MkId.hs 59.6 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1998

5 6 7 8

This module contains definitions for the IdInfo for things that
have a standard form, namely:

Thomas Schilling's avatar
Thomas Schilling committed
9 10 11 12
- data constructors
- record selectors
- method and superclass selectors
- primitive operations
Austin Seipp's avatar
Austin Seipp committed
13
-}
14

15
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
16

17
module MkId (
18
        mkDictFunId, mkDictFunTy, mkDictSelId, mkDictSelRhs,
19

20
        mkPrimOpId, mkFCallId,
21

22
        wrapNewTypeBody, unwrapNewTypeBody,
23
        wrapFamInstBody, unwrapFamInstScrut,
24
        wrapTypeUnbranchedFamInstBody, unwrapTypeUnbranchedFamInstScrut,
25 26

        DataConBoxer(..), mkDataConRep, mkDataConWorkId,
27

Ian Lynagh's avatar
Ian Lynagh committed
28 29
        -- And some particular Ids; see below for why they are wired in
        wiredInIds, ghcPrimIds,
30 31
        unsafeCoerceName, unsafeCoerceId, realWorldPrimId,
        voidPrimId, voidArgId,
Simon Peyton Jones's avatar
Simon Peyton Jones committed
32
        nullAddrId, seqId, lazyId, lazyIdKey,
33
        coercionTokenId, magicDictId, coerceId,
Ben Gamari's avatar
Ben Gamari committed
34
        proxyHashId, noinlineId, noinlineIdName,
35

36 37
        -- Re-export error Ids
        module PrelRules
38 39 40 41
    ) where

#include "HsVersions.h"

42 43
import GhcPrelude

Simon Marlow's avatar
Simon Marlow committed
44 45
import Rules
import TysPrim
46
import TysWiredIn
Simon Marlow's avatar
Simon Marlow committed
47 48
import PrelRules
import Type
49 50
import FamInstEnv
import Coercion
Simon Marlow's avatar
Simon Marlow committed
51
import TcType
52
import MkCore
53
import CoreUtils        ( exprType, mkCast )
Simon Marlow's avatar
Simon Marlow committed
54 55 56
import CoreUnfold
import Literal
import TyCon
57
import CoAxiom
Simon Marlow's avatar
Simon Marlow committed
58
import Class
59
import NameSet
Simon Marlow's avatar
Simon Marlow committed
60 61 62 63 64 65
import Name
import PrimOp
import ForeignCall
import DataCon
import Id
import IdInfo
66
import Demand
67
import CoreSyn
Simon Marlow's avatar
Simon Marlow committed
68
import Unique
69
import UniqSupply
70
import PrelNames
Simon Marlow's avatar
Simon Marlow committed
71 72
import BasicTypes       hiding ( SuccessFlag(..) )
import Util
73
import Pair
Ian Lynagh's avatar
Ian Lynagh committed
74
import DynFlags
75
import Outputable
76
import FastString
Simon Marlow's avatar
Simon Marlow committed
77
import ListSetOps
78
import qualified GHC.LanguageExtensions as LangExt
79 80

import Data.Maybe       ( maybeToList )
81

Austin Seipp's avatar
Austin Seipp committed
82 83 84
{-
************************************************************************
*                                                                      *
85
\subsection{Wired in Ids}
Austin Seipp's avatar
Austin Seipp committed
86 87
*                                                                      *
************************************************************************
88

89 90
Note [Wired-in Ids]
~~~~~~~~~~~~~~~~~~~
Simon Peyton Jones's avatar
Simon Peyton Jones committed
91 92 93 94
A "wired-in" Id can be referred to directly in GHC (e.g. 'voidPrimId')
rather than by looking it up its name in some environment or fetching
it from an interface file.

95 96
There are several reasons why an Id might appear in the wiredInIds:

Simon Peyton Jones's avatar
Simon Peyton Jones committed
97 98 99 100 101 102
* ghcPrimIds: see Note [ghcPrimIds (aka pseudoops)]

* magicIds: see Note [magicIds]

* errorIds, defined in coreSyn/MkCore.hs.
  These error functions (e.g. rUNTIME_ERROR_ID) are wired in
Gabor Greif's avatar
Gabor Greif committed
103
  because the desugarer generates code that mentions them directly
Simon Peyton Jones's avatar
Simon Peyton Jones committed
104 105 106 107 108 109 110 111 112 113

In all cases except ghcPrimIds, there is a definition site in a
library module, which may be called (e.g. in higher order situations);
but the wired-in version means that the details are never read from
that module's interface file; instead, the full definition is right
here.

Note [ghcPrimIds (aka pseudoops)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ghcPrimIds
114

Simon Peyton Jones's avatar
Simon Peyton Jones committed
115
  * Are exported from GHC.Prim
116

Simon Peyton Jones's avatar
Simon Peyton Jones committed
117 118
  * Can't be defined in Haskell, and hence no Haskell binding site,
    but have perfectly reasonable unfoldings in Core
119

Simon Peyton Jones's avatar
Simon Peyton Jones committed
120 121
  * Either have a CompulsoryUnfolding (hence always inlined), or
        of an EvaldUnfolding and void representation (e.g. void#)
122

Simon Peyton Jones's avatar
Simon Peyton Jones committed
123 124
  * Are (or should be) defined in primops.txt.pp as 'pseudoop'
    Reason: that's how we generate documentation for them
125

Simon Peyton Jones's avatar
Simon Peyton Jones committed
126 127 128
Note [magicIds]
~~~~~~~~~~~~~~~
The magicIds
129

Simon Peyton Jones's avatar
Simon Peyton Jones committed
130 131 132 133 134 135 136 137 138
  * Are expotted from GHC.Maic

  * Can be defined in Haskell (and are, in ghc-prim:GHC/Magic.hs).
    This definition at least generates Haddock documentation for them.

