToDo: The line below leads to the warning:
    //    warning: 'se.info.type' may be used uninitialized in this function
    // This is caused by the fact that there are execution paths through the
    // large switch statement above where some cases do not initialize this
    // field. Is this really harmless? Can we avoid the warning?
661 662 663 664 665 666
    *stackTop = se;

#ifdef DEBUG_RETAINER
    stackSize++;
    if (stackSize > maxStackSize) maxStackSize = stackSize;
    // ASSERT(stackSize >= 0);
667
    // debugBelch("stackSize = %d\n", stackSize);
668 669 670 671 672 673 674 675 676 677 678 679 680
#endif
}

/* -----------------------------------------------------------------------------
 *  popOff() and popOffReal(): Pop a stackElement off the traverse stack.
 *  Invariants:
 *    stackTop cannot be equal to stackLimit unless the whole stack is
 *    empty, in which case popOff() is not allowed.
 *  Note:
 *    You can think of popOffReal() as a part of popOff() which is
 *    executed at the end of popOff() in necessary. Since popOff() is
 *    likely to be executed quite often while popOffReal() is not, we
 *    separate popOffReal() from popOff(), which is declared as an
681
 *    INLINE function (for the sake of execution speed).  popOffReal()
682 683 684 685 686 687 688 689
 *    is called only within popOff() and nowhere else.
 * -------------------------------------------------------------------------- */
static void
popOffReal(void)
{
    bdescr *pbd;    // Previous Block Descriptor

#ifdef DEBUG_RETAINER
690
    // debugBelch("pop() to the previous stack.\n");
691 692 693 694 695 696 697 698 699 700 701 702 703 704
#endif

    ASSERT(stackTop + 1 == stackLimit);
    ASSERT(stackBottom == (stackElement *)currentStack->start);

    if (firstStack == currentStack) {
	// The stack is completely empty.
	stackTop++;
	ASSERT(stackTop == stackLimit);
#ifdef DEBUG_RETAINER
	stackSize--;
	if (stackSize > maxStackSize) maxStackSize = stackSize;
	/*
	  ASSERT(stackSize >= 0);
705
	  debugBelch("stackSize = %d\n", stackSize);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	*/
#endif
	return;
    }

    // currentStack->free is updated when the active stack is switched back
    // to the previous stack.
    currentStack->free = (StgPtr)stackLimit;

    // find the previous block descriptor
    pbd = currentStack->u.back;
    ASSERT(pbd != NULL);

    returnToOldStack(pbd);

#ifdef DEBUG_RETAINER
    stackSize--;
    if (stackSize > maxStackSize) maxStackSize = stackSize;
    /*
      ASSERT(stackSize >= 0);
726
      debugBelch("stackSize = %d\n", stackSize);
727 728 729 730
    */
#endif
}

731
static INLINE void
732 733
popOff(void) {
#ifdef DEBUG_RETAINER
734
    // debugBelch("\tpopOff(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", stackTop, currentStackBoundary);
735 736 737 738 739 740 741 742 743 744 745 746 747
#endif

    ASSERT(stackTop != stackLimit);
    ASSERT(!isEmptyRetainerStack());

    // <= (instead of <) is wrong!
    if (stackTop + 1 < stackLimit) {
	stackTop++;
#ifdef DEBUG_RETAINER
	stackSize--;
	if (stackSize > maxStackSize) maxStackSize = stackSize;
	/*
	  ASSERT(stackSize >= 0);
748
	  debugBelch("stackSize = %d\n", stackSize);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	*/
#endif
	return;
    }

    popOffReal();
}

/* -----------------------------------------------------------------------------
 *  Finds the next object to be considered for retainer profiling and store
 *  its pointer to *c.
 *  Test if the topmost stack element indicates that more objects are left,
 *  and if so, retrieve the first object and store its pointer to *c. Also,
 *  set *cp and *r appropriately, both of which are stored in the stack element.
 *  The topmost stack element then is overwritten so as for it to now denote
 *  the next object.
 *  If the topmost stack element indicates no more objects are left, pop
 *  off the stack element until either an object can be retrieved or
 *  the current stack chunk becomes empty, indicated by rtsTrue returned by
 *  isOnBoundary(), in which case *c is set to NULL.
 *  Note:
 *    It is okay to call this function even when the current stack chunk
 *    is empty.
 * -------------------------------------------------------------------------- */
773
static INLINE void
774
pop( StgClosure **c, StgClosure **cp, retainer *r )
775 776 777 778
{
    stackElement *se;

