DsBinds.hs 50.8 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import Digraph
39

40
import PrelNames
41
import TysPrim ( mkProxyPrimTy )
42
import TyCon
43
import TcEvidence
44
import TcType
45
import Type
46
import Coercion
Eric Seidel's avatar
Eric Seidel committed
47
import TysWiredIn ( typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
48
import Id
49
import MkId(proxyHashId)
50
import Class
51
import Name
52
import VarSet
Simon Marlow's avatar
Simon Marlow committed
53
import Rules
54
import VarEnv
55
import Outputable
56
import Module
Simon Marlow's avatar
Simon Marlow committed
57 58
import SrcLoc
import Maybes
59
import OrdList
Simon Marlow's avatar
Simon Marlow committed
60 61
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
62
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
63
import FastString
64
import Util
65
import MonadUtils
66
import qualified GHC.LanguageExtensions as LangExt
67
import Control.Monad
68

69
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
70
*                                                                      *
71
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
72
*                                                                      *
73
**********************************************************************-}
74

75 76
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
77
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
78
dsTopLHsBinds binds = fmap (toOL . snd) (ds_lhs_binds binds)
79

80 81 82 83 84 85
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding gorup body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds Id
           -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds = do { (force_vars, binds') <- ds_lhs_binds binds
                      ; return (force_vars, binds') }
86 87

------------------------
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
ds_lhs_binds :: LHsBinds Id -> DsM ([Id], [(Id,CoreExpr)])

ds_lhs_binds binds
  = do { ds_bs <- mapBagM dsLHsBind binds
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

dsLHsBind :: LHsBind Id
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
         -> HsBind Id
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
114 115
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
116
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
117
                   | otherwise         = var
118
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
119
              force_var = if xopt LangExt.Strict dflags
120 121 122 123 124 125
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
126
                  , fun_co_fn = co_fn, fun_tick = tick })
127 128 129
 = do   { (args, body) <- matchWrapper
                           (FunRhs (noLoc $ idName fun) Prefix)
                           Nothing matches
Simon Peyton Jones's avatar
Simon Peyton Jones committed
130
        ; core_wrap <- dsHsWrapper co_fn
131
        ; let body' = mkOptTickBox tick body
Simon Peyton Jones's avatar
Simon Peyton Jones committed
132 133
              rhs   = core_wrap (mkLams args body')
              core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
134
              force_var =
135
                if xopt LangExt.Strict dflags
136 137 138
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
139
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
140
           return (force_var, [core_binds]) }
141

142 143
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
144
                  , pat_ticks = (rhs_tick, var_ticks) })
145
  = do  { body_expr <- dsGuarded grhss ty
146
        ; let body' = mkOptTickBox rhs_tick body_expr
147
              pat'  = decideBangHood dflags pat
148
        ; (force_var,sel_binds) <- mkSelectorBinds var_ticks pat body'
149 150
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
151 152
        ; let force_var' = if isBangedLPat pat'
                           then [force_var]
153 154
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
155

156
        -- A common case: one exported variable, only non-strict binds
157
        -- Non-recursive bindings come through this way
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
158 159
        -- So do self-recursive bindings
        -- Bindings with complete signatures are AbsBindsSigs, below
160 161
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
162 163
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
164
  | ABE { abe_wrap = wrap, abe_poly = global
165
        , abe_mono = local, abe_prags = prags } <- export
166 167 168
  , not (xopt LangExt.Strict dflags)             -- Handle strict binds
  , not (anyBag (isBangedPatBind . unLoc) binds) --        in the next case
  = -- See Note [AbsBinds wrappers] in HsBinds
169
    addDictsDs (toTcTypeBag (listToBag dicts)) $
170 171 172 173
         -- addDictsDs: push type constraints deeper for pattern match check
    do { (_, bind_prs) <- ds_lhs_binds binds
       ; let core_bind = Rec bind_prs
       ; ds_binds <- dsTcEvBinds_s ev_binds
Simon Peyton Jones's avatar
Simon Peyton Jones committed
174
       ; core_wrap <- dsHsWrapper wrap -- Usually the identity
175