  * May or may not have a CompulsoryUnfolding.

  * But have some special behaviour that can't be done via an
    unfolding from an interface file
Austin Seipp's avatar
Austin Seipp committed
139
-}
140

141
wiredInIds :: [Id]
142
wiredInIds
Simon Peyton Jones's avatar
Simon Peyton Jones committed
143
  =  magicIds
144
  ++ ghcPrimIds
Simon Peyton Jones's avatar
Simon Peyton Jones committed
145 146 147
  ++ errorIds           -- Defined in MkCore

magicIds :: [Id]    -- See Note [magicIds]
Simon Peyton Jones's avatar
Simon Peyton Jones committed
148
magicIds = [lazyId, oneShotId, noinlineId]
149

Simon Peyton Jones's avatar
Simon Peyton Jones committed
150
ghcPrimIds :: [Id]  -- See Note [ghcPrimIds (aka pseudoops)]
151
ghcPrimIds
Simon Peyton Jones's avatar
Simon Peyton Jones committed
152 153 154 155 156 157 158 159
  = [ realWorldPrimId
    , voidPrimId
    , unsafeCoerceId
    , nullAddrId
    , seqId
    , magicDictId
    , coerceId
    , proxyHashId
160 161
    ]

Austin Seipp's avatar
Austin Seipp committed
162 163 164
{-
************************************************************************
*                                                                      *
165
\subsection{Data constructors}
Austin Seipp's avatar
Austin Seipp committed
166 167
*                                                                      *
************************************************************************
168

169 170 171 172
The wrapper for a constructor is an ordinary top-level binding that evaluates
any strict args, unboxes any args that are going to be flattened, and calls
the worker.

173 174
We're going to build a constructor that looks like:

Ian Lynagh's avatar
Ian Lynagh committed
175
        data (Data a, C b) =>  T a b = T1 !a !Int b
176

177
        T1 = /\ a b ->
Ian Lynagh's avatar
Ian Lynagh committed
178 179 180 181
             \d1::Data a, d2::C b ->
             \p q r -> case p of { p ->
                       case q of { q ->
                       Con T1 [a,b] [p,q,r]}}
182 183 184 185 186 187 188 189 190 191

Notice that

* d2 is thrown away --- a context in a data decl is used to make sure
  one *could* construct dictionaries at the site the constructor
  is used, but the dictionary isn't actually used.

* We have to check that we can construct Data dictionaries for
  the types a and Int.  Once we've done that we can throw d1 away too.

192
* We use (case p of q -> ...) to evaluate p, rather than "seq" because
193
  all that matters is that the arguments are evaluated.  "seq" is
194 195 196
  very careful to preserve evaluation order, which we don't need
  to be here.

197 198 199 200 201 202 203 204 205
  You might think that we could simply give constructors some strictness
  info, like PrimOps, and let CoreToStg do the let-to-case transformation.
  But we don't do that because in the case of primops and functions strictness
  is a *property* not a *requirement*.  In the case of constructors we need to
  do something active to evaluate the argument.

  Making an explicit case expression allows the simplifier to eliminate
  it in the (common) case where the constructor arg is already evaluated.

206 207
Note [Wrappers for data instance tycons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
208 209
In the case of data instances, the wrapper also applies the coercion turning
the representation type into the family instance type to cast the result of
210 211 212 213 214
the wrapper.  For example, consider the declarations

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

215 216 217 218 219 220 221
The tycon to which the datacon MapPair belongs gets a unique internal
name of the form :R123Map, and we call it the representation tycon.
In contrast, Map is the family tycon (accessible via
tyConFamInst_maybe). A coercion allows you to move between
representation and family type.  It is accessible from :R123Map via
tyConFamilyCoercion_maybe and has kind

222
  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
223 224

The wrapper and worker of MapPair get the types
225

Ian Lynagh's avatar
Ian Lynagh committed
226
        -- Wrapper
227
  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
228
  $WMapPair a b v = MapPair a b v `cast` sym (Co123Map a b v)
229

Ian Lynagh's avatar
Ian Lynagh committed
230
        -- Worker
231
  MapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v
232

233
This coercion is conditionally applied by wrapFamInstBody.
234

235
It's a bit more complicated if the data instance is a GADT as well!
236

237
   data instance T [a] where
Ian Lynagh's avatar
Ian Lynagh committed
238
        T1 :: forall b. b -> T [Maybe b]
239

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
240
Hence we translate to
241

Ian Lynagh's avatar
Ian Lynagh committed
242
        -- Wrapper
243
  $WT1 :: forall b. b -> T [Maybe b]
244
  $WT1 b v = T1 (Maybe b) b (Maybe b) v
Ian Lynagh's avatar
Ian Lynagh committed
245
                        `cast` sym (Co7T (Maybe b))
246

Ian Lynagh's avatar
Ian Lynagh committed
247
        -- Worker
248
  T1 :: forall c b. (c ~ Maybe b) => b -> :R7T c
249

