TcInteract.lhs 92.4 KB
Newer Older
1 2 3
\begin{code}
module TcInteract ( 
     solveInteract, AtomicInert, 
4
     InertSet, emptyInert, updInertSet, extractUnsolved, solveOne 
5 6 7 8
  ) where  

#include "HsVersions.h"

9

10 11 12 13
import BasicTypes 
import TcCanonical
import VarSet
import Type
14
import TypeRep 
15 16

import Id 
17
import VarEnv
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
import Var

import TcType
import HsBinds 

import InstEnv 
import Class 
import TyCon 
import Name

import FunDeps

import Control.Monad ( when ) 

import Coercion
import Outputable

import TcRnTypes 
import TcErrors
import TcSMonad 
38
import Bag
39 40 41
import qualified Data.Map as Map 
import Maybes 

42 43 44 45 46
import Control.Monad( zipWithM, unless )
import FastString ( sLit ) 
import DynFlags
\end{code}

47
Note [InertSet invariants]
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
~~~~~~~~~~~~~~~~~~~~~~~~~~~

An InertSet is a bag of canonical constraints, with the following invariants:

  1 No two constraints react with each other. 
    
    A tricky case is when there exists a given (solved) dictionary 
    constraint and a wanted identical constraint in the inert set, but do 
    not react because reaction would create loopy dictionary evidence for 
    the wanted. See note [Recursive dictionaries]

  2 Given equalities form an idempotent substitution [none of the
    given LHS's occur in any of the given RHS's or reactant parts]

  3 Wanted equalities also form an idempotent substitution
  4 The entire set of equalities is acyclic.

  5 Wanted dictionaries are inert with the top-level axiom set 

  6 Equalities of the form tv1 ~ tv2 always have a touchable variable
    on the left (if possible).
  7 No wanted constraints tv1 ~ tv2 with tv1 touchable. Such constraints 
    will be marked as solved right before being pushed into the inert set. 
    See note [Touchables and givens].
 
Note that 6 and 7 are /not/ enforced by canonicalization but rather by 
insertion in the inert list, ie by TcInteract. 

During the process of solving, the inert set will contain some
previously given constraints, some wanted constraints, and some given
constraints which have arisen from solving wanted constraints. For
now we do not distinguish between given and solved constraints.

Note that we must switch wanted inert items to given when going under an
implication constraint (when in top-level inference mode).

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
Note [InertSet FlattenSkolemEqClass] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The inert_fsks field of the inert set contains an "inverse map" of all the 
flatten skolem equalities in the inert set. For instance, if inert_cts looks
like this: 
 
    fsk1 ~ fsk2 
    fsk3 ~ fsk2 
    fsk4 ~ fsk5 

Then, the inert_fsks fields holds the following map: 
    fsk2 |-> { fsk1, fsk3 } 
    fsk5 |-> { fsk4 } 
Along with the necessary coercions to convert fsk1 and fsk3 back to fsk2 
and fsk4 back to fsk5. Hence, the invariants of the inert_fsks field are: 
  
   (a) All TcTyVars in the domain and range of inert_fsks are flatten skolems
   (b) All TcTyVars in the domain of inert_fsk occur naked as rhs in some 
       equalities of inert_cts 
   (c) For every mapping  fsk1 |-> { (fsk2,co), ... } it must be: 
         co : fsk2 ~ fsk1 

The role of the inert_fsks is to make it easy to maintain the equivalence
class of each flatten skolem, which is much needed to correctly do spontaneous
solving. See Note [Loopy Spontaneous Solving] 
109 110 111
\begin{code}

-- See Note [InertSet invariants]
112
data InertSet 
113
  = IS { inert_eqs  :: Bag.Bag CanonicalCt   -- Equalities only **CTyEqCan** 
114 115 116
       , inert_cts  :: Bag.Bag CanonicalCt   -- Other constraints 
       , inert_fds  :: FDImprovements        -- List of pairwise improvements that have kicked in already
                                             -- and reside either in the worklist or in the inerts 
117
       , inert_fsks :: Map.Map TcTyVar [(TcTyVar,Coercion)] }
118
       -- See Note [InertSet FlattenSkolemEqClass] 
119

120 121 122
type FDImprovement  = (PredType,PredType) 
type FDImprovements = [(PredType,PredType)] 

123
instance Outputable InertSet where
124 125
  ppr is = vcat [ vcat (map ppr (Bag.bagToList $ inert_eqs is))
                , vcat (map ppr (Bag.bagToList $ inert_cts is))
126 127 128 129 130
                , vcat (map (\(v,rest) -> ppr v <+> text "|->" <+> hsep (map (ppr.fst) rest)) 
                       (Map.toList $ inert_fsks is)
                       )
                ]
                       
131
emptyInert :: InertSet
132
emptyInert = IS { inert_eqs = Bag.emptyBag
133
                , inert_cts = Bag.emptyBag, inert_fsks = Map.empty, inert_fds = [] }
134 135 136

updInertSet :: InertSet -> AtomicInert -> InertSet 
-- Introduces an element in the inert set for the first time 
137
updInertSet (IS { inert_eqs = eqs, inert_cts = cts, inert_fsks = fsks, inert_fds = fdis })  
138 139 140 141 142 143
            item@(CTyEqCan { cc_id    = cv
                           , cc_tyvar = tv1 
                           , cc_rhs   = xi })
  | Just tv2 <- tcGetTyVar_maybe xi,
    FlatSkol {} <- tcTyVarDetails tv1, 
    FlatSkol {} <- tcTyVarDetails tv2 
144
  = let eqs'  = eqs `Bag.snocBag` item 
145
        fsks' = Map.insertWith (++) tv2 [(tv1, mkCoVarCoercion cv)] fsks
146
        -- See Note [InertSet FlattenSkolemEqClass] 
147
    in IS { inert_eqs = eqs', inert_cts = cts, inert_fsks = fsks', inert_fds = fdis }
148
updInertSet (IS { inert_eqs = eqs, inert_cts = cts
149
                , inert_fsks = fsks, inert_fds = fdis }) item 
150
  | isTyEqCCan item 
151
  = let eqs' = eqs `Bag.snocBag` item 
152
    in IS { inert_eqs = eqs', inert_cts = cts, inert_fsks = fsks, inert_fds = fdis } 
153
  | otherwise 
154
  = let cts' = cts `Bag.snocBag` item
155 156 157 158 159
    in IS { inert_eqs = eqs, inert_cts = cts', inert_fsks = fsks, inert_fds = fdis } 

updInertSetFDImprs :: InertSet -> Maybe FDImprovement -> InertSet 
updInertSetFDImprs is (Just fdi) = is { inert_fds = fdi : inert_fds is } 
updInertSetFDImprs is Nothing    = is 
160

161 162 163 164 165 166 167 168 169
foldISEqCtsM :: Monad m => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
-- Fold over the equalities of the inerts
foldISEqCtsM k z IS { inert_eqs = eqs } 
  = Bag.foldlBagM k z eqs 

foldISOtherCtsM :: Monad m => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
-- Fold over other constraints in the inerts 
foldISOtherCtsM k z IS { inert_cts = cts } 
  = Bag.foldlBagM k z cts 
170 171

extractUnsolved :: InertSet -> (InertSet, CanonicalCts)
172
extractUnsolved is@(IS {inert_eqs = eqs, inert_cts = cts, inert_fds = fdis }) 
173
  = let is_init  = is { inert_eqs = emptyCCan 
174
                      , inert_cts = solved_cts, inert_fsks = Map.empty, inert_fds = fdis }
175 176 177 178 179
        is_final = Bag.foldlBag updInertSet is_init solved_eqs -- Add equalities carefully
    in (is_final, unsolved) 
  where (unsolved_cts, solved_cts) = Bag.partitionBag isWantedCt cts
        (unsolved_eqs, solved_eqs) = Bag.partitionBag isWantedCt eqs
        unsolved                   = unsolved_cts `unionBags` unsolved_eqs
180

181 182

getFskEqClass :: InertSet -> TcTyVar -> [(TcTyVar,Coercion)] 
183
-- Precondition: tv is a FlatSkol. See Note [InertSet FlattenSkolemEqClass] 
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
getFskEqClass (IS { inert_cts = cts, inert_fsks = fsks }) tv 
  = case lkpTyEqCanByLhs of
      Nothing  -> fromMaybe [] (Map.lookup tv fsks)  
      Just ceq -> 
        case tcGetTyVar_maybe (cc_rhs ceq) of 
          Just tv_rhs | FlatSkol {} <- tcTyVarDetails tv_rhs
            -> let ceq_co = mkSymCoercion $ mkCoVarCoercion (cc_id ceq)
                   mk_co (v,c) = (v, mkTransCoercion c ceq_co)
               in (tv_rhs, ceq_co): map mk_co (fromMaybe [] $ Map.lookup tv fsks) 
          _ -> []
  where lkpTyEqCanByLhs = Bag.foldlBag lkp Nothing cts 
        lkp :: Maybe CanonicalCt -> CanonicalCt -> Maybe CanonicalCt 
        lkp Nothing ct@(CTyEqCan {cc_tyvar = tv'}) | tv' == tv = Just ct 
        lkp other _ct = other 

199 200 201 202 203 204 205 206 207 208 209 210 211 212
haveBeenImproved :: FDImprovements -> PredType -> PredType -> Bool 
haveBeenImproved [] _ _ = False 
haveBeenImproved ((pty1,pty2):fdimprs) pty1' pty2' 
 | tcEqPred pty1 pty1' && tcEqPred pty2 pty2' 
 = True 
 | tcEqPred pty1 pty2' && tcEqPred pty2 pty1'
 = True 
 | otherwise 
 = haveBeenImproved fdimprs pty1' pty2' 

getFDImprovements :: InertSet -> FDImprovements 
-- Return a list of the improvements that have kicked in so far 
getFDImprovements = inert_fds 

213

214 215
isWantedCt :: CanonicalCt -> Bool 
isWantedCt ct = isWanted (cc_flavor ct)
216 217 218 219 220 221 222 223 224 225 226

{- TODO: Later ...
data Inert = IS { class_inerts :: FiniteMap Class Atomics
     	          ip_inerts    :: FiniteMap Class Atomics
     	          tyfun_inerts :: FiniteMap TyCon Atomics
		  tyvar_inerts :: FiniteMap TyVar Atomics
                }

Later should we also separate out givens and wanteds?
-}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
\end{code}

Note [Touchables and givens]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Touchable variables will never show up in givens which are inputs to
the solver.  However, touchables may show up in givens generated by the flattener.  
For example,

  axioms:
    G Int ~ Char
    F Char ~ Int

  wanted:
    F (G alpha) ~w Int
  
canonicalises to

  G alpha ~g b
  F b ~w Int

which can be put in the inert set.  Suppose we also have a wanted

  alpha ~w Int

We cannot rewrite the given G alpha ~g b using the wanted alpha ~w
Int.  Instead, after reacting alpha ~w Int with the whole inert set,
we observe that we can solve it by unifying alpha with Int, so we mark
it as solved and put it back in the *work list*. [We also immediately unify
alpha := Int, without telling anyone, see trySpontaneousSolve function, to 
avoid doing this in the end.]

Later, because it is solved (given, in effect), we can use it to rewrite 
G alpha ~g b to G Int ~g b, which gets put back in the work list. Eventually, 
we will dispatch the remaining wanted constraints using the top-level axioms.

Finally, note that after reacting a wanted equality with the entire inert set
we may end up with something like

  b ~w alpha

which we should flip around to generate the solved constraint alpha ~s b.

%*********************************************************************
%*                                                                   * 
*                      Main Interaction Solver                       *
*                                                                    *
**********************************************************************

Note [Basic plan] 
~~~~~~~~~~~~~~~~~
1. Canonicalise (unary)
2. Pairwise interaction (binary)
    * Take one from work list 
    * Try all pair-wise interactions with each constraint in inert
281 282 283 284
   