#ifdef DEBUG_RETAINER
779
    // debugBelch("pop(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", stackTop, currentStackBoundary);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
#endif

    do {
	if (isOnBoundary()) {     // if the current stack chunk is depleted
	    *c = NULL;
	    return;
	}

	se = stackTop;

	switch (get_itbl(se->c)->type) {
	    // two children (fixed), no SRT
	    // nothing in se.info
	case CONSTR_2_0:
	    *c = se->c->payload[1];
	    *cp = se->c;
	    *r = se->c_child_r;
	    popOff();
	    return;

	    // three children (fixed), no SRT
	    // need to push a stackElement
802 803
        case MVAR_CLEAN:
        case MVAR_DIRTY:
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	    if (se->info.next.step == 2) {
		*c = (StgClosure *)((StgMVar *)se->c)->tail;
		se->info.next.step++;             // move to the next step
		// no popOff
	    } else {
		*c = ((StgMVar *)se->c)->value;
		popOff();
	    }
	    *cp = se->c;
	    *r = se->c_child_r;
	    return;

	    // three children (fixed), no SRT
	case WEAK:
	    if (se->info.next.step == 2) {
		*c = ((StgWeak *)se->c)->value;
		se->info.next.step++;
		// no popOff
	    } else {
		*c = ((StgWeak *)se->c)->finalizer;
		popOff();
	    }
	    *cp = se->c;
	    *r = se->c_child_r;
	    return;

tharris@microsoft.com's avatar
tharris@microsoft.com committed
830
	case TVAR_WATCH_QUEUE:
831
	    if (se->info.next.step == 2) {
tharris@microsoft.com's avatar
tharris@microsoft.com committed
832
		*c = (StgClosure *)((StgTVarWatchQueue *)se->c)->next_queue_entry;
833 834 835
		se->info.next.step++;             // move to the next step
		// no popOff
	    } else {
tharris@microsoft.com's avatar
tharris@microsoft.com committed
836
		*c = (StgClosure *)((StgTVarWatchQueue *)se->c)->prev_queue_entry;
837 838 839 840 841 842 843
		popOff();
	    }
	    *cp = se->c;
	    *r = se->c_child_r;
	    return;

	case TVAR:
tharris@microsoft.com's avatar
tharris@microsoft.com committed
844
	    *c = (StgClosure *)((StgTVar *)se->c)->first_watch_queue_entry;
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	    *cp = se->c;
	    *r = se->c_child_r;
	    popOff();
	    return;

	case TREC_HEADER:
	    *c = (StgClosure *)((StgTRecHeader *)se->c)->current_chunk;
	    *cp = se->c;
	    *r = se->c_child_r;
	    popOff();
	    return;

	case TREC_CHUNK: {
	    // These are pretty complicated: we have N entries, each
	    // of which contains 3 fields that we want to follow.  So
	    // we divide the step counter: the 2 low bits indicate
	    // which field, and the rest of the bits indicate the
	    // entry number (starting from zero).
863
	    TRecEntry *entry;
864 865 866 867 868 869 870
	    nat entry_no = se->info.next.step >> 2;
	    nat field_no = se->info.next.step & 3;
	    if (entry_no == ((StgTRecChunk *)se->c)->next_entry_idx) {
		*c = NULL;
		popOff();
		return;
	    }
871
	    entry = &((StgTRecChunk *)se->c)->entries[entry_no];
872 873 874 875 876 877 878 879 880 881 882 883 884
	    if (field_no == 0) {
		*c = (StgClosure *)entry->tvar;
	    } else if (field_no == 1) {
		*c = entry->expected_value;
	    } else {
		*c = entry->new_value;
	    }
	    *cp = se->c;
	    *r = se->c_child_r;
	    se->info.next.step++;
	    return;
	}