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
250 251 252
        -- Coercion from family type to representation type
  Co7T a :: T [a] ~ :R7T a

253 254 255 256 257 258 259 260 261 262 263
Note [Newtype datacons]
~~~~~~~~~~~~~~~~~~~~~~~
The "data constructor" for a newtype should always be vanilla.  At one
point this wasn't true, because the newtype arising from
     class C a => D a
looked like
       newtype T:D a = D:D (C a)
so the data constructor for T:C had a single argument, namely the
predicate (C a).  But now we treat that as an ordinary argument, not
part of the theta-type, so all is well.

264

Austin Seipp's avatar
Austin Seipp committed
265 266
************************************************************************
*                                                                      *
267
\subsection{Dictionary selectors}
Austin Seipp's avatar
Austin Seipp committed
268 269
*                                                                      *
************************************************************************
270

271
Selecting a field for a dictionary.  If there is just one field, then
272
there's nothing to do.
273

274
Dictionary selectors may get nested forall-types.  Thus:
275

276 277
        class Foo a where
          op :: forall b. Ord b => a -> b -> b
278

279
Then the top-level type for op is
280

281 282
        op :: forall a. Foo a =>
              forall b. Ord b =>
283
              a -> b -> b
284

Austin Seipp's avatar
Austin Seipp committed
285
-}
286

287 288
mkDictSelId :: Name          -- Name of one of the *value* selectors
                             -- (dictionary superclass or method)
289
            -> Class -> Id
290
mkDictSelId name clas
291 292
  = mkGlobalId (ClassOpId clas) name sel_ty info
  where
293
    tycon          = classTyCon clas
294
    sel_names      = map idName (classAllSelIds clas)
295 296
    new_tycon      = isNewTyCon tycon
    [data_con]     = tyConDataCons tycon
297
    tyvars         = dataConUserTyVarBinders data_con
Simon Peyton Jones's avatar
Simon Peyton Jones committed
298
    n_ty_args      = length tyvars
299
    arg_tys        = dataConRepArgTys data_con  -- Includes the dictionary superclasses
300 301
    val_index      = assoc "MkId.mkDictSelId" (sel_names `zip` [0..]) name

Simon Peyton Jones's avatar
Simon Peyton Jones committed
302
    sel_ty = mkForAllTys tyvars $
303
             mkFunTy (mkClassPred clas (mkTyVarTys (binderVars tyvars))) $
304 305
             getNth arg_tys val_index

306
    base_info = noCafIdInfo
Richard Eisenberg's avatar
Richard Eisenberg committed
307 308 309
                `setArityInfo`          1
                `setStrictnessInfo`     strict_sig
                `setLevityInfoWithType` sel_ty
310 311 312

    info | new_tycon
         = base_info `setInlinePragInfo` alwaysInlinePragma
313 314
                     `setUnfoldingInfo`  mkInlineUnfoldingWithArity 1
                                           (mkDictSelRhs clas val_index)
315 316
                   -- See Note [Single-method classes] in TcInstDcls
                   -- for why alwaysInlinePragma
317 318

         | otherwise
319
         = base_info `setRuleInfo` mkRuleInfo [rule]
320 321 322
                   -- Add a magic BuiltinRule, but no unfolding
                   -- so that the rule is always available to fire.
                   -- See Note [ClassOp/DFun selection] in TcInstDcls
323

324
    -- This is the built-in rule that goes
325 326 327
    --      op (dfT d1 d2) --->  opT d1 d2
    rule = BuiltinRule { ru_name = fsLit "Class op " `appendFS`
                                     occNameFS (getOccName name)
328
                       , ru_fn    = name
329
                       , ru_nargs = n_ty_args + 1
330
                       , ru_try   = dictSelRule val_index n_ty_args }
331

332 333 334 335
        -- The strictness signature is of the form U(AAAVAAAA) -> T
        -- where the V depends on which item we are selecting
        -- It's worth giving one, so that absence info etc is generated
        -- even if the selector isn't inlined
336

337
    strict_sig = mkClosedStrictSig [arg_dmd] topRes
338
    arg_dmd | new_tycon = evalDmd
339
            | otherwise = mkManyUsedDmd $
340 341 342 343 344 345 346 347 348
                          mkProdDmd [ if name == sel_name then evalDmd else absDmd
                                    | sel_name <- sel_names ]

mkDictSelRhs :: Class
             -> Int         -- 0-indexed selector among (superclasses ++ methods)
             -> CoreExpr
mkDictSelRhs clas val_index
  = mkLams tyvars (Lam dict_id rhs_body)
  where
349 350 351 352 353
    tycon          = classTyCon clas
    new_tycon      = isNewTyCon tycon
    [data_con]     = tyConDataCons tycon
    tyvars         = dataConUnivTyVars data_con
    arg_tys        = dataConRepArgTys data_con  -- Includes the dictionary superclasses
354

355
    the_arg_id     = getNth arg_ids val_index
356 357 358
    pred           = mkClassPred clas (mkTyVarTys tyvars)
    dict_id        = mkTemplateLocal 1 pred