Simon Peyton Jones's avatar
Simon Peyton Jones committed
176 177 178 179 180
       ; let rhs = core_wrap $
                   mkLams tyvars $ mkLams dicts $
                   mkCoreLets ds_binds $
                   Let core_bind $
                   Var local
181
       ; (spec_binds, rules) <- dsSpecs rhs prags
182

183 184 185
       ; let   global'  = addIdSpecialisations global rules
               main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                        (dictArity dicts) rhs
186

187
       ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
188

189 190 191 192 193 194 195 196 197 198 199
        -- Another common case: no tyvars, no dicts
        -- In this case we can have a much simpler desugaring
dsHsBind dflags
         (AbsBinds { abs_tvs = [], abs_ev_vars = []
                   , abs_exports = exports
                   , abs_ev_binds = ev_binds, abs_binds = binds })
  = do { (force_vars, bind_prs) <- ds_lhs_binds binds
       ; let mk_bind (ABE { abe_wrap = wrap
                          , abe_poly = global
                          , abe_mono = local
                          , abe_prags = prags })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
200
              = do { core_wrap <- dsHsWrapper wrap
201 202
                   ; return (makeCorePair dflags global
                                          (isDefaultMethod prags)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
203
                                          0 (core_wrap (Var local))) }
204 205 206 207 208
       ; main_binds <- mapM mk_bind exports

       ; ds_binds <- dsTcEvBinds_s ev_binds
       ; return (force_vars, flattenBinds ds_binds ++ bind_prs ++ main_binds) }

209 210
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
211 212
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
213
         -- See Note [Desugaring AbsBinds]
214 215
  = addDictsDs (toTcTypeBag (listToBag dicts)) $
         -- addDictsDs: push type constraints deeper for pattern match check
216
     do { (local_force_vars, bind_prs) <- ds_lhs_binds binds
217
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
218
                              | (lcl_id, rhs) <- bind_prs ]
219
                -- Monomorphic recursion possible, hence Rec
220
              new_force_vars = get_new_force_vars local_force_vars
221
              locals       = map abe_mono exports
222 223
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
224
              tup_ty       = exprType tup_expr
225
        ; ds_binds <- dsTcEvBinds_s ev_binds
226 227 228 229
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
230

231
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
232

233 234 235 236 237
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

238
        ; let mk_bind (ABE { abe_wrap = wrap
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
239
                           , abe_poly = global
240
                           , abe_mono = local, abe_prags = spec_prags })
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
241
                         -- See Note [AbsBinds wrappers] in HsBinds
242
                = do { tup_id  <- newSysLocalDs tup_ty
Simon Peyton Jones's avatar
Simon Peyton Jones committed
243 244 245 246 247
                     ; core_wrap <- dsHsWrapper wrap
                     ; let rhs = core_wrap $ mkLams tyvars $ mkLams dicts $
                                 mkTupleSelector all_locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
                           rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
248 249
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
250 251 252
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
253
                           -- Id is just the selector.  Hmm.
254
                     ; return ((global', rhs) : fromOL spec_binds) }
255

256
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
257

258 259 260
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
261 262 263 264 265
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
266 267 268 269
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
270 271

    add_inline :: Id -> Id    -- tran
272 273
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
    get_exports :: [Id] -> DsM ([Id], [ABExport Id])
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
                     ,abe_prags = SpecPrags []})

307
-- AbsBindsSig is a combination of AbsBinds and FunBind
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
308 309 310 311 312 313 314 315 316 317
dsHsBind dflags (AbsBindsSig { abs_tvs = tyvars, abs_ev_vars = dicts
                             , abs_sig_export  = global
                             , abs_sig_prags   = prags
                             , abs_sig_ev_bind = ev_bind
                             , abs_sig_bind    = bind })
  | L bind_loc FunBind { fun_matches = matches
                       , fun_co_fn   = co_fn
                       , fun_tick    = tick } <- bind
  = putSrcSpanDs bind_loc $
    addDictsDs (toTcTypeBag (listToBag dicts)) $
318
             -- addDictsDs: push type constraints deeper for pattern match check
319 320 321
    do { (args, body) <- matchWrapper
                           (FunRhs (noLoc $ idName global) Prefix)
                           Nothing matches
Simon Peyton Jones's avatar
Simon Peyton Jones committed
322 323 324 325
       ; core_wrap <- dsHsWrapper co_fn
       ; let body'   = mkOptTickBox tick body
             fun_rhs = core_wrap (mkLams args body')
             force_vars
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
               | xopt LangExt.Strict dflags
               , matchGroupArity matches == 0 -- no need to force lambdas
               = [global]
               | otherwise
               = []