   As an optimisation, we prioritize the equalities both in the 
   worklist and in the inerts. 

285 286 287 288 289 290 291 292
3. Try to solve spontaneously for equalities involving touchables 
4. Top-level interaction (binary wrt top-level)
   Superclass decomposition belongs in (4), see note [Superclasses]

\begin{code}
type AtomicInert = CanonicalCt     -- constraint pulled from InertSet
type WorkItem    = CanonicalCt     -- constraint pulled from WorkList

293 294
-- A mixture of Given, Wanted, and Derived constraints. 
-- We split between equalities and the rest to process equalities first. 
295 296
type WorkList = CanonicalCts
type SWorkList = WorkList        -- A worklist of solved 
297 298

unionWorkLists :: WorkList -> WorkList -> WorkList 
299
unionWorkLists = andCCan
300 301

isEmptyWorkList :: WorkList -> Bool 
302
isEmptyWorkList = isEmptyCCan 
303 304

emptyWorkList :: WorkList
305
emptyWorkList = emptyCCan
306

307
workListFromCCan :: CanonicalCt -> WorkList 
308
workListFromCCan = singleCCan
309

310
------------------------
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
data StopOrContinue 
  = Stop			-- Work item is consumed
  | ContinueWith WorkItem	-- Not consumed

instance Outputable StopOrContinue where
  ppr Stop             = ptext (sLit "Stop")
  ppr (ContinueWith w) = ptext (sLit "ContinueWith") <+> ppr w

-- Results after interacting a WorkItem as far as possible with an InertSet
data StageResult
  = SR { sr_inerts     :: InertSet
           -- The new InertSet to use (REPLACES the old InertSet)
       , sr_new_work   :: WorkList
           -- Any new work items generated (should be ADDED to the old WorkList)
           -- Invariant: 
           --    sr_stop = Just workitem => workitem is *not* in sr_inerts and
           --                               workitem is inert wrt to sr_inerts
       , sr_stop       :: StopOrContinue
       }

instance Outputable StageResult where
  ppr (SR { sr_inerts = inerts, sr_new_work = work, sr_stop = stop })
    = ptext (sLit "SR") <+> 
      braces (sep [ ptext (sLit "inerts =") <+> ppr inerts <> comma
             	  , ptext (sLit "new work =") <+> ppr work <> comma
             	  , ptext (sLit "stop =") <+> ppr stop])

type SimplifierStage = WorkItem -> InertSet -> TcS StageResult 

-- Combine a sequence of simplifier 'stages' to create a pipeline 
runSolverPipeline :: [(String, SimplifierStage)]
                  -> InertSet -> WorkItem 
                  -> TcS (InertSet, WorkList)
-- Precondition: non-empty list of stages 
runSolverPipeline pipeline inerts workItem
  = do { traceTcS "Start solver pipeline" $ 
            vcat [ ptext (sLit "work item =") <+> ppr workItem
                 , ptext (sLit "inerts    =") <+> ppr inerts]

       ; let itr_in = SR { sr_inerts = inerts
                        , sr_new_work = emptyWorkList
                        , sr_stop = ContinueWith workItem }
       ; itr_out <- run_pipeline pipeline itr_in
       ; let new_inert 
              = case sr_stop itr_out of 
       	          Stop              -> sr_inerts itr_out
357
                  ContinueWith item -> sr_inerts itr_out `updInertSet` item
358 359 360 361 362 363 364 365 366 367 368 369 370
       ; return (new_inert, sr_new_work itr_out) }
  where 
    run_pipeline :: [(String, SimplifierStage)]
                 -> StageResult -> TcS StageResult
    run_pipeline [] itr                         = return itr
    run_pipeline _  itr@(SR { sr_stop = Stop }) = return itr

    run_pipeline ((name,stage):stages) 
                 (SR { sr_new_work = accum_work
                     , sr_inerts   = inerts
                     , sr_stop     = ContinueWith work_item })
      = do { itr <- stage work_item inerts 
           ; traceTcS ("Stage result (" ++ name ++ ")") (ppr itr)
371
           ; let itr' = itr { sr_new_work = accum_work `unionWorkLists` sr_new_work itr }
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
           ; run_pipeline stages itr' }
\end{code}

Example 1:
  Inert:   {c ~ d, F a ~ t, b ~ Int, a ~ ty} (all given)
  Reagent: a ~ [b] (given)

React with (c~d)     ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~ t) ==> IR (ContinueWith (a~[b]))  False   [F [b] ~ t]
React with (b ~ Int) ==> IR (ContinueWith (a~[Int]) True    []

Example 2:
  Inert:  {c ~w d, F a ~g t, b ~w Int, a ~w ty}
  Reagent: a ~w [b]

React with (c ~w d)   ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~g t) ==> IR (ContinueWith (a~[b]))  True    []    (can't rewrite given with wanted!)
etc.