    arg_ids        = mkTemplateLocalsNum 2 arg_tys
359

360
    rhs_body | new_tycon = unwrapNewTypeBody tycon (mkTyVarTys tyvars) (Var dict_id)
361
             | otherwise = Case (Var dict_id) dict_id (idType the_arg_id)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
362
                                [(DataAlt data_con, arg_ids, varToCoreExpr the_arg_id)]
363 364
                                -- varToCoreExpr needed for equality superclass selectors
                                --   sel a b d = case x of { MkC _ (g:a~b) _ -> CO g }
365

366
dictSelRule :: Int -> Arity -> RuleFun
367 368 369
-- Tries to persuade the argument to look like a constructor
-- application, using exprIsConApp_maybe, and then selects
-- from it
370
--       sel_i t1..tk (D t1..tk op1 ... opm) = opi
371
--
372
dictSelRule val_index n_ty_args _ id_unf _ args
373
  | (dict_arg : _) <- drop n_ty_args args
374
  , Just (_, _, con_args) <- exprIsConApp_maybe id_unf dict_arg
375
  = Just (getNth con_args val_index)
376 377
  | otherwise
  = Nothing
378

Austin Seipp's avatar
Austin Seipp committed
379 380 381
{-
************************************************************************
*                                                                      *
Simon Peyton Jones's avatar
Simon Peyton Jones committed
382
        Data constructors
Austin Seipp's avatar
Austin Seipp committed
383 384 385
*                                                                      *
************************************************************************
-}
386 387 388 389 390 391 392 393

mkDataConWorkId :: Name -> DataCon -> Id
mkDataConWorkId wkr_name data_con
  | isNewTyCon tycon
  = mkGlobalId (DataConWrapId data_con) wkr_name nt_wrap_ty nt_work_info
  | otherwise
  = mkGlobalId (DataConWorkId data_con) wkr_name alg_wkr_ty wkr_info

394
  where
395 396 397 398 399 400
    tycon = dataConTyCon data_con

        ----------- Workers for data types --------------
    alg_wkr_ty = dataConRepType data_con
    wkr_arity = dataConRepArity data_con
    wkr_info  = noCafIdInfo
Richard Eisenberg's avatar
Richard Eisenberg committed
401 402 403 404 405 406 407
                `setArityInfo`          wkr_arity
                `setStrictnessInfo`     wkr_sig
                `setUnfoldingInfo`      evaldUnfolding  -- Record that it's evaluated,
                                                        -- even if arity = 0
                `setLevityInfoWithType` alg_wkr_ty
                  -- NB: unboxed tuples have workers, so we can't use
                  -- setNeverLevPoly
408

409
    wkr_sig = mkClosedStrictSig (replicate wkr_arity topDmd) (dataConCPR data_con)
410
        --      Note [Data-con worker strictness]
411
        -- Notice that we do *not* say the worker Id is strict
412 413
        -- even if the data constructor is declared strict
        --      e.g.    data T = MkT !(Int,Int)
414 415 416 417
        -- Why?  Because the *wrapper* $WMkT is strict (and its unfolding has
        -- case expressions that do the evals) but the *worker* MkT itself is
        --  not. If we pretend it is strict then when we see
        --      case x of y -> MkT y
418
        -- the simplifier thinks that y is "sure to be evaluated" (because
419 420
        -- the worker MkT is strict) and drops the case.  No, the workerId
        -- MkT is not strict.
421
        --
422 423
        -- However, the worker does have StrictnessMarks.  When the simplifier
        -- sees a pattern
424 425 426 427 428 429 430 431 432 433 434
        --      case e of MkT x -> ...
        -- it uses the dataConRepStrictness of MkT to mark x as evaluated;
        -- but that's fine... dataConRepStrictness comes from the data con
        -- not from the worker Id.

        ----------- Workers for newtypes --------------
    (nt_tvs, _, nt_arg_tys, _) = dataConSig data_con
    res_ty_args  = mkTyVarTys nt_tvs
    nt_wrap_ty   = dataConUserType data_con
    nt_work_info = noCafIdInfo          -- The NoCaf-ness is set by noCafIdInfo
                  `setArityInfo` 1      -- Arity 1
Richard Eisenberg's avatar
Richard Eisenberg committed
435 436 437
                  `setInlinePragInfo`     alwaysInlinePragma
                  `setUnfoldingInfo`      newtype_unf
                  `setLevityInfoWithType` nt_wrap_ty
438 439 440
    id_arg1      = mkTemplateLocal 1 (head nt_arg_tys)
    newtype_unf  = ASSERT2( isVanillaDataCon data_con &&
                            isSingleton nt_arg_tys, ppr data_con  )
441 442 443
                              -- Note [Newtype datacons]
                   mkCompulsoryUnfolding $
                   mkLams nt_tvs $ Lam id_arg1 $
444
                   wrapNewTypeBody tycon res_ty_args (Var id_arg1)
445

446 447
dataConCPR :: DataCon -> DmdResult
dataConCPR con
448
  | isDataTyCon tycon     -- Real data types only; that is,
449
                          -- not unboxed tuples or newtypes
450
  , null (dataConExTyVars con)  -- No existentials
451 452
  , wkr_arity > 0
  , wkr_arity <= mAX_CPR_SIZE
453 454