       ; ds_binds <- dsTcEvBinds ev_bind
       ; let rhs = mkLams tyvars $
                   mkLams dicts $
                   mkCoreLets ds_binds $
                   fun_rhs

       ; (spec_binds, rules) <- dsSpecs rhs prags
       ; let global' = addIdSpecialisations global rules
             main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                      (dictArity dicts) rhs

       ; return (force_vars, main_bind : fromOL spec_binds) }

  | otherwise
  = pprPanic "dsHsBind: AbsBindsSig" (ppr bind)

348 349
dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

cactus's avatar
cactus committed
350

351 352

-- | This is where we apply INLINE and INLINABLE pragmas. All we need to
353 354 355 356 357 358
-- do is to attach the unfolding information to the Id.
--
-- Other decisions about whether to inline are made in
-- `calcUnfoldingGuidance` but the decision about whether to then expose
-- the unfolding in the interface file is made in `TidyPgm.addExternal`
-- using this information.
359
------------------------
360 361
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
362
  | is_default_method                 -- Default methods are *always* inlined
363 364
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

365 366
  | otherwise
  = case inlinePragmaSpec inline_prag of
367 368 369
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
370
          Inline          -> inline_pair
371

372 373
  where
    inline_prag   = idInlinePragma gbl_id
374
    inlinable_unf = mkInlinableUnfolding dflags rhs
375 376
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
377 378
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
379
       , let real_arity = dict_arity + arity
380
        -- NB: The arity in the InlineRule takes account of the dictionaries
381 382 383 384 385 386
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
387 388 389 390

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
391

Austin Seipp's avatar
Austin Seipp committed
392
{-
393 394
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
395 396 397 398 399 400 401 402
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

403 404 405 406 407
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
408 409
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
410
But we don't want that, because if M.f isn't exported,
411 412
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
413 414 415
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
416 417 418
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
419 420 421 422
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
423
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
424
Although I'm a bit worried about whether full laziness might
425
float the f_lcl binding out and then inline M.f at its call site
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

441
The top-level AbsBinds for $cround has no tyvars or dicts (because the
442 443 444 445 446 447 448
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

449 450 451 452 453
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
454 455 456

and desugar it to

457 458 459
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
460 461

where B is the *non-recursive* binding
462 463 464
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
465 466

Notice (a) g has a different number of type variables to f, so we must
467 468
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
469

470 471 472 473
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
474

475 476 477 478
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
479 480

Why got to this trouble?  It's a common case, and it removes the
481
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
482 483 484 485
compilation, especially in a case where there are a *lot* of
bindings.


486 487 488 489 490 491 492 493
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
494
happen as a result of method sharing), there's a danger that we never
495 496 497 498
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
499
has the arity with which it is declared in the source code.  In this
500
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
501
should mean that (foo d) is a PAP and we don't share it.
502 503 504

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
505 506 507 508 509 510 511 512 513 514 515 516 517 518
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
575
The simplest thing is to return it in the polymorphic
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Austin Seipp's avatar
Austin Seipp committed
593
-}
594

595
------------------------
596
dsSpecs :: CoreExpr     -- Its rhs
597
        -> TcSpecPrags
598 599
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
600
-- See Note [Handling SPECIALISE pragmas] in TcBinds
601 602 603 604 605 606
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

607 608 609
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
610 611 612
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
613
  | isJust (isClassOpId_maybe poly_id)
614
  = putSrcSpanDs loc $
615 616
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for class method selector"
                          <+> quotes (ppr poly_id))
617
       ; return Nothing  }  -- There is no point in trying to specialise a class op
618 619
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
620

621 622
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
623 624
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for NOINLINE function:"
                          <+> quotes (ppr poly_id))
625
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
626
                            -- See Note [Activation pragmas for SPECIALISE]
627