Example 3:
  Inert:  {a ~ Int, F Int ~ b} (given)
  Reagent: F a ~ b (wanted)

React with (a ~ Int)   ==> IR (ContinueWith (F Int ~ b)) True []
React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canonicalize and get nothing

\begin{code}
-- Main interaction solver: we fully solve the worklist 'in one go', 
-- returning an extended inert set.
--
-- See Note [Touchables and givens].
403
solveInteract :: InertSet -> CanonicalCts -> TcS InertSet
404 405
solveInteract inert ws 
  = do { dyn_flags <- getDynFlags
406
       ; solveInteractWithDepth (ctxtStkDepth dyn_flags,0,[]) inert ws
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
       }
solveOne :: InertSet -> WorkItem -> TcS InertSet 
solveOne inerts workItem 
  = do { dyn_flags <- getDynFlags
       ; solveOneWithDepth (ctxtStkDepth dyn_flags,0,[]) inerts workItem
       }

-----------------
solveInteractWithDepth :: (Int, Int, [WorkItem])
                       -> InertSet -> WorkList -> TcS InertSet
solveInteractWithDepth ctxt@(max_depth,n,stack) inert ws 
  | isEmptyWorkList ws
  = return inert

  | n > max_depth 
  = solverDepthErrorTcS n stack

  | otherwise 
  = do { traceTcS "solveInteractWithDepth" $ 
426 427 428 429 430 431 432
              vcat [ text "Current depth =" <+> ppr n
                   , text "Max depth =" <+> ppr max_depth ]

	      -- Solve equalities first
       ; let (eqs, non_eqs) = Bag.partitionBag isTyEqCCan ws
       ; is_from_eqs <- Bag.foldlBagM (solveOneWithDepth ctxt) inert eqs
       ; Bag.foldlBagM (solveOneWithDepth ctxt) is_from_eqs non_eqs }
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

------------------
-- Fully interact the given work item with an inert set, and return a
-- new inert set which has assimilated the new information.
solveOneWithDepth :: (Int, Int, [WorkItem])
                  -> InertSet -> WorkItem -> TcS InertSet
solveOneWithDepth (max_depth, n, stack) inert work
  = do { traceTcS0 (indent ++ "Solving {") (ppr work)
       ; (new_inert, new_work) <- runSolverPipeline thePipeline inert work
         
       ; traceTcS0 (indent ++ "Subgoals:") (ppr new_work)

	 -- Recursively solve the new work generated 
         -- from workItem, with a greater depth
       ; res_inert <- solveInteractWithDepth (max_depth, n+1, work:stack)
                                new_inert new_work 

       ; traceTcS0 (indent ++ "Done }") (ppr work) 
       ; return res_inert }
  where
    indent = replicate (2*n) ' '

thePipeline :: [(String,SimplifierStage)]
456 457 458 459
thePipeline = [ ("interact with inert eqs", interactWithInertEqsStage)
              , ("interact with inerts",    interactWithInertsStage)
              , ("spontaneous solve",       spontaneousSolveStage)
              , ("top-level reactions",     topReactionsStage) ]
460 461 462 463 464 465 466 467
\end{code}

*********************************************************************************
*                                                                               * 
                       The spontaneous-solve Stage
*                                                                               *
*********************************************************************************

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
Note [Efficient Orientation] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two cases where we have to be careful about 
orienting equalities to get better efficiency. 

Case 1: In Spontaneous Solving 

     The OrientFlag is used to preserve the original orientation of a
     spontaneously solved equality (insofar the canonical constraints
     invariants allow it). This way we hope to be more efficient since
     when reaching the spontaneous solve stage, a particular
     constraint has already been inert-ified wrt to the preexisting
     inerts.

     Example: 
     Inerts:   [w1] : D alpha 
               [w2] : C beta 
               [w3] : F alpha ~ Int 
               [w4] : H beta  ~ Int 
     Untouchables = [beta] 
     Then a wanted (beta ~ alpha) comes along. 

        1) While interacting with the inerts it is going to kick w2,w4
           out of the inerts
        2) Then, it will spontaneoulsy be solved by (alpha := beta)
        3) Now (and here is the tricky part), to add him back as
           solved (alpha ~ beta) is no good because, in the next
           iteration, it will kick out w1,w3 as well so we will end up
           with *all* the inert equalities back in the worklist!

     So, we instead solve (alpha := beta), but we preserve the
     original orientation, so that we get a given (beta ~ alpha),
     which will result in no more inerts getting kicked out of the
     inert set in the next iteration.

Case 2: In Rewriting Equalities (function rewriteEqLHS) 

    When rewriting two equalities with the same LHS:
          (a)  (tv ~ xi1) 
          (b)  (tv ~ xi2) 
    We have a choice of producing work (xi1 ~ xi2) (up-to the
    canonicalization invariants) However, to prevent the inert items
    from getting kicked out of the inerts first, we prefer to
    canonicalize (xi1 ~ xi2) if (b) comes from the inert set, or (xi2
    ~ xi1) if (a) comes from the inert set.
    
    This choice is implemented using the WhichComesFromInert flag. 

Case 3: Functional Dependencies and IP improvement work
    TODO. Optimisation not yet implemented there. 

520 521 522
\begin{code}
spontaneousSolveStage :: SimplifierStage 
spontaneousSolveStage workItem inerts 
523
  = do { mSolve <- trySpontaneousSolve workItem inerts
524 525
       ; case mSolve of 
           Nothing -> -- no spontaneous solution for him, keep going
526 527
               return $ SR { sr_new_work   = emptyWorkList
                           , sr_inerts     = inerts
528 529
                           , sr_stop       = ContinueWith workItem }

530
           Just workList' -> -- He has been solved; workList' are all givens
531 532
               return $ SR { sr_new_work = workList'
                           , sr_inerts   = inerts 
533
                           , sr_stop     = Stop }
534
       }
535

536 537 538 539

data OrientFlag = OrientThisWay 
                | OrientOtherWay -- See Note [Efficient Orientation]

540 541 542 543 544
-- @trySpontaneousSolve wi@ solves equalities where one side is a
-- touchable unification variable. Returns:
--   * Nothing if we were not able to solve it
--   * Just wi' if we solved it, wi' (now a "given") should be put in the work list.
--     	    See Note [Touchables and givens] 
545
-- NB: just passing the inerts through for the skolem equivalence classes
546
trySpontaneousSolve :: WorkItem -> InertSet -> TcS (Maybe SWorkList)
547
trySpontaneousSolve workItem@(CTyEqCan { cc_id = cv, cc_flavor = gw, cc_tyvar = tv1, cc_rhs = xi }) inerts 
548 549
  | isGiven gw
  = return Nothing
550 551 552 553
  | Just tv2 <- tcGetTyVar_maybe xi
  = do { tch1 <- isTouchableMetaTyVar tv1
       ; tch2 <- isTouchableMetaTyVar tv2
       ; case (tch1, tch2) of
554
           (True,  True)  -> trySpontaneousEqTwoWay inerts cv gw tv1 tv2
555 556
           (True,  False) -> trySpontaneousEqOneWay OrientThisWay  inerts cv gw tv1 xi
           (False, True)  -> trySpontaneousEqOneWay OrientOtherWay inerts cv gw tv2 (mkTyVarTy tv1)
557 558 559
	   _ -> return Nothing }
  | otherwise
  = do { tch1 <- isTouchableMetaTyVar tv1
560 561 562 563
       ; if tch1 then trySpontaneousEqOneWay OrientThisWay inerts cv gw tv1 xi
                 else do { traceTcS "Untouchable LHS, can't spontaneously solve workitem:" (ppr workItem) 
                         ; return Nothing }
       }
564 565 566 567

  -- No need for 
  --      trySpontaneousSolve (CFunEqCan ...) = ...
  -- See Note [No touchables as FunEq RHS] in TcSMonad
568
trySpontaneousSolve _ _ = return Nothing 
569 570