  = if is_prod then vanillaCprProdRes (dataConRepArity con)
               else cprSumRes (dataConTag con)
455
  | otherwise
456
  = topRes
457
  where
458 459
    is_prod   = isProductTyCon tycon
    tycon     = dataConTyCon con
460 461 462 463 464
    wkr_arity = dataConRepArity con

    mAX_CPR_SIZE :: Arity
    mAX_CPR_SIZE = 10
    -- We do not treat very big tuples as CPR-ish:
465 466 467
    --      a) for a start we get into trouble because there aren't
    --         "enough" unboxed tuple types (a tiresome restriction,
    --         but hard to fix),
468 469 470 471
    --      b) more importantly, big unboxed tuples get returned mainly
    --         on the stack, and are often then allocated in the heap
    --         by the caller.  So doing CPR for them may in fact make
    --         things worse.
472

Austin Seipp's avatar
Austin Seipp committed
473
{-
474 475
-------------------------------------------------
--         Data constructor representation
476 477
--
-- This is where we decide how to wrap/unwrap the
478 479 480
-- constructor fields
--
--------------------------------------------------
Austin Seipp's avatar
Austin Seipp committed
481
-}
482 483 484 485

type Unboxer = Var -> UniqSM ([Var], CoreExpr -> CoreExpr)
  -- Unbox: bind rep vars by decomposing src var

486
data Boxer = UnitBox | Boxer (TCvSubst -> UniqSM ([Var], CoreExpr))
487 488
  -- Box:   build src arg using these rep vars

489
-- | Data Constructor Boxer
490 491 492 493
newtype DataConBoxer = DCB ([Type] -> [Var] -> UniqSM ([Var], [CoreBind]))
                       -- Bind these src-level vars, returning the
                       -- rep-level vars to bind in the pattern

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
{-
Note [Inline partially-applied constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We allow the wrapper to inline when partially applied to avoid
boxing values unnecessarily. For example, consider

   data Foo a = Foo !Int a

   instance Traversable Foo where
     traverse f (Foo i a) = Foo i <$> f a

This desugars to

   traverse f foo = case foo of
        Foo i# a -> let i = I# i#
                    in map ($WFoo i) (f a)

If the wrapper `$WFoo` is not inlined, we get a fruitless reboxing of `i`.
But if we inline the wrapper, we get

   map (\a. case i of I# i# a -> Foo i# a) (f a)

and now case-of-known-constructor eliminates the redundant allocation.
-}

520 521 522 523 524 525 526 527
mkDataConRep :: DynFlags
             -> FamInstEnvs
             -> Name
             -> Maybe [HsImplBang]
                -- See Note [Bangs on imported data constructors]
             -> DataCon
             -> UniqSM DataConRep
mkDataConRep dflags fam_envs wrap_name mb_bangs data_con
528 529
  | not wrapper_reqd
  = return NoDataConRep
530

531
  | otherwise
532
  = do { wrap_args <- mapM newLocal wrap_arg_tys
533
       ; wrap_body <- mk_rep_app (wrap_args `zip` dropList eq_spec unboxers)
534 535 536 537
                                 initial_wrap_app

       ; let wrap_id = mkGlobalId (DataConWrapId data_con) wrap_name wrap_ty wrap_info
             wrap_info = noCafIdInfo
538 539 540
                         `setArityInfo`         wrap_arity
                             -- It's important to specify the arity, so that partial
                             -- applications are treated as values
541
                         `setInlinePragInfo`    wrap_prag
542 543 544 545 546
                         `setUnfoldingInfo`     wrap_unf
                         `setStrictnessInfo`    wrap_sig
                             -- We need to get the CAF info right here because TidyPgm
                             -- does not tidy the IdInfo of implicit bindings (like the wrapper)
                             -- so it not make sure that the CAF info is sane
Richard Eisenberg's avatar
Richard Eisenberg committed
547
                         `setNeverLevPoly`      wrap_ty
548 549

             wrap_sig = mkClosedStrictSig wrap_arg_dmds (dataConCPR data_con)
550

551 552 553 554 555
             wrap_arg_dmds =
               replicate (length theta) topDmd ++ map mk_dmd arg_ibangs
               -- Don't forget the dictionary arguments when building
               -- the strictness signature (#14290).

556
             mk_dmd str | isBanged str = evalDmd
557
                        | otherwise           = topDmd
558

559 560 561 562
             wrap_prag = alwaysInlinePragma `setInlinePragmaActivation`
                         ActiveAfter NoSourceText 2
                         -- See Note [Activation for data constructor wrappers]

563 564 565 566 567 568 569 570
             -- The wrapper will usually be inlined (see wrap_unf), so its
             -- strictness and CPR info is usually irrelevant. But this is
             -- not always the case; GHC may choose not to inline it. In
             -- particular, the wrapper constructor is not inlined inside
             -- an INLINE rhs or when it is not applied to any arguments.
             -- See Note [Inline partially-applied constructor wrappers]