885
	case CONSTR:
886
	case PRIM:
887 888 889
	case BCO:
	case CONSTR_STATIC:
	    // StgMutArrPtr.ptrs, no SRT
890 891
	case MUT_ARR_PTRS_CLEAN:
	case MUT_ARR_PTRS_DIRTY:
892
	case MUT_ARR_PTRS_FROZEN:
893
	case MUT_ARR_PTRS_FROZEN0:
894 895 896 897 898 899 900 901 902 903 904 905
	    *c = find_ptrs(&se->info);
	    if (*c == NULL) {
		popOff();
		break;
	    }
	    *cp = se->c;
	    *r = se->c_child_r;
	    return;

	    // layout.payload.ptrs, SRT
	case FUN:         // always a heap object
	case FUN_2_0:
906 907 908 909 910 911 912 913 914 915 916
	    if (se->info.type == posTypePtrs) {
		*c = find_ptrs(&se->info);
		if (*c != NULL) {
		    *cp = se->c;
		    *r = se->c_child_r;
		    return;
		}
		init_srt_fun(&se->info, get_fun_itbl(se->c));
	    }
	    goto do_srt;

917 918 919 920 921 922 923 924 925
	case THUNK:
	case THUNK_2_0:
	    if (se->info.type == posTypePtrs) {
		*c = find_ptrs(&se->info);
		if (*c != NULL) {
		    *cp = se->c;
		    *r = se->c_child_r;
		    return;
		}
926
		init_srt_thunk(&se->info, get_thunk_itbl(se->c));
927
	    }
928
	    goto do_srt;
929 930

	    // SRT
931
	do_srt:
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	case THUNK_STATIC:
	case FUN_STATIC:
	case FUN_0_1:
	case FUN_0_2:
	case THUNK_0_1:
	case THUNK_0_2:
	case FUN_1_0:
	case FUN_1_1:
	case THUNK_1_0:
	case THUNK_1_1:
	    *c = find_srt(&se->info);
	    if (*c != NULL) {
		*cp = se->c;
		*r = se->c_child_r;
		return;
	    }
	    popOff();
	    break;

	    // no child (fixed), no SRT
	case CONSTR_0_1:
	case CONSTR_0_2:
	case CAF_BLACKHOLE:
	case BLACKHOLE:
	case ARR_WORDS:
	    // one child (fixed), no SRT
958 959
	case MUT_VAR_CLEAN:
	case MUT_VAR_DIRTY:
960 961 962 963 964 965 966
	case THUNK_SELECTOR:
	case IND_PERM:
	case IND_OLDGEN_PERM:
	case IND_OLDGEN:
	case CONSTR_1_1:
	    // cannot appear
	case PAP:
967 968
	case AP:
	case AP_STACK:
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	case TSO:
	case IND_STATIC:
	case CONSTR_NOCAF_STATIC:
	    // stack objects
	case RET_DYN:
	case UPDATE_FRAME:
	case CATCH_FRAME:
	case STOP_FRAME:
	case RET_BCO:
	case RET_SMALL:
	case RET_BIG:
	    // invalid objects
	case IND:
	case INVALID_OBJECT:
	default:
	    barf("Invalid object *c in pop()");
	    return;
	}
    } while (rtsTrue);
}

/* -----------------------------------------------------------------------------
 * RETAINER PROFILING ENGINE
 * -------------------------------------------------------------------------- */

void
initRetainerProfiling( void )
{
    initializeAllRetainerSet();
    retainerGeneration = 0;
}

/* -----------------------------------------------------------------------------
 *  This function must be called before f-closing prof_file.
 * -------------------------------------------------------------------------- */
void
endRetainerProfiling( void )
{
#ifdef SECOND_APPROACH
    outputAllRetainerSet(prof_file);
#endif
}

/* -----------------------------------------------------------------------------
 *  Returns the actual pointer to the retainer set of the closure *c.
 *  It may adjust RSET(c) subject to flip.
 *  Side effects:
 *    RSET(c) is initialized to NULL if its current value does not
 *    conform to flip.
 *  Note:
 *    Even though this function has side effects, they CAN be ignored because
 *    subsequent calls to retainerSetOf() always result in the same return value
 *    and retainerSetOf() is the only way to retrieve retainerSet of a given
 *    closure.
 *    We have to perform an XOR (^) operation each time a closure is examined.
 *    The reason is that we do not know when a closure is visited last.
 * -------------------------------------------------------------------------- */
1026
static INLINE void
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
maybeInitRetainerSet( StgClosure *c )
{
    if (!isRetainerSetFieldValid(c)) {
	setRetainerSetToNull(c);
    }
}