----------------
571 572
trySpontaneousEqOneWay :: OrientFlag 
                       -> InertSet -> CoVar -> CtFlavor -> TcTyVar -> Xi 
573
                       -> TcS (Maybe SWorkList)
574 575 576 577
-- NB: The OrientFlag is there to help us recover the orientation of the original 
-- constraint which is important for enforcing the canonical constraints invariants. 
-- Also, tv is a MetaTyVar, not untouchable
trySpontaneousEqOneWay or_flag inerts cv gw tv xi	
578
  | not (isSigTyVar tv) || isTyVarTy xi 
579 580 581 582 583 584
  = do { kxi <- zonkTcTypeTcS xi >>= return . typeKind  -- Must look through the TcTyBinds
                                                        -- hence kxi and not typeKind xi
                                                        -- See Note [Kind Errors]
       ; if kxi `isSubKind` tyVarKind tv then
             solveWithIdentity or_flag inerts cv gw tv xi
         else if tyVarKind tv `isSubKind` kxi then 
585 586 587 588 589
             return Nothing -- kinds are compatible but we can't solveWithIdentity this way
                            -- This case covers the  a_touchable :: * ~ b_untouchable :: ?? 
                            -- which has to be deferred or floated out for someone else to solve 
                            -- it in a scope where 'b' is no longer untouchable. 
         else kindErrorTcS gw (mkTyVarTy tv) xi -- See Note [Kind errors]
590
       }
591 592
  | otherwise -- Still can't solve, sig tyvar and non-variable rhs
  = return Nothing 
593 594

----------------
595 596
trySpontaneousEqTwoWay :: InertSet -> CoVar -> CtFlavor -> TcTyVar -> TcTyVar
                       -> TcS (Maybe SWorkList)
597
-- Both tyvars are *touchable* MetaTyvars so there is only a chance for kind error here
598
trySpontaneousEqTwoWay inerts cv gw tv1 tv2
599
  | k1 `isSubKind` k2
600
  , nicer_to_update_tv2 = solveWithIdentity OrientOtherWay inerts cv gw tv2 (mkTyVarTy tv1)
601
  | k2 `isSubKind` k1 
602
  = solveWithIdentity OrientThisWay inerts cv gw tv1 (mkTyVarTy tv2) 
603 604
  | otherwise -- None is a subkind of the other, but they are both touchable! 
  = kindErrorTcS gw (mkTyVarTy tv1) (mkTyVarTy tv2) -- See Note [Kind errors]
605 606 607 608 609 610
  where
    k1 = tyVarKind tv1
    k2 = tyVarKind tv2
    nicer_to_update_tv2 = isSigTyVar tv1 || isSystemName (Var.varName tv2)
\end{code}

611 612 613 614 615 616 617 618 619 620 621
Note [Kind errors] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the wanted problem: 
      alpha ~ (# Int, Int #) 
where alpha :: ?? and (# Int, Int #) :: (#). We can't spontaneously solve this constraint, 
but we should rather reject the program that give rise to it. If 'trySpontaneousEqTwoWay' 
simply returns @Nothing@ then that wanted constraint is going to propagate all the way and 
get quantified over in inference mode. That's bad because we do know at this point that the 
constraint is insoluble. Instead, we call 'kindErrorTcS' here, which immediately fails. 

The same applies in canonicalization code in case of kind errors in the givens. 
622

623 624 625 626 627 628 629 630 631 632 633
However, when we canonicalize givens we only check for compatibility (@compatKind@). 
If there were a kind error in the givens, this means some form of inconsistency or dead code. 

When we spontaneously solve wanteds we may have to look through the bindings, hence we 
call zonkTcTypeTcS above. The reason is that maybe xi is @alpha@ where alpha :: ? and 
a previous spontaneous solving has set (alpha := f) with (f :: *). The reason that xi is 
still alpha and not f is becasue the solved constraint may be oriented as (f ~ alpha) instead
of (alpha ~ f). Then we should be using @xi@s "real" kind, which is * and not ?, when we try
to detect whether spontaneous solving is possible. 


634 635 636 637 638 639 640 641 642 643
Note [Spontaneous solving and kind compatibility] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note that our canonical constraints insist that only *given* equalities (tv ~ xi) 
or (F xis ~ rhs) require the LHS and the RHS to have exactly the same kinds. 

  - We have to require this because: 
        Given equalities can be freely used to rewrite inside 
        other types or constraints.
  - We do not have to do the same for wanteds because:
644 645 646 647 648 649 650 651
        First, wanted equations (tv ~ xi) where tv is a touchable
        unification variable may have kinds that do not agree (the
        kind of xi must be a sub kind of the kind of tv).  Second, any
        potential kind mismatch will result in the constraint not
        being soluble, which will be reported anyway. This is the
        reason that @trySpontaneousOneWay@ and @trySpontaneousTwoWay@
        will perform a kind compatibility check, and only then will
        they proceed to @solveWithIdentity@.
652 653 654 655 656 657 658 659 660 661 662

Caveat: 
  - Givens from higher-rank, such as: 
          type family T b :: * -> * -> * 
          type instance T Bool = (->) 

          f :: forall a. ((T a ~ (->)) => ...) -> a -> ... 
          flop = f (...) True 
     Whereas we would be able to apply the type instance, we would not be able to 
     use the given (T Bool ~ (->)) in the body of 'flop' 

663
Note [Loopy Spontaneous Solving] 
664
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
665 666 667

Example 1: (The problem of loopy spontaneous solving) 
****************************************************************************
668 669 670 671 672 673 674 675 676 677 678
Consider the original wanted: 
   wanted :  Maybe (E alpha) ~ alpha 
where E is a type family, such that E (T x) = x. After canonicalization, 
as a result of flattening, we will get: 
   given  : E alpha ~ fsk 
   wanted : alpha ~ Maybe fsk
where (fsk := E alpha, on the side). Now, if we spontaneously *solve* 
(alpha := Maybe fsk) we are in trouble! Instead, we should refrain from solving 
it and keep it as wanted.  In inference mode we'll end up quantifying over
   (alpha ~ Maybe (E alpha))
Hence, 'solveWithIdentity' performs a small occurs check before
679 680 681 682 683
actually solving. But this occurs check *must look through* flatten skolems.

However, it may be the case that the flatten skolem in hand is equal to some other 
flatten skolem whith *does not* mention our unification variable. Here's a typical example:

684 685
Example 2: (The need of keeping track of flatten skolem equivalence classes) 
****************************************************************************
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
Original wanteds: 
   g: F alpha ~ F beta 
   w: alpha ~ F alpha 
After canonicalization: 
   g: F beta ~ f1 
   g: F alpha ~ f1 
   w: alpha ~ f2 
   g: F alpha ~ f2 
After some reactions: 
   g: f1 ~ f2 
   g: F beta ~ f1 
   w: alpha ~ f2 
   g: F alpha ~ f2 
At this point, we will try to spontaneously solve (alpha ~ f2) which remains as yet unsolved.
We will look inside f2, which immediately mentions (F alpha), so it's not good to unify! However
by looking at the equivalence class of the flatten skolems, we can see that it is fine to 
unify (alpha ~ f1) which solves our goals! 

704 705
Example 3: (The need of looking through TyBinds for already spontaneously solved variables)
*******************************************************************************************
706 707 708 709 710 711 712 713 714 715 716 717 718
A similar problem happens because of other spontaneous solving. Suppose we have the 
following wanteds, arriving in this exact order:
  (first)  w: beta ~ alpha 
  (second) w: alpha ~ fsk 
  (third)  g: F beta ~ fsk
Then, we first spontaneously solve the first constraint, making (beta := alpha), and having
(beta ~ alpha) as given. *Then* we encounter the second wanted (alpha ~ fsk). "fsk" does not 
obviously mention alpha, so naively we can also spontaneously solve (alpha := fsk). But 
that is wrong since fsk mentions beta, which has already secretly been unified to alpha! 

To avoid this problem, the same occurs check must unveil rewritings that can happen because 
of spontaneously having solved other constraints. 

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
Example 4: (Orientation of (tv ~ xi) equalities) 
************************************************
We orient equalities (tv ~ xi) so that flatten skolems appear on the left, if possible. Here
is an example of why this is needed: 

  [Wanted] w1: alpha ~ fsk 
  [Given]  g1: F alpha ~ fsk 
  [Given]  g2: b ~ fsk 
  Flatten skolem equivalence class = [] 

Assume that g2 is *not* oriented properly, as shown above. Then we would like to spontaneously
solve w1 but we can't set alpha := fsk, since fsk hides the type F alpha. However, by using 
the equation g2 it would be possible to solve w1 by setting  alpha := b. In other words, it is
not enough to look at a flatten skolem equivalence class to try to find alternatives to unify
with. We may have to go to other variables. 

By orienting the equalities so that flatten skolems are in the LHS we are eliminating them
as much as possible from the RHS of other wanted equalities, and hence it suffices to look 
in their flatten skolem equivalence classes. 