             -- Passing Nothing here allows the wrapper to inline when
             -- unsaturated.
571
             wrap_unf = mkInlineUnfolding wrap_rhs
572 573 574
             wrap_rhs = mkLams wrap_tvs $
                        mkLams wrap_args $
                        wrapFamInstBody tycon res_ty_args $
575 576 577 578 579 580
                        wrap_body

       ; return (DCR { dcr_wrap_id = wrap_id
                     , dcr_boxer   = mk_boxer boxers
                     , dcr_arg_tys = rep_tys
                     , dcr_stricts = rep_strs
581
                     , dcr_bangs   = arg_ibangs }) }
582

583
  where
584 585
    (univ_tvs, ex_tvs, eq_spec, theta, orig_arg_tys, _orig_res_ty)
      = dataConFullSig data_con
586
    wrap_tvs     = dataConUserTyVars data_con
niteria's avatar
niteria committed
587
    res_ty_args  = substTyVars (mkTvSubstPrs (map eqSpecPair eq_spec)) univ_tvs
588

589 590 591
    tycon        = dataConTyCon data_con       -- The representation TyCon (not family)
    wrap_ty      = dataConUserType data_con
    ev_tys       = eqSpecPreds eq_spec ++ theta
592
    all_arg_tys  = ev_tys ++ orig_arg_tys
593
    ev_ibangs    = map (const HsLazy) ev_tys
594
    orig_bangs   = dataConSrcBangs data_con
595 596 597

    wrap_arg_tys = theta ++ orig_arg_tys
    wrap_arity   = length wrap_arg_tys
598 599 600
             -- The wrap_args are the arguments *other than* the eq_spec
             -- Because we are going to apply the eq_spec args manually in the
             -- wrapper
601

602 603 604 605 606 607 608 609 610
    arg_ibangs =
      case mb_bangs of
        Nothing    -> zipWith (dataConSrcToImplBang dflags fam_envs)
                              orig_arg_tys orig_bangs
        Just bangs -> bangs

    (rep_tys_w_strs, wrappers)
      = unzip (zipWith dataConArgRep all_arg_tys (ev_ibangs ++ arg_ibangs))

611
    (unboxers, boxers) = unzip wrappers
612 613
    (rep_tys, rep_strs) = unzip (concat rep_tys_w_strs)

614 615 616 617 618 619 620 621 622 623 624 625 626 627
    wrapper_reqd =
        (not (isNewTyCon tycon)
                     -- (Most) newtypes have only a worker, with the exception
                     -- of some newtypes written with GADT syntax. See below.
         && (any isBanged (ev_ibangs ++ arg_ibangs)
                     -- Some forcing/unboxing (includes eq_spec)
             || isFamInstTyCon tycon  -- Cast result
             || (not $ null eq_spec))) -- GADT
      || dataConUserTyVarsArePermuted data_con
                     -- If the data type was written with GADT syntax and
                     -- orders the type variables differently from what the
                     -- worker expects, it needs a data con wrapper to reorder
                     -- the type variables.
                     -- See Note [Data con wrappers and GADT syntax].
628 629

    initial_wrap_app = Var (dataConWorkId data_con)
630 631 632
                       `mkTyApps`  res_ty_args
                       `mkVarApps` ex_tvs
                       `mkCoApps`  map (mkReflCo Nominal . eqSpecType) eq_spec
633 634

    mk_boxer :: [Boxer] -> DataConBoxer
635
    mk_boxer boxers = DCB (\ ty_args src_vars ->
636
                      do { let (ex_vars, term_vars) = splitAtList ex_tvs src_vars
637
                               subst1 = zipTvSubst univ_tvs ty_args
638 639
                               subst2 = extendTvSubstList subst1 ex_tvs
                                                          (mkTyVarTys ex_vars)
640
                         ; (rep_ids, binds) <- go subst2 boxers term_vars
641 642 643 644 645 646 647 648 649 650 651 652 653
                         ; return (ex_vars ++ rep_ids, binds) } )

    go _ [] src_vars = ASSERT2( null src_vars, ppr data_con ) return ([], [])
    go subst (UnitBox : boxers) (src_var : src_vars)
      = do { (rep_ids2, binds) <- go subst boxers src_vars
           ; return (src_var : rep_ids2, binds) }
    go subst (Boxer boxer : boxers) (src_var : src_vars)
      = do { (rep_ids1, arg)  <- boxer subst
           ; (rep_ids2, binds) <- go subst boxers src_vars
           ; return (rep_ids1 ++ rep_ids2, NonRec src_var arg : binds) }
    go _ (_:_) [] = pprPanic "mk_boxer" (ppr data_con)

    mk_rep_app :: [(Id,Unboxer)] -> CoreExpr -> UniqSM CoreExpr
654
    mk_rep_app [] con_app
655
      = return con_app
656
    mk_rep_app ((wrap_arg, unboxer) : prs) con_app
657 658 659 660
      = do { (rep_ids, unbox_fn) <- unboxer wrap_arg
           ; expr <- mk_rep_app prs (mkVarApps con_app rep_ids)
           ; return (unbox_fn expr) }

661 662 663 664 665 666 667 668 669 670 671 672 673 674
{- Note [Activation for data constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Activation on a data constructor wrapper allows it to inline in
Phase 2 and later (1, 0).  But not in the InitialPhase.  That gives
rewrite rules a chance to fire (in the InitialPhase) if they mention
a data constructor on the left
   RULE "foo"  f (K a b) = ...
Since the LHS of rules are simplified with InitialPhase, we won't