/* -----------------------------------------------------------------------------
 * Returns rtsTrue if *c is a retainer.
 * -------------------------------------------------------------------------- */
1037
static INLINE rtsBool
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
isRetainer( StgClosure *c )
{
    switch (get_itbl(c)->type) {
	//
	//  True case
	//
	// TSOs MUST be retainers: they constitute the set of roots.
    case TSO:

	// mutable objects
1048 1049
    case MVAR_CLEAN:
    case MVAR_DIRTY:
1050 1051
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY:
1052 1053
    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
1054
    case MUT_ARR_PTRS_FROZEN:
1055
    case MUT_ARR_PTRS_FROZEN0:
1056 1057 1058 1059 1060 1061 1062 1063 1064

	// thunks are retainers.
    case THUNK:
    case THUNK_1_0:
    case THUNK_0_1:
    case THUNK_2_0:
    case THUNK_1_1:
    case THUNK_0_2:
    case THUNK_SELECTOR:
1065 1066
    case AP:
    case AP_STACK:
1067 1068 1069 1070 1071 1072 1073

	// Static thunks, or CAFS, are obviously retainers.
    case THUNK_STATIC:

	// WEAK objects are roots; there is separate code in which traversing
	// begins from WEAK objects.
    case WEAK:
1074 1075 1076 1077

	// Since the other mutvar-type things are retainers, seems
	// like the right thing to do:
    case TVAR:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	return rtsTrue;

	//
	// False case
	//

	// constructors
    case CONSTR:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_2_0:
    case CONSTR_1_1:
    case CONSTR_0_2:
	// functions
    case FUN:
    case FUN_1_0:
    case FUN_0_1:
    case FUN_2_0:
    case FUN_1_1:
    case FUN_0_2:
	// partial applications
    case PAP:
	// blackholes
    case CAF_BLACKHOLE:
    case BLACKHOLE:
	// indirection
    case IND_PERM:
    case IND_OLDGEN_PERM:
    case IND_OLDGEN:
	// static objects
    case CONSTR_STATIC:
    case FUN_STATIC:
	// misc
1111
    case PRIM:
1112 1113
    case BCO:
    case ARR_WORDS:
1114
	// STM
tharris@microsoft.com's avatar
tharris@microsoft.com committed
1115
    case TVAR_WATCH_QUEUE:
1116 1117
    case TREC_HEADER:
    case TREC_CHUNK:
1118 1119 1120 1121 1122 1123 1124
	return rtsFalse;

	//
	// Error case
	//
	// IND_STATIC cannot be *c, *cp, *r in the retainer profiling loop.
    case IND_STATIC:
1125
	// CONSTR_NOCAF_STATIC
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	// cannot be *c, *cp, *r in the retainer profiling loop.
    case CONSTR_NOCAF_STATIC:
	// Stack objects are invalid because they are never treated as
	// legal objects during retainer profiling.
    case UPDATE_FRAME:
    case CATCH_FRAME:
    case STOP_FRAME:
    case RET_DYN:
    case RET_BCO:
    case RET_SMALL:
    case RET_BIG:
	// other cases
    case IND:
    case INVALID_OBJECT:
    default:
	barf("Invalid object in isRetainer(): %d", get_itbl(c)->type);
	return rtsFalse;
    }
}

/* -----------------------------------------------------------------------------
 *  Returns the retainer function value for the closure *c, i.e., R(*c).
 *  This function does NOT return the retainer(s) of *c.
 *  Invariants:
 *    *c must be a retainer.
 *  Note:
 *    Depending on the definition of this function, the maintenance of retainer
 *    sets can be made easier. If most retainer sets are likely to be created
 *    again across garbage collections, refreshAllRetainerSet() in
1155
 *    RetainerSet.c can simply do nothing.
1156 1157 1158 1159
 *    If this is not the case, we can free all the retainer sets and
 *    re-initialize the hash table.
 *    See refreshAllRetainerSet() in RetainerSet.c.
 * -------------------------------------------------------------------------- */
1160
static INLINE retainer
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
getRetainerFrom( StgClosure *c )
{
    ASSERT(isRetainer(c));