This situation appears in the IndTypesPerf test case, inside indexed-types/.
740 741 742 743 744 745 746

Note [Avoid double unifications] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The spontaneous solver has to return a given which mentions the unified unification
variable *on the left* of the equality. Here is what happens if not: 
  Original wanted:  (a ~ alpha),  (alpha ~ Int) 
We spontaneously solve the first wanted, without changing the order! 
747
      given : a ~ alpha      [having unified alpha := a] 
748 749 750
Now the second wanted comes along, but he cannot rewrite the given, so we simply continue.
At the end we spontaneously solve that guy, *reunifying*  [alpha := Int] 

751 752 753
We avoid this problem by orienting the given so that the unification
variable is on the left.  [Note that alternatively we could attempt to
enforce this at canonicalization]
754

755 756 757
See also Note [No touchables as FunEq RHS] in TcSMonad; avoiding
double unifications is the main reason we disallow touchable
unification variables as RHS of type family equations: F xis ~ alpha.
758 759 760

\begin{code}
----------------
761 762
solveWithIdentity :: OrientFlag 
                  -> InertSet 
763 764
                  -> CoVar -> CtFlavor -> TcTyVar -> Xi 
                  -> TcS (Maybe SWorkList)
765 766
-- Solve with the identity coercion 
-- Precondition: kind(xi) is a sub-kind of kind(tv)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
767 768 769
-- Precondition: CtFlavor is Wanted or Derived
-- See [New Wanted Superclass Work] to see why solveWithIdentity 
--     must work for Derived as well as Wanted
770
solveWithIdentity or_flag inerts cv gw tv xi 
771
  = do { tybnds <- getTcSTyBindsMap
772 773 774 775 776 777
       ; case occurCheck tybnds inerts tv xi of 
           Nothing              -> return Nothing 
           Just (xi_unflat,coi) -> solve_with xi_unflat coi }
  where
    solve_with xi_unflat coi  -- coi : xi_unflat ~ xi  
      = do { traceTcS "Sneaky unification:" $ 
778 779 780 781
                       vcat [text "Coercion variable:  " <+> ppr gw, 
                             text "Coercion:           " <+> pprEq (mkTyVarTy tv) xi,
                             text "Left  Kind is     : " <+> ppr (typeKind (mkTyVarTy tv)),
                             text "Right Kind is     : " <+> ppr (typeKind xi)
782
                  ]
783 784
--           ; setWantedTyBind tv xi_unflat        -- Set tv := xi_unflat
--           ; cv_given <- newGivOrDerCoVar (mkTyVarTy tv) xi_unflat xi_unflat
785 786
           ; let flav = mkGivenFlavor gw UnkSkol 
           ; (cts, co) <- case coi of 
787 788 789 790 791 792 793 794 795 796 797
               ACo co  -> do { cv_given <- newGivOrDerCoVar (mkTyVarTy tv)  xi_unflat xi_unflat
                             ; setWantedTyBind tv xi_unflat
                             ; can_eqs <- case or_flag of 
                                            OrientThisWay  -> canEq flav cv_given (mkTyVarTy tv) xi_unflat
                                            OrientOtherWay -> canEq flav cv_given xi_unflat (mkTyVarTy tv) 
                             ; return (can_eqs, co) }
               IdCo co -> do { cv_given <- newGivOrDerCoVar (mkTyVarTy tv) xi xi 
                             ; setWantedTyBind tv xi
                             ; can_eqs <- case or_flag of 
                                            OrientThisWay  -> canEq flav cv_given (mkTyVarTy tv) xi
                                            OrientOtherWay -> canEq flav cv_given xi (mkTyVarTy tv)
798 799 800 801 802 803
                             ; return (can_eqs, co) }
           ; case gw of 
               Wanted  {} -> setWantedCoBind  cv co
               Derived {} -> setDerivedCoBind cv co 
               _          -> pprPanic "Can't spontaneously solve *given*" empty 
	              -- See Note [Avoid double unifications] 
804
           ; return $ Just cts }
805

806
occurCheck :: VarEnv (TcTyVar, TcType) -> InertSet
807 808 809 810 811 812 813 814 815 816
           -> TcTyVar -> TcType -> Maybe (TcType,CoercionI) 
-- Traverse @ty@ to make sure that @tv@ does not appear under some flatten skolem. 
-- If it appears under some flatten skolem look in that flatten skolem equivalence class 
-- (see Note [InertSet FlattenSkolemEqClass], [Loopy Spontaneous Solving]) to see if you 
-- can find a different flatten skolem to use, that is, one that does not mention @tv@.
-- 
-- Postcondition: Just (ty', coi) = occurCheck binds inerts tv ty 
--       coi :: ty' ~ ty 
-- NB: The returned type ty' may not be flat!

817 818
occurCheck ty_binds inerts the_tv the_ty
  = ok emptyVarSet the_ty 
819
  where 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
820 821
    -- If (fsk `elem` bad) then tv occurs in any rendering
    -- of the type under the expansion of fsk
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    ok bad this_ty@(TyConApp tc tys) 
      | Just tys_cois <- allMaybes (map (ok bad) tys) 
      , (tys',cois') <- unzip tys_cois
      = Just (TyConApp tc tys', mkTyConAppCoI tc cois') 
      | isSynTyCon tc, Just ty_expanded <- tcView this_ty
      = ok bad ty_expanded   -- See Note [Type synonyms and the occur check] in TcUnify
    ok bad (PredTy sty) 
      | Just (sty',coi) <- ok_pred bad sty 
      = Just (PredTy sty', coi) 
    ok bad (FunTy arg res) 
      | Just (arg', coiarg) <- ok bad arg, Just (res', coires) <- ok bad res
      = Just (FunTy arg' res', mkFunTyCoI coiarg coires) 
    ok bad (AppTy fun arg) 
      | Just (fun', coifun) <- ok bad fun, Just (arg', coiarg) <- ok bad arg 
      = Just (AppTy fun' arg', mkAppTyCoI coifun coiarg) 
    ok bad (ForAllTy tv1 ty1) 
    -- WARNING: What if it is a (t1 ~ t2) => t3? It's not handled properly at the moment. 
      | Just (ty1', coi) <- ok bad ty1 
      = Just (ForAllTy tv1 ty1', mkForAllTyCoI tv1 coi) 

    -- Variable cases 
843 844 845 846 847 848
    ok bad this_ty@(TyVarTy tv) 
      | tv == the_tv           		        = Nothing             -- Occurs check error
      | not (isTcTyVar tv) 		        = Just (this_ty, IdCo this_ty) -- Bound var
      | FlatSkol zty <- tcTyVarDetails tv       = ok_fsk bad tv zty
      | Just (_,ty) <- lookupVarEnv ty_binds tv = ok bad ty 
      | otherwise                               = Just (this_ty, IdCo this_ty)
849 850 851 852 853

    -- Check if there exists a ty bind already, as a result of sneaky unification. 
    -- Fall through
    ok _bad _ty = Nothing 

854
    -----------
855 856 857 858 859 860 861 862 863 864 865 866
    ok_pred bad (ClassP cn tys)
      | Just tys_cois <- allMaybes $ map (ok bad) tys 
      = let (tys', cois') = unzip tys_cois 
        in Just (ClassP cn tys', mkClassPPredCoI cn cois')
    ok_pred bad (IParam nm ty)   
      | Just (ty',co') <- ok bad ty 
      = Just (IParam nm ty', mkIParamPredCoI nm co') 
    ok_pred bad (EqPred ty1 ty2) 
      | Just (ty1',coi1) <- ok bad ty1, Just (ty2',coi2) <- ok bad ty2
      = Just (EqPred ty1' ty2', mkEqPredCoI coi1 coi2) 
    ok_pred _ _ = Nothing 

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    -----------
    ok_fsk bad fsk zty
      | fsk `elemVarSet` bad 
            -- We are already trying to find a rendering of fsk, 
	    -- and to do that it seems we need a rendering, so fail
      = Nothing
      | otherwise 
      = firstJusts (ok new_bad zty : map (go_under_fsk new_bad) fsk_equivs)
      where
        fsk_equivs = getFskEqClass inerts fsk 
        new_bad    = bad `extendVarSetList` (fsk : map fst fsk_equivs)

    -----------
    go_under_fsk bad_tvs (fsk,co)
      | FlatSkol zty <- tcTyVarDetails fsk
      = case ok bad_tvs zty of
           Nothing        -> Nothing
           Just (ty,coi') -> Just (ty, mkTransCoI coi' (ACo co)) 
      | otherwise = pprPanic "go_down_equiv" (ppr fsk)
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
\end{code}


*********************************************************************************
*                                                                               * 
                       The interact-with-inert Stage
*                                                                               *
*********************************************************************************

\begin{code}
-- Interaction result of  WorkItem <~> AtomicInert
data InteractResult
   = IR { ir_stop         :: StopOrContinue
            -- Stop
            --   => Reagent (work item) consumed.
            -- ContinueWith new_reagent
            --   => Reagent transformed but keep gathering interactions. 
            --      The transformed item remains inert with respect 
            --      to any previously encountered inerts.