inline the wrapper on the LHS either.

People have asked for this before, but now that even the InitialPhase
does some inlining, it has become important.


675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
Note [Bangs on imported data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We pass Maybe [HsImplBang] to mkDataConRep to make use of HsImplBangs
from imported modules.

- Nothing <=> use HsSrcBangs
- Just bangs <=> use HsImplBangs

For imported types we can't work it all out from the HsSrcBangs,
because we want to be very sure to follow what the original module
(where the data type was declared) decided, and that depends on what
flags were enabled when it was compiled. So we record the decisions in
the interface file.

The HsImplBangs passed are in 1-1 correspondence with the
dataConOrigArgTys of the DataCon.

693 694 695 696 697 698 699 700 701 702 703 704
Note [Data con wrappers and unlifted types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   data T = MkT !Int#

We certainly do not want to make a wrapper
   $WMkT x = case x of y { DEFAULT -> MkT y }

For a start, it's still to generate a no-op.  But worse, since wrappers
are currently injected at TidyCore, we don't even optimise it away!
So the stupid case expression stays there.  This actually happened for
the Integer data type (see Trac #1600 comment:66)!
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

Note [Data con wrappers and GADT syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider these two very similar data types:

  data T1 a b = MkT1 b

  data T2 a b where
    MkT2 :: forall b a. b -> T2 a b

Despite their similar appearance, T2 will have a data con wrapper but T1 will
not. What sets them apart? The types of their constructors, which are:

  MkT1 :: forall a b. b -> T1 a b
  MkT2 :: forall b a. b -> T2 a b

MkT2's use of GADT syntax allows it to permute the order in which `a` and `b`
would normally appear. See Note [DataCon user type variable binders] in DataCon
for further discussion on this topic.

The worker data cons for T1 and T2, however, both have types such that `a` is
expected to come before `b` as arguments. Because MkT2 permutes this order, it
needs a data con wrapper to swizzle around the type variables to be in the
order the worker expects.

A somewhat surprising consequence of this is that *newtypes* can have data con
wrappers! After all, a newtype can also be written with GADT syntax:

  newtype T3 a b where
    MkT3 :: forall b a. b -> T3 a b

Again, this needs a wrapper data con to reorder the type variables. It does
mean that this newtype constructor requires another level of indirection when
being called, but the inliner should make swift work of that.
739 740
-}

741 742
-------------------------
newLocal :: Type -> UniqSM Var
743
newLocal ty = do { uniq <- getUniqueM
744
                 ; return (mkSysLocalOrCoVar (fsLit "dt") uniq ty) }
745

746 747
-- | Unpack/Strictness decisions from source module
dataConSrcToImplBang
748
   :: DynFlags
749
   -> FamInstEnvs
Simon Peyton Jones's avatar
Simon Peyton Jones committed
750
   -> Type
751 752
   -> HsSrcBang
   -> HsImplBang
753

754
dataConSrcToImplBang dflags fam_envs arg_ty
755
                     (HsSrcBang ann unpk NoSrcStrict)
756
  | xopt LangExt.StrictData dflags -- StrictData => strict field
757 758 759 760
  = dataConSrcToImplBang dflags fam_envs arg_ty
                  (HsSrcBang ann unpk SrcStrict)
  | otherwise -- no StrictData => lazy field
  = HsLazy
761

762 763
dataConSrcToImplBang _ _ _ (HsSrcBang _ _ SrcLazy)
  = HsLazy
764

765
dataConSrcToImplBang dflags fam_envs arg_ty
766 767 768 769 770
                     (HsSrcBang _ unpk_prag SrcStrict)
  | isUnliftedType arg_ty
  = HsLazy  -- For !Int#, say, use HsLazy
            -- See Note [Data con wrappers and unlifted types]

771
  | not (gopt Opt_OmitInterfacePragmas dflags) -- Don't unpack if -fomit-iface-pragmas
772
          -- Don't unpack if we aren't optimising; rather arbitrarily,
773
          -- we use -fomit-iface-pragmas as the indication
774
  , let mb_co   = topNormaliseType_maybe fam_envs arg_ty
775
                     -- Unwrap type families and newtypes
776
        arg_ty' = case mb_co of { Just (_,ty) -> ty; Nothing -> arg_ty }
777
  , isUnpackableType dflags fam_envs arg_ty'
778
  , (rep_tys, _) <- dataConArgUnpack arg_ty'
779
  , case unpk_prag of
780 781 782
      NoSrcUnpack ->
        gopt Opt_UnboxStrictFields dflags
            || (gopt Opt_UnboxSmallStrictFields dflags
783
                && rep_tys `lengthAtMost` 1) -- See Note [Unpack one-wide fields]
784
      srcUnpack -> isSrcUnpacked srcUnpack
785
  = case mb_co of
786 787
      Nothing     -> HsUnpack Nothing
      Just (co,_) -> HsUnpack (Just co)
788

789
  | otherwise -- Record the strict-but-no-unpack decision
790
  = HsStrict
791

792

Ömer Sinan Ağacan's avatar
Ömer Sinan Ağacan committed
793
-- | Wrappers/Workers and representation following Unpack/Strictness
794 795 796 797 798 799 800 801 802
-- decisions
dataConArgRep
  :: Type
  -> HsImplBang