#if defined(RETAINER_SCHEME_INFO)
    // Retainer scheme 1: retainer = info table
    return get_itbl(c);
#elif defined(RETAINER_SCHEME_CCS)
    // Retainer scheme 2: retainer = cost centre stack
    return c->header.prof.ccs;
#elif defined(RETAINER_SCHEME_CC)
    // Retainer scheme 3: retainer = cost centre
    return c->header.prof.ccs->cc;
#endif
}

/* -----------------------------------------------------------------------------
 *  Associates the retainer set *s with the closure *c, that is, *s becomes
 *  the retainer set of *c.
 *  Invariants:
 *    c != NULL
 *    s != NULL
 * -------------------------------------------------------------------------- */
1184
static INLINE void
1185
associate( StgClosure *c, RetainerSet *s )
1186 1187 1188 1189 1190 1191
{
    // StgWord has the same size as pointers, so the following type
    // casting is okay.
    RSET(c) = (RetainerSet *)((StgWord)s | flip);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/* -----------------------------------------------------------------------------
   Call retainClosure for each of the closures covered by a large bitmap.
   -------------------------------------------------------------------------- */

static void
retain_large_bitmap (StgPtr p, StgLargeBitmap *large_bitmap, nat size,
		     StgClosure *c, retainer c_child_r)
{
    nat i, b;
    StgWord bitmap;
    
    b = 0;
    bitmap = large_bitmap->bitmap[b];
    for (i = 0; i < size; ) {
	if ((bitmap & 1) == 0) {
	    retainClosure((StgClosure *)*p, c, c_child_r);
	}
	i++;
	p++;
	if (i % BITS_IN(W_) == 0) {
	    b++;
	    bitmap = large_bitmap->bitmap[b];
	} else {
	    bitmap = bitmap >> 1;
	}
    }
}

1220
static INLINE StgPtr
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
retain_small_bitmap (StgPtr p, nat size, StgWord bitmap,
		     StgClosure *c, retainer c_child_r)
{
    while (size > 0) {
	if ((bitmap & 1) == 0) {
	    retainClosure((StgClosure *)*p, c, c_child_r);
	}
	p++;
	bitmap = bitmap >> 1;
	size--;
    }
    return p;
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/* -----------------------------------------------------------------------------
 * Call retainClosure for each of the closures in an SRT.
 * ------------------------------------------------------------------------- */

static void
retain_large_srt_bitmap (StgLargeSRT *srt, StgClosure *c, retainer c_child_r)
{
    nat i, b, size;
    StgWord bitmap;
    StgClosure **p;
    
    b = 0;
    p = (StgClosure **)srt->srt;
    size   = srt->l.size;
    bitmap = srt->l.bitmap[b];
    for (i = 0; i < size; ) {
	if ((bitmap & 1) != 0) {
	    retainClosure((StgClosure *)*p, c, c_child_r);
	}
	i++;
	p++;
	if (i % BITS_IN(W_) == 0) {
	    b++;
	    bitmap = srt->l.bitmap[b];
	} else {
	    bitmap = bitmap >> 1;
	}
    }
}

static INLINE void
retainSRT (StgClosure **srt, nat srt_bitmap, StgClosure *c, retainer c_child_r)
{
  nat bitmap;
  StgClosure **p;

  bitmap = srt_bitmap;
  p = srt;

  if (bitmap == (StgHalfWord)(-1)) {  
      retain_large_srt_bitmap( (StgLargeSRT *)srt, c, c_child_r );
      return;
  }

  while (bitmap != 0) {
      if ((bitmap & 1) != 0) {
1281
#if defined(__PIC__) && defined(mingw32_TARGET_OS)
1282
	  if ( (unsigned long)(*srt) & 0x1 ) {
1283
	      retainClosure(* (StgClosure**) ((unsigned long) (*srt) & ~0x1), 
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
			    c, c_child_r);
	  } else {
	      retainClosure(*srt,c,c_child_r);
	  }
#else
	  retainClosure(*srt,c,c_child_r);
#endif
      }
      p++;
      bitmap = bitmap >> 1;
  }
}