        , ir_inert_action :: InertAction
            -- Whether the inert item should remain in the InertSet.

        , ir_new_work     :: WorkList
            -- new work items to add to the WorkList
911 912

        , ir_improvement  :: Maybe FDImprovement -- In case improvement kicked in
913 914 915 916 917 918 919
        }

-- What to do with the inert reactant.
data InertAction = KeepInert | DropInert
  deriving Eq

mkIRContinue :: Monad m => WorkItem -> InertAction -> WorkList -> m InteractResult
920
mkIRContinue wi keep newWork = return $ IR (ContinueWith wi) keep newWork Nothing 
921 922

mkIRStop :: Monad m => InertAction -> WorkList -> m InteractResult
923 924 925 926 927
mkIRStop keep newWork = return $ IR Stop keep newWork Nothing

mkIRStop_RecordImprovement :: Monad m => InertAction -> WorkList -> FDImprovement -> m InteractResult 
mkIRStop_RecordImprovement keep newWork fdimpr = return $ IR Stop keep newWork (Just fdimpr) 

928 929

dischargeWorkItem :: Monad m => m InteractResult
930
dischargeWorkItem = mkIRStop KeepInert emptyWorkList
931 932

noInteraction :: Monad m => WorkItem -> m InteractResult
933
noInteraction workItem = mkIRContinue workItem KeepInert emptyWorkList
934

dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
935
data WhichComesFromInert = LeftComesFromInert | RightComesFromInert 
936
     -- See Note [Efficient Orientation, Case 2] 
937

938

939
---------------------------------------------------
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
-- Interact a single WorkItem with the equalities of an inert set as far as possible, i.e. until we 
-- get a Stop result from an individual reaction (i.e. when the WorkItem is consumed), or until we've 
-- interact the WorkItem with the entire equalities of the InertSet

interactWithInertEqsStage :: SimplifierStage 
interactWithInertEqsStage workItem inert
  = foldISEqCtsM interactNext initITR inert 
  where initITR = SR { sr_inerts   = IS { inert_eqs  = emptyCCan -- We will fold over the equalities
                                        , inert_fsks = Map.empty -- which will generate those two again
                                        , inert_cts  = inert_cts inert
                                        , inert_fds  = inert_fds inert
                                        }
                     , sr_new_work = emptyWorkList
                     , sr_stop     = ContinueWith workItem }

955

956 957 958 959 960
---------------------------------------------------
-- Interact a single WorkItem with *non-equality* constraints in the inert set. 
-- Precondition: equality interactions must have already happened, hence we have 
-- to pick up some information from the incoming inert, before folding over the 
-- "Other" constraints it contains! 
961 962
interactWithInertsStage :: SimplifierStage
interactWithInertsStage workItem inert
963
  = foldISOtherCtsM interactNext initITR inert
964
  where 
965 966 967 968 969
    initITR = SR { -- Pick up: (1) equations, (2) FD improvements, (3) FlatSkol equiv. classes
                   sr_inerts   = IS { inert_eqs  = inert_eqs inert 
                                    , inert_cts  = emptyCCan      
                                    , inert_fds  = inert_fds inert 
                                    , inert_fsks = inert_fsks inert }
970
                 , sr_new_work = emptyWorkList
971 972
                 , sr_stop     = ContinueWith workItem }

973 974 975
interactNext :: StageResult -> AtomicInert -> TcS StageResult 
interactNext it inert  
  | ContinueWith workItem <- sr_stop it
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
  = do { let inerts      = sr_inerts it 
             fdimprs_old = getFDImprovements inerts 

       ; ir <- interactWithInert fdimprs_old inert workItem 

       -- New inerts depend on whether we KeepInert or not and must 
       -- be updated with FD improvement information from the interaction result (ir) 
       ; let inerts_new = updInertSetFDImprs upd_inert (ir_improvement ir) 
             upd_inert  = if ir_inert_action ir == KeepInert 
                          then inerts `updInertSet` inert else inerts

       ; return $ SR { sr_inerts   = inerts_new
                     , sr_new_work = sr_new_work it `unionWorkLists` ir_new_work ir
                     , sr_stop     = ir_stop ir } }
  | otherwise 
  = return $ it { sr_inerts = (sr_inerts it) `updInertSet` inert }
992 993

-- Do a single interaction of two constraints.
994 995
interactWithInert :: FDImprovements -> AtomicInert -> WorkItem -> TcS InteractResult
interactWithInert fdimprs inert workitem 
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
  =  do { ctxt <- getTcSContext
        ; let is_allowed  = allowedInteraction (simplEqsOnly ctxt) inert workitem 
              inert_ev    = cc_id inert 
              work_ev     = cc_id workitem 

        -- Never interact a wanted and a derived where the derived's evidence 
        -- mentions the wanted evidence in an unguarded way. 
        -- See Note [Superclasses and recursive dictionaries] 
        -- and Note [New Wanted Superclass Work] 
        -- We don't have to do this for givens, as we fully know the evidence for them. 
        ; rec_ev_ok <- 
            case (cc_flavor inert, cc_flavor workitem) of 
1008 1009 1010
              (Wanted loc, Derived {}) -> isGoodRecEv work_ev  (WantedEvVar inert_ev loc)
              (Derived {}, Wanted loc) -> isGoodRecEv inert_ev (WantedEvVar work_ev loc)
              _                        -> return True 
1011 1012

        ; if is_allowed && rec_ev_ok then 
1013
              doInteractWithInert fdimprs inert workitem 
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
          else 
              noInteraction workitem 
        }

allowedInteraction :: Bool -> AtomicInert -> WorkItem -> Bool 
-- Allowed interactions 
allowedInteraction eqs_only (CDictCan {}) (CDictCan {}) = not eqs_only
allowedInteraction eqs_only (CIPCan {})   (CIPCan {})   = not eqs_only
allowedInteraction _ _ _ = True 

--------------------------------------------
1025
doInteractWithInert :: FDImprovements -> CanonicalCt -> CanonicalCt -> TcS InteractResult
1026 1027
-- Identical class constraints.

1028
doInteractWithInert fdimprs
1029 1030 1031 1032 1033 1034 1035
           (CDictCan { cc_id = d1, cc_flavor = fl1, cc_class = cls1, cc_tyargs = tys1 }) 
  workItem@(CDictCan { cc_id = d2, cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
  | cls1 == cls2 && (and $ zipWith tcEqType tys1 tys2)
  = solveOneFromTheOther (d1,fl1) workItem 

  | cls1 == cls2 && (not (isGiven fl1 && isGiven fl2))
  = 	 -- See Note [When improvement happens]
1036 1037 1038 1039
    do { let pty1 = ClassP cls1 tys1 
             pty2 = ClassP cls2 tys2 
             work_item_pred_loc = (pty2, ppr d2)
             inert_pred_loc     = (pty1, ppr d1)
1040 1041
	     loc                = combineCtLoc fl1 fl2
             eqn_pred_locs = improveFromAnother work_item_pred_loc inert_pred_loc         
1042

1043
       ; wevvars <- mkWantedFunDepEqns loc eqn_pred_locs 
1044
       ; fd_work <- canWanteds wevvars 
1045
              	 -- See Note [Generating extra equalities]
1046
       ; traceTcS "Checking if improvements existed." (ppr fdimprs) 
1047
       ; if isEmptyWorkList fd_work || haveBeenImproved fdimprs pty1 pty2 then
1048
             -- Must keep going
1049
             mkIRContinue workItem KeepInert fd_work 
1050 1051
         else do { traceTcS "Recording improvement and throwing item back in worklist." (ppr (pty1,pty2))
                 ; mkIRStop_RecordImprovement KeepInert 
1052
                      (fd_work `unionWorkLists` workListFromCCan workItem) (pty1,pty2)
1053
                 }
1054 1055 1056 1057 1058
         -- See Note [FunDep Reactions] 
       }