  -> ([(Type,StrictnessMark)] -- Rep types
     ,(Unboxer,Boxer))

dataConArgRep arg_ty HsLazy
  = ([(arg_ty, NotMarkedStrict)], (unitUnboxer, unitBoxer))
803

804 805 806 807
dataConArgRep arg_ty HsStrict
  = ([(arg_ty, MarkedStrict)], (seqUnboxer, unitBoxer))

dataConArgRep arg_ty (HsUnpack Nothing)
808
  | (rep_tys, wrappers) <- dataConArgUnpack arg_ty
809
  = (rep_tys, wrappers)
810

811
dataConArgRep _ (HsUnpack (Just co))
812 813
  | let co_rep_ty = pSnd (coercionKind co)
  , (rep_tys, wrappers) <- dataConArgUnpack co_rep_ty
814
  = (rep_tys, wrapCo co co_rep_ty wrappers)
815 816 817


-------------------------
818 819 820 821 822 823 824 825
wrapCo :: Coercion -> Type -> (Unboxer, Boxer) -> (Unboxer, Boxer)
wrapCo co rep_ty (unbox_rep, box_rep)  -- co :: arg_ty ~ rep_ty
  = (unboxer, boxer)
  where
    unboxer arg_id = do { rep_id <- newLocal rep_ty
                        ; (rep_ids, rep_fn) <- unbox_rep rep_id
                        ; let co_bind = NonRec rep_id (Var arg_id `Cast` co)
                        ; return (rep_ids, Let co_bind . rep_fn) }
826 827
    boxer = Boxer $ \ subst ->
            do { (rep_ids, rep_expr)
828 829 830 831
                    <- case box_rep of
                         UnitBox -> do { rep_id <- newLocal (TcType.substTy subst rep_ty)
                                       ; return ([rep_id], Var rep_id) }
                         Boxer boxer -> boxer subst
832
               ; let sco = substCoUnchecked subst co
833 834 835
               ; return (rep_ids, rep_expr `Cast` mkSymCo sco) }

------------------------
836 837 838 839 840 841 842 843 844 845 846 847
seqUnboxer :: Unboxer
seqUnboxer v = return ([v], \e -> Case (Var v) v (exprType e) [(DEFAULT, [], e)])

unitUnboxer :: Unboxer
unitUnboxer v = return ([v], \e -> e)

unitBoxer :: Boxer
unitBoxer = UnitBox

-------------------------
dataConArgUnpack
   :: Type
848 849
   ->  ( [(Type, StrictnessMark)]   -- Rep types
       , (Unboxer, Boxer) )
850 851

dataConArgUnpack arg_ty
852
  | Just (tc, tc_args) <- splitTyConApp_maybe arg_ty
853 854
  , Just con <- tyConSingleAlgDataCon_maybe tc
      -- NB: check for an *algebraic* data type
855
      -- A recursive newtype might mean that
856
      -- 'arg_ty' is a newtype
857 858 859 860 861 862 863 864 865 866
  , let rep_tys = dataConInstArgTys con tc_args
  = ASSERT( isVanillaDataCon con )
    ( rep_tys `zip` dataConRepStrictness con
    ,( \ arg_id ->
       do { rep_ids <- mapM newLocal rep_tys
          ; let unbox_fn body
                  = Case (Var arg_id) arg_id (exprType body)
                         [(DataAlt con, rep_ids, body)]
          ; return (rep_ids, unbox_fn) }
     , Boxer $ \ subst ->
867
       do { rep_ids <- mapM (newLocal . TcType.substTyUnchecked subst) rep_tys
868
          ; return (rep_ids, Var (dataConWorkId con)
869
                             `mkTyApps` (substTysUnchecked subst tc_args)
870 871 872 873 874
                             `mkVarApps` rep_ids ) } ) )
  | otherwise
  = pprPanic "dataConArgUnpack" (ppr arg_ty)
    -- An interface file specified Unpacked, but we couldn't unpack it

875
isUnpackableType :: DynFlags -> FamInstEnvs -> Type -> Bool
876
-- True if we can unpack the UNPACK the argument type
877 878 879 880
-- See Note [Recursive unboxing]
-- We look "deeply" inside rather than relying on the DataCons
-- we encounter on the way, because otherwise we might well
-- end up relying on ourselves!
881
isUnpackableType dflags fam_envs ty
882
  | Just (tc, _) <- splitTyConApp_maybe ty
883
  , Just con <- tyConSingleAlgDataCon_maybe tc
884 885 886 887
  , isVanillaDataCon con
  = ok_con_args (unitNameSet (getName tc)) con
  | otherwise
  = False
888
  where
889
    ok_arg tcs (ty, bang) = not (attempt_unpack bang) || ok_ty tcs norm_ty
890
        where
891
          norm_ty = topNormaliseType fam_envs ty
892 893 894 895
    ok_ty tcs ty
      | Just (tc, _) <- splitTyConApp_maybe ty
      , let tc_name = getName tc
      =  not (tc_name `elemNameSet` tcs)
896
      && case tyConSingleAlgDataCon_maybe tc of
897
            Just con | isVanillaDataCon con
898
                    -> ok_con_args (tcs `extendNameSet` getName tc) con
899
            _ -> True
900
      | otherwise
901 902 903
      = True

    ok_con_args tcs con
Simon Peyton Jones's avatar
Simon Peyton Jones committed
904 905 906
       = all (ok_arg tcs) (dataConOrigArgTys con `zip` dataConSrcBangs con)
         -- NB: dataConSrcBangs gives the *user* request;
         -- We'd get a black hole if we used dataConImplBangs
907

908
    attempt_unpack (HsSrcBang _ SrcUnpack NoSrcStrict)
909
      = xopt LangExt.StrictData dflags
910 911 912 913
    attempt_unpack (HsSrcBang _ SrcUnpack SrcStrict)
      = True
    attempt_unpack (HsSrcBang _  NoSrcUnpack SrcStrict)
      = True  -- Be conservative
914
    attempt_unpack (HsSrcBang _  NoSrcUnpack NoSrcStrict)
915
      = xopt LangExt.StrictData dflags -- Be conservative
916
    attempt_unpack _ = False
917

Austin Seipp's avatar
Austin Seipp committed
918
{-
919 920 921 922 923 924 925 926 927 928 929 930 931