628
  | otherwise
629
  = putSrcSpanDs loc $
630 631
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
632 633
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
634 635 636 637 638 639 640 641 642 643
             (spec_bndrs, spec_app) = collectHsWrapBinders spec_co
               -- spec_co looks like
               --         \spec_bndrs. [] spec_args
               -- perhaps with the body of the lambda wrapped in some WpLets
               -- E.g. /\a \(d:Eq a). let d2 = $df d in [] (Maybe a) d2

       ; core_app <- dsHsWrapper spec_app

       ; let ds_lhs  = core_app (Var poly_id)
             spec_ty = mkLamTypes spec_bndrs (exprType ds_lhs)
644 645 646
       ; -- pprTrace "dsRule" (vcat [ text "Id:" <+> ppr poly_id
         --                         , text "spec_co:" <+> ppr spec_co
         --                         , text "ds_rhs:" <+> ppr ds_lhs ]) $
Simon Peyton Jones's avatar
Simon Peyton Jones committed
647
         case decomposeRuleLhs spec_bndrs ds_lhs of {
648
           Left msg -> do { warnDs NoReason msg; return Nothing } ;
649
           Right (rule_bndrs, _fn, args) -> do
650

651
       { dflags <- getDynFlags
652
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
653
       ; let fn_unf    = realIdUnfolding poly_id
Simon Peyton Jones's avatar
Simon Peyton Jones committed
654
             spec_unf  = specUnfolding spec_bndrs core_app arity_decrease fn_unf
655 656 657
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
Simon Peyton Jones's avatar
Simon Peyton Jones committed
658 659
             arity_decrease = count isValArg args - count isId spec_bndrs

660
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
661
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
662 663
                        rule_act poly_name
                        rule_bndrs args
Simon Peyton Jones's avatar
Simon Peyton Jones committed
664
                        (mkVarApps (Var spec_id) spec_bndrs)
665

Simon Peyton Jones's avatar
Simon Peyton Jones committed
666
       ; let spec_rhs = mkLams spec_bndrs (core_app poly_rhs)
667

668 669
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
670
--              (warnDs $ text "SPECIALISE pragma on INLINE function probably won't fire:"
671
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
672 673 674 675 676

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
677 678 679 680
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
681
             = rhs          -- Local Id; this is its rhs
682 683
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
684 685 686
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
687
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
688
                            -- The type checker has checked that it *has* an unfolding
689

690 691 692 693 694
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
695
                                 -- in OccurAnal
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


713 714 715 716 717 718
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
719
        warnDs (Reason Opt_WarnOrphans) (ruleOrphWarn rule)
720 721 722
    return rule

ruleOrphWarn :: CoreRule -> SDoc
723
ruleOrphWarn rule = text "Orphan rule:" <+> ppr rule
724

725 726 727 728 729 730 731 732 733 734 735 736 737
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

738 739 740 741 742 743 744 745
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

746
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
768
SPEC [n] f :: ty            [n]   INLINE [k]
769 770 771 772 773 774 775 776 777 778
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
779 780
************************************************************************
*                                                                      *
781
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
782 783 784
*                                                                      *
************************************************************************
-}
785

786
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
787 788
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
789
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
790
--
791
-- Returns Nothing if the LHS isn't of the expected shape
792 793 794 795 796 797
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

798
  | Just (fn_id, args) <- decompose fun2 args2
799
  , let extra_bndrs = mk_extra_bndrs fn_id args
800 801 802 803 804 805
  = -- pprTrace "decmposeRuleLhs" (vcat [ text "orig_bndrs:" <+> ppr orig_bndrs
    --                                  , text "orig_lhs:" <+> ppr orig_lhs
    --                                  , text "lhs1:"     <+> ppr lhs1
    --                                  , text "extra_dict_bndrs:" <+> ppr extra_dict_bndrs
    --                                  , text "fn_id:" <+> ppr fn_id
    --                                  , text "args:"   <+> ppr args]) $
806
    Right (orig_bndrs ++ extra_bndrs, fn_id, args)
807

808
  | otherwise
809
  = Left bad_shape_msg
810
 where
811 812 813 814
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