-- Class constraint and given equality: use the equality to rewrite
-- the class constraint. 
1059 1060
doInteractWithInert _fdimprs
                    (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
1061 1062 1063
                    (CDictCan { cc_id = dv, cc_flavor = wfl, cc_class = cl, cc_tyargs = xis }) 
  | ifl `canRewrite` wfl 
  , tv `elemVarSet` tyVarsOfTypes xis
1064 1065 1066 1067 1068 1069
  = if isDerivedSC wfl then 
        mkIRStop KeepInert $ emptyWorkList -- See Note [Adding Derived Superclasses]
    else do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,wfl,cl,xis)
            -- Continue with rewritten Dictionary because we can only be in the 
            -- interactWithEqsStage, so the dictionary is inert. 
            ; mkIRContinue rewritten_dict KeepInert emptyWorkList }
1070
    
1071 1072
doInteractWithInert _fdimprs 
                    (CDictCan { cc_id = dv, cc_flavor = ifl, cc_class = cl, cc_tyargs = xis }) 
1073 1074 1075
           workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfTypes xis
1076 1077 1078 1079 1080
  = if isDerivedSC ifl then
        mkIRContinue workItem DropInert emptyWorkList -- No need to do any rewriting, 
                                                      -- see Note [Adding Derived Superclasses]
    else do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,ifl,cl,xis) 
            ; mkIRContinue workItem DropInert (workListFromCCan rewritten_dict) }
1081 1082 1083

-- Class constraint and given equality: use the equality to rewrite
-- the class constraint.
1084 1085
doInteractWithInert _fdimprs 
                    (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
1086 1087 1088 1089
                    (CIPCan { cc_id = ipid, cc_flavor = wfl, cc_ip_nm = nm, cc_ip_ty = ty }) 
  | ifl `canRewrite` wfl
  , tv `elemVarSet` tyVarsOfType ty 
  = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,wfl,nm,ty) 
1090
       ; mkIRContinue rewritten_ip KeepInert emptyWorkList } 
1091

1092 1093
doInteractWithInert _fdimprs 
                    (CIPCan { cc_id = ipid, cc_flavor = ifl, cc_ip_nm = nm, cc_ip_ty = ty }) 
1094 1095 1096 1097
           workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfType ty
  = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,ifl,nm,ty) 
1098
       ; mkIRContinue workItem DropInert (workListFromCCan rewritten_ip) }
1099 1100 1101 1102 1103 1104

-- Two implicit parameter constraints.  If the names are the same,
-- but their types are not, we generate a wanted type equality 
-- that equates the type (this is "improvement").  
-- However, we don't actually need the coercion evidence,
-- so we just generate a fresh coercion variable that isn't used anywhere.
1105 1106
doInteractWithInert _fdimprs 
                    (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
1107
           workItem@(CIPCan { cc_flavor = wfl, cc_ip_nm = nm2, cc_ip_ty = ty2 })
1108 1109 1110 1111
  | nm1 == nm2 && isGiven wfl && isGiven ifl
  = 	-- See Note [Overriding implicit parameters]
        -- Dump the inert item, override totally with the new one
	-- Do not require type equality
1112
    mkIRContinue workItem DropInert emptyWorkList
1113

1114 1115 1116
  | nm1 == nm2 && ty1 `tcEqType` ty2 
  = solveOneFromTheOther (id1,ifl) workItem 

1117
  | nm1 == nm2
1118 1119 1120
  =  	-- See Note [When improvement happens]
    do { co_var <- newWantedCoVar ty1 ty2 
       ; let flav = Wanted (combineCtLoc ifl wfl) 
1121
       ; cans <- mkCanonical flav co_var 
1122
       ; mkIRContinue workItem KeepInert cans }
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133


-- Inert: equality, work item: function equality

-- Never rewrite a given with a wanted equality, and a type function
-- equality can never rewrite an equality.  Note also that if we have
-- F x1 ~ x2 and a ~ x3, and a occurs in x2, we don't rewrite it.  We
-- can wait until F x1 ~ x2 matches another F x1 ~ x4, and only then
-- we will ``expose'' x2 and x4 to rewriting.

-- Otherwise, we can try rewriting the type function equality with the equality.
1134 1135
doInteractWithInert _fdimprs
                    (CTyEqCan { cc_id = cv1, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi1 }) 
1136 1137 1138 1139 1140
                    (CFunEqCan { cc_id = cv2, cc_flavor = wfl, cc_fun = tc
                               , cc_tyargs = args, cc_rhs = xi2 })
  | ifl `canRewrite` wfl 
  , tv `elemVarSet` tyVarsOfTypes args
  = do { rewritten_funeq <- rewriteFunEq (cv1,tv,xi1) (cv2,wfl,tc,args,xi2) 
1141 1142
       ; mkIRStop KeepInert (workListFromCCan rewritten_funeq) } 
         -- must Stop here, because we may no longer be inert after the rewritting.
1143 1144

-- Inert: function equality, work item: equality
1145 1146
doInteractWithInert _fdimprs
                    (CFunEqCan {cc_id = cv1, cc_flavor = ifl, cc_fun = tc
1147 1148 1149 1150 1151
                              , cc_tyargs = args, cc_rhs = xi1 }) 
           workItem@(CTyEqCan { cc_id = cv2, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi2 })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfTypes args
  = do { rewritten_funeq <- rewriteFunEq (cv2,tv,xi2) (cv1,ifl,tc,args,xi1) 
1152
       ; mkIRContinue workItem DropInert (workListFromCCan rewritten_funeq) } 
1153

1154 1155
doInteractWithInert _fdimprs
                    (CFunEqCan { cc_id = cv1, cc_flavor = fl1, cc_fun = tc1
1156 1157 1158
                               , cc_tyargs = args1, cc_rhs = xi1 }) 
           workItem@(CFunEqCan { cc_id = cv2, cc_flavor = fl2, cc_fun = tc2
                               , cc_tyargs = args2, cc_rhs = xi2 })
1159
  | fl1 `canSolve` fl2 && lhss_match
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1160
  = do { cans <- rewriteEqLHS LeftComesFromInert  (mkCoVarCoercion cv1,xi1) (cv2,fl2,xi2) 
1161
       ; mkIRStop KeepInert cans } 
1162
  | fl2 `canSolve` fl1 && lhss_match
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1163
  = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCoercion cv2,xi2) (cv1,fl1,xi1) 
1164
       ; mkIRContinue workItem DropInert cans }
1165 1166 1167
  where
    lhss_match = tc1 == tc2 && and (zipWith tcEqType args1 args2) 

1168
doInteractWithInert _fdimprs 
1169
           inert@(CTyEqCan { cc_id = cv1, cc_flavor = fl1, cc_tyvar = tv1, cc_rhs = xi1 }) 
1170 1171
           workItem@(CTyEqCan { cc_id = cv2, cc_flavor = fl2, cc_tyvar = tv2, cc_rhs = xi2 })
-- Check for matching LHS 
1172
  | fl1 `canSolve` fl2 && tv1 == tv2 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1173
  = do { cans <- rewriteEqLHS LeftComesFromInert (mkCoVarCoercion cv1,xi1) (cv2,fl2,xi2) 
1174
       ; mkIRStop KeepInert cans } 
1175

1176
  | fl2 `canSolve` fl1 && tv1 == tv2 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1177
  = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCoercion cv2,xi2) (cv1,fl1,xi1) 
1178
       ; mkIRContinue workItem DropInert cans } 
1179 1180 1181 1182

-- Check for rewriting RHS 
  | fl1 `canRewrite` fl2 && tv1 `elemVarSet` tyVarsOfType xi2 
  = do { rewritten_eq <- rewriteEqRHS (cv1,tv1,xi1) (cv2,fl2,tv2,xi2) 
1183
       ; mkIRStop KeepInert rewritten_eq }
1184 1185
  | fl2 `canRewrite` fl1 && tv2 `elemVarSet` tyVarsOfType xi1
  = do { rewritten_eq <- rewriteEqRHS (cv2,tv2,xi2) (cv1,fl1,tv1,xi1) 
1186
       ; mkIRContinue workItem DropInert rewritten_eq } 
1187 1188 1189 1190 1191 1192

-- Finally, if workitem is a Flatten Equivalence Class constraint and the 
-- inert is a wanted constraint, even when the workitem cannot rewrite the 
-- inert, drop the inert out because you may have to reconsider solving the 
-- inert *using* the equivalence class you created. See note [Loopy Spontaneous Solving]
-- and [InertSet FlattenSkolemEqClass] 
1193 1194 1195 1196 1197

  | not $ isGiven fl1,                  -- The inert is wanted or derived
    isMetaTyVar tv1,                    -- and has a unification variable lhs
    FlatSkol {} <- tcTyVarDetails tv2,  -- And workitem is a flatten skolem equality
    Just tv2'   <- tcGetTyVar_maybe xi2, FlatSkol {} <- tcTyVarDetails tv2' 
1198
  = mkIRContinue workItem DropInert (workListFromCCan inert)   
1199 1200