1297 1298 1299 1300 1301 1302
/* -----------------------------------------------------------------------------
 *  Process all the objects in the stack chunk from stackStart to stackEnd
 *  with *c and *c_child_r being their parent and their most recent retainer,
 *  respectively. Treat stackOptionalFun as another child of *c if it is
 *  not NULL.
 *  Invariants:
1303
 *    *c is one of the following: TSO, AP_STACK.
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
 *    If *c is TSO, c == c_child_r.
 *    stackStart < stackEnd.
 *    RSET(c) and RSET(c_child_r) are valid, i.e., their
 *    interpretation conforms to the current value of flip (even when they
 *    are interpreted to be NULL).
 *    If *c is TSO, its state is not any of ThreadRelocated, ThreadComplete,
 *    or ThreadKilled, which means that its stack is ready to process.
 *  Note:
 *    This code was almost plagiarzied from GC.c! For each pointer,
 *    retainClosure() is invoked instead of evacuate().
 * -------------------------------------------------------------------------- */
static void
1316
retainStack( StgClosure *c, retainer c_child_r,
1317
	     StgPtr stackStart, StgPtr stackEnd )
1318 1319
{
    stackElement *oldStackBoundary;
1320 1321
    StgPtr p;
    StgRetInfoTable *info;
1322
    StgWord32 bitmap;
1323
    nat size;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

#ifdef DEBUG_RETAINER
    cStackSize++;
    if (cStackSize > maxCStackSize) maxCStackSize = cStackSize;
#endif

    /*
      Each invocation of retainStack() creates a new virtual
      stack. Since all such stacks share a single common stack, we
      record the current currentStackBoundary, which will be restored
      at the exit.
    */
    oldStackBoundary = currentStackBoundary;
    currentStackBoundary = stackTop;

#ifdef DEBUG_RETAINER
1340
    // debugBelch("retainStack() called: oldStackBoundary = 0x%x, currentStackBoundary = 0x%x\n", oldStackBoundary, currentStackBoundary);
1341 1342
#endif

1343 1344 1345 1346 1347
    ASSERT(get_itbl(c)->type != TSO || 
	   (((StgTSO *)c)->what_next != ThreadRelocated &&
	    ((StgTSO *)c)->what_next != ThreadComplete &&
	    ((StgTSO *)c)->what_next != ThreadKilled));
    
1348 1349
    p = stackStart;
    while (p < stackEnd) {
1350
	info = get_ret_itbl((StgClosure *)p);
1351

1352
	switch(info->i.type) {
1353 1354 1355 1356 1357 1358 1359 1360

	case UPDATE_FRAME:
	    retainClosure(((StgUpdateFrame *)p)->updatee, c, c_child_r);
	    p += sizeofW(StgUpdateFrame);
	    continue;

	case STOP_FRAME:
	case CATCH_FRAME:
1361 1362 1363
	case CATCH_STM_FRAME:
	case CATCH_RETRY_FRAME:
	case ATOMICALLY_FRAME:
1364
	case RET_SMALL:
1365 1366
	    bitmap = BITMAP_BITS(info->i.layout.bitmap);
	    size   = BITMAP_SIZE(info->i.layout.bitmap);
1367
	    p++;
1368 1369
	    p = retain_small_bitmap(p, size, bitmap, c, c_child_r);

1370
	follow_srt:
1371
	    retainSRT((StgClosure **)GET_SRT(info), info->i.srt_bitmap, c, c_child_r);
1372
	    continue;
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	case RET_BCO: {
	    StgBCO *bco;
	    
	    p++;
	    retainClosure((StgClosure *)*p, c, c_child_r);
	    bco = (StgBCO *)*p;
	    p++;
	    size = BCO_BITMAP_SIZE(bco);
	    retain_large_bitmap(p, BCO_BITMAP(bco), size, c, c_child_r);
	    p += size;
1384
	    continue;
1385
	}
1386