815 816
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
817

818
   orig_bndr_set = mkVarSet orig_bndrs
819

820 821 822 823 824 825 826 827 828 829 830 831 832
        -- Add extra tyvar binders: Note [Free tyvars in rule LHS]
        -- and extra dict binders: Note [Free dictionaries in rule LHS]
   mk_extra_bndrs fn_id args
     = toposortTyVars unbound_tvs ++ unbound_dicts
     where
       unbound_tvs   = [ v | v <- unbound_vars, isTyVar v ]
       unbound_dicts = [ mkLocalId (localiseName (idName d)) (idType d)
                       | d <- unbound_vars, isDictId d ]
       unbound_vars  = [ v | v <- exprsFreeVarsList args
                           , not (v `elemVarSet` orig_bndr_set)
                           , not (v == fn_id) ]
         -- fn_id: do not quantify over the function itself, which may
         -- itself be a dictionary (in pathological cases, Trac #10251)
833 834 835 836 837 838

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
839

840
   bad_shape_msg = hang (text "RULE left-hand side too complicated to desugar")
841 842
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
843 844
   dead_msg bndr = hang (sep [ text "Forall'd" <+> pp_bndr bndr
                             , text "is not bound in RULE lhs"])
845 846 847
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
848
   pp_bndr bndr
849 850 851
    | isTyVar bndr                      = text "type variable" <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = text "constraint" <+> quotes (ppr pred)
    | otherwise                         = text "variable" <+> quotes (ppr bndr)
852 853

   drop_dicts :: CoreExpr -> CoreExpr
854
   drop_dicts e
855 856 857
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
858
       (bnds, body) = split_lets (occurAnalyseExpr e)
859
           -- The occurAnalyseExpr drops dead bindings which is
860 861
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
862 863

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
864 865
   split_lets (Let (NonRec d r) body)
     | isDictId d
866
     = ((d,r):bs, body')
867 868 869 870 871 872 873 874 875
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
876 877 878 879

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
880
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
881 882 883 884
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
885

Austin Seipp's avatar
Austin Seipp committed
886
{-
887
Note [Decomposing the left-hand side of a RULE]
888
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
889
There are several things going on here.
890 891
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
892
* extra_dict_bndrs: see Note [Free dictionaries]
893

894 895 896 897 898 899 900 901 902 903 904 905 906
Note [Free tyvars on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  data T a = C

  foo :: T a -> Int
  foo C = 1

  {-# RULES "myrule"  foo C = 1 #-}

After type checking the LHS becomes (foo alpha (C alpha)), where alpha
is an unbound meta-tyvar.  The zonker in TcHsSyn is careful not to
turn the free alpha into Any (as it usually does).  Instead it turns it
907
into a TyVar 'a'.  See TcHsSyn Note [Zonking the LHS of a RULE].
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

Now we must quantify over that 'a'.  It's /really/ inconvenient to do that
in the zonker, because the HsExpr data type is very large.  But it's /easy/
to do it here in the desugarer.

Moreover, we have to do something rather similar for dictionaries;
see Note [Free dictionaries on rule LHS].   So that's why we look for
type variables free on the LHS, and quantify over them.

Note [Free dictionaries on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
over it too.  *Any* dict with that type will do.

So for example when you have
        f :: Eq a => a -> a
        f = <rhs>
        ... SPECIALISE f :: Int -> Int ...

Then we get the SpecPrag
        SpecPrag (f Int dInt)

And from that we want the rule

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

942 943
Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
944
drop_dicts drops dictionary bindings on the LHS where possible.
945 946
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
947
   Reasoning here is that there is only one d:Eq [Int], and so we can
948 949 950 951
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
952
         one of the orig_bndrs, which we assume occur on RHS.
953 954 955 956 957 958
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
959
         to match, but there is no other way to get d:Eq a
960

961
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
962 963 964 965 966 967
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
968
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
969 970 971 972 973 974
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
975
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
976 977
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

978 979 980
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

981 982 983 984 985 986 987 988 989 990
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
991
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
992 993 994 995 996 997
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


998 999 1000 1001
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

1002
   (a) Inline any remaining dictionary bindings (which hopefully
1003 1004 1005
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
1006
       Note that we substitute the function too; we might
1007 1008
       have this as a LHS:  let f71 = M.f Int in f71

1009
   (c) Do eta reduction.  To see why, consider the fold/build rule,
1010 1011 1012 1013
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like