1201
-- Fall-through case for all other situations
1202
doInteractWithInert _fdimprs _ workItem = noInteraction workItem
1203

1204
-------------------------
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
-- Equational Rewriting 
rewriteDict  :: (CoVar, TcTyVar, Xi) -> (DictId, CtFlavor, Class, [Xi]) -> TcS CanonicalCt
rewriteDict (cv,tv,xi) (dv,gw,cl,xis) 
  = do { let cos  = substTysWith [tv] [mkCoVarCoercion cv] xis -- xis[tv] ~ xis[xi]
             args = substTysWith [tv] [xi] xis
             con  = classTyCon cl 
             dict_co = mkTyConCoercion con cos 
       ; dv' <- newDictVar cl args 
       ; case gw of 
           Wanted {}         -> setDictBind dv (EvCast dv' (mkSymCoercion dict_co))
           _given_or_derived -> setDictBind dv' (EvCast dv dict_co) 
       ; return (CDictCan { cc_id = dv'
                          , cc_flavor = gw 
                          , cc_class = cl 
                          , cc_tyargs = args }) } 

rewriteIP :: (CoVar,TcTyVar,Xi) -> (EvVar,CtFlavor, IPName Name, TcType) -> TcS CanonicalCt 
rewriteIP (cv,tv,xi) (ipid,gw,nm,ty) 
  = do { let ip_co = substTyWith [tv] [mkCoVarCoercion cv] ty     -- ty[tv] ~ t[xi] 
             ty'   = substTyWith [tv] [xi] ty
       ; ipid' <- newIPVar nm ty' 
       ; case gw of 
           Wanted {}         -> setIPBind ipid  (EvCast ipid' (mkSymCoercion ip_co))
           _given_or_derived -> setIPBind ipid' (EvCast ipid ip_co) 
       ; return (CIPCan { cc_id = ipid'
                        , cc_flavor = gw
                        , cc_ip_nm = nm
                        , cc_ip_ty = ty' }) }
   
rewriteFunEq :: (CoVar,TcTyVar,Xi) -> (CoVar,CtFlavor,TyCon, [Xi], Xi) -> TcS CanonicalCt
rewriteFunEq (cv1,tv,xi1) (cv2,gw, tc,args,xi2) 
  = do { let arg_cos = substTysWith [tv] [mkCoVarCoercion cv1] args 
             args'   = substTysWith [tv] [xi1] args 
             fun_co  = mkTyConCoercion tc arg_cos 
       ; cv2' <- case gw of 
                   Wanted {} -> do { cv2' <- newWantedCoVar (mkTyConApp tc args') xi2 
                                   ; setWantedCoBind cv2 $ 
                                     mkTransCoercion fun_co (mkCoVarCoercion cv2') 
                                   ; return cv2' } 
                   _giv_or_der -> newGivOrDerCoVar (mkTyConApp tc args') xi2 $
                                  mkTransCoercion (mkSymCoercion fun_co) (mkCoVarCoercion cv2) 
       ; return (CFunEqCan { cc_id = cv2'
                           , cc_flavor = gw
                           , cc_tyargs = args'
                           , cc_fun = tc 
                           , cc_rhs = xi2 }) }


1253
rewriteEqRHS :: (CoVar,TcTyVar,Xi) -> (CoVar,CtFlavor,TcTyVar,Xi) -> TcS WorkList
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
-- Use the first equality to rewrite the second, flavors already checked. 
-- E.g.          c1 : tv1 ~ xi1   c2 : tv2 ~ xi2
-- rewrites c2 to give
--               c2' : tv2 ~ xi2[xi1/tv1]
-- We must do an occurs check to sure the new constraint is canonical
-- So we might return an empty bag
rewriteEqRHS (cv1,tv1,xi1) (cv2,gw,tv2,xi2) 
  | Just tv2' <- tcGetTyVar_maybe xi2'
  , tv2 == tv2'	 -- In this case xi2[xi1/tv1] = tv2, so we have tv2~tv2
  = do { when (isWanted gw) (setWantedCoBind cv2 (mkSymCoercion co2')) 
       ; return emptyCCan } 
  | otherwise 
  = do { cv2' <- 
           case gw of 
             Wanted {} 
                 -> do { cv2' <- newWantedCoVar (mkTyVarTy tv2) xi2' 
                       ; setWantedCoBind cv2 $ 
                         mkCoVarCoercion cv2' `mkTransCoercion` mkSymCoercion co2'
                       ; return cv2' } 
             _giv_or_der 
                 -> newGivOrDerCoVar (mkTyVarTy tv2) xi2' $ 
                    mkCoVarCoercion cv2 `mkTransCoercion` co2'

       ; xi2'' <- canOccursCheck gw tv2 xi2' -- we know xi2' is *not* tv2 
1278
       ; canEq gw cv2' (mkTyVarTy tv2) xi2''
1279 1280 1281 1282 1283
       }
  where 
    xi2' = substTyWith [tv1] [xi1] xi2 
    co2' = substTyWith [tv1] [mkCoVarCoercion cv1] xi2  -- xi2 ~ xi2[xi1/tv1]

dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1284

1285
rewriteEqLHS :: WhichComesFromInert -> (Coercion,Xi) -> (CoVar,CtFlavor,Xi) -> TcS WorkList
1286
-- Used to ineract two equalities of the following form: 
1287 1288
-- First Equality:   co1: (XXX ~ xi1)  
-- Second Equality:  cv2: (XXX ~ xi2) 
1289
-- Where the cv1 `canSolve` cv2 equality 
1290 1291
-- We have an option of creating new work (xi1 ~ xi2) OR (xi2 ~ xi1), 
--    See Note [Efficient Orientation] for that 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
rewriteEqLHS which (co1,xi1) (cv2,gw,xi2) 
  = do { cv2' <- case (isWanted gw, which) of 
                   (True,LeftComesFromInert) ->
                       do { cv2' <- newWantedCoVar xi2 xi1 
                          ; setWantedCoBind cv2 $ 
                            co1 `mkTransCoercion` mkSymCoercion (mkCoVarCoercion cv2')
                          ; return cv2' } 
                   (True,RightComesFromInert) -> 
                       do { cv2' <- newWantedCoVar xi1 xi2 
                          ; setWantedCoBind cv2 $ 
                            co1 `mkTransCoercion` mkCoVarCoercion cv2'
                          ; return cv2' } 
                   (False,LeftComesFromInert) ->
                       newGivOrDerCoVar xi2 xi1 $ 
                       mkSymCoercion (mkCoVarCoercion cv2) `mkTransCoercion` co1 
                   (False,RightComesFromInert) -> 
                        newGivOrDerCoVar xi1 xi2 $ 
                        mkSymCoercion co1 `mkTransCoercion` mkCoVarCoercion cv2
1310 1311 1312
       ; mkCanonical gw cv2'
       }
                                           
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
solveOneFromTheOther :: (EvVar, CtFlavor) -> CanonicalCt -> TcS InteractResult 
-- First argument inert, second argument workitem. They both represent 
-- wanted/given/derived evidence for the *same* predicate so we try here to 
-- discharge one directly from the other. 
--
-- Precondition: value evidence only (implicit parameters, classes) 
--               not coercion
solveOneFromTheOther (iid,ifl) workItem 
      -- Both derived needs a special case. You might think that we do not need
      -- two evidence terms for the same claim. But, since the evidence is partial, 
      -- either evidence may do in some cases; see TcSMonad.isGoodRecEv.
      -- See also Example 3 in Note [Superclasses and recursive dictionaries] 
  | isDerived ifl && isDerived wfl 
  = noInteraction workItem 

1328
  | ifl `canSolve` wfl
1329 1330 1331 1332 1333
  = do { unless (isGiven wfl) $ setEvBind wid (EvId iid) 
           -- Overwrite the binding, if one exists
	   -- For Givens, which are lambda-bound, nothing to overwrite,
       ; dischargeWorkItem }

1334
  | otherwise  -- wfl `canSolve` ifl 
1335
  = do { unless (isGiven ifl) $ setEvBind iid (EvId wid)
1336
       ; mkIRContinue workItem DropInert emptyWorkList }
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568