1387
	    // large bitmap (> 32 entries, or > 64 on a 64-bit machine) 
1388
	case RET_BIG:
1389
	    size = GET_LARGE_BITMAP(&info->i)->size;
1390
	    p++;
1391
	    retain_large_bitmap(p, GET_LARGE_BITMAP(&info->i),
1392 1393 1394 1395
				size, c, c_child_r);
	    p += size;
	    // and don't forget to follow the SRT 
	    goto follow_srt;
1396

1397 1398 1399 1400 1401 1402
	    // Dynamic bitmap: the mask is stored on the stack 
	case RET_DYN: {
	    StgWord dyn;
	    dyn = ((StgRetDyn *)p)->liveness;

	    // traverse the bitmap first
1403
	    bitmap = RET_DYN_LIVENESS(dyn);
1404
	    p      = (P_)&((StgRetDyn *)p)->payload[0];
1405
	    size   = RET_DYN_BITMAP_SIZE;
1406 1407 1408
	    p = retain_small_bitmap(p, size, bitmap, c, c_child_r);
	    
	    // skip over the non-ptr words
1409
	    p += RET_DYN_NONPTRS(dyn) + RET_DYN_NONPTR_REGS_SIZE;
1410 1411
	    
	    // follow the ptr words
1412
	    for (size = RET_DYN_PTRS(dyn); size > 0; size--) {
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		retainClosure((StgClosure *)*p, c, c_child_r);
		p++;
	    }
	    continue;
	}

	case RET_FUN: {
	    StgRetFun *ret_fun = (StgRetFun *)p;
	    StgFunInfoTable *fun_info;
	    
	    retainClosure(ret_fun->fun, c, c_child_r);
Ian Lynagh's avatar
Ian Lynagh committed
1424
	    fun_info = get_fun_itbl(UNTAG_CLOSURE(ret_fun->fun));
1425 1426
	    
	    p = (P_)&ret_fun->payload;
1427
	    switch (fun_info->f.fun_type) {
1428
	    case ARG_GEN:
1429 1430
		bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
		size = BITMAP_SIZE(fun_info->f.b.bitmap);
1431 1432 1433
		p = retain_small_bitmap(p, size, bitmap, c, c_child_r);
		break;
	    case ARG_GEN_BIG:
1434 1435
		size = GET_FUN_LARGE_BITMAP(fun_info)->size;
		retain_large_bitmap(p, GET_FUN_LARGE_BITMAP(fun_info), 
1436 1437 1438 1439
				    size, c, c_child_r);
		p += size;
		break;
	    default:
1440 1441
		bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
		size = BITMAP_SIZE(stg_arg_bitmaps[fun_info->f.fun_type]);
1442 1443
		p = retain_small_bitmap(p, size, bitmap, c, c_child_r);
		break;
1444
	    }
1445
	    goto follow_srt;
1446
	}
1447

1448 1449
	default:
	    barf("Invalid object found in retainStack(): %d",
1450
		 (int)(info->i.type));
1451 1452 1453 1454 1455 1456
	}
    }

    // restore currentStackBoundary
    currentStackBoundary = oldStackBoundary;
#ifdef DEBUG_RETAINER
1457
    // debugBelch("retainStack() finished: currentStackBoundary = 0x%x\n", currentStackBoundary);
1458 1459 1460 1461 1462 1463 1464
#endif

#ifdef DEBUG_RETAINER
    cStackSize--;
#endif
}

1465 1466 1467 1468
/* ----------------------------------------------------------------------------
 * Call retainClosure for each of the children of a PAP/AP
 * ------------------------------------------------------------------------- */

1469
static INLINE StgPtr
Simon Marlow's avatar
Simon Marlow committed
1470 1471 1472
retain_PAP_payload (StgClosure *pap,    /* NOT tagged */
                    retainer c_child_r, /* NOT tagged */ 
                    StgClosure *fun,    /* tagged */
1473
		    StgClosure** payload, StgWord n_args)
1474 1475
{
    StgPtr p;
1476
    StgWord bitmap;
1477 1478
    StgFunInfoTable *fun_info;

1479
    retainClosure(fun, pap, c_child_r);
Simon Marlow's avatar
Simon Marlow committed
1480
    fun = UNTAG_CLOSURE(fun);
1481
    fun_info = get_fun_itbl(fun);
1482 1483
    ASSERT(fun_info->i.type != PAP);

1484
    p = (StgPtr)payload