TcSimplify.lhs 56.4 KB
Newer Older
1
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
2 3 4 5 6 7 8
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

9
module TcSimplify( 
10
       simplifyInfer, simplifyAmbiguityCheck,
11
       simplifyDefault, simplifyDeriv, 
12 13
       simplifyRule, simplifyTop, simplifyInteractive
  ) where
14

15
#include "HsVersions.h"
16

17
import HsSyn	       
18
import TcRnMonad
19
import TcErrors
20
import TcMType
21 22 23 24
import TcType 
import TcSMonad 
import TcInteract
import Inst
25
import Unify	( niFixTvSubst, niSubstTvSet )
26
import Var
27
import VarSet
28
import VarEnv 
29
import Coercion
30
import TypeRep
31 32
import Name
import NameEnv	( emptyNameEnv )
33
import Bag
34 35
import ListSetOps
import Util
36 37 38
import PrelInfo
import PrelNames
import Class		( classKey )
39
import BasicTypes       ( RuleName )
40
import Control.Monad    ( when )
41
import Outputable
42
import FastString
43 44 45
\end{code}


46 47 48 49 50
*********************************************************************************
*                                                                               * 
*                           External interface                                  *
*                                                                               *
*********************************************************************************
51

52 53 54
\begin{code}
simplifyTop :: WantedConstraints -> TcM (Bag EvBind)
-- Simplify top-level constraints
55 56 57
-- Usually these will be implications,
-- but when there is nothing to quantify we don't wrap
-- in a degenerate implication, so we do that here instead
58
simplifyTop wanteds 
59
  = simplifyCheck (SimplCheck (ptext (sLit "top level"))) wanteds
60

61 62 63 64 65
------------------
simplifyAmbiguityCheck :: Name -> WantedConstraints -> TcM (Bag EvBind)
simplifyAmbiguityCheck name wanteds
  = simplifyCheck (SimplCheck (ptext (sLit "ambiguity check for") <+> ppr name)) wanteds

66 67 68 69 70 71 72 73 74
------------------
simplifyInteractive :: WantedConstraints -> TcM (Bag EvBind)
simplifyInteractive wanteds 
  = simplifyCheck SimplInteractive wanteds

------------------
simplifyDefault :: ThetaType	-- Wanted; has no type variables in it
                -> TcM ()	-- Succeeds iff the constraint is soluble
simplifyDefault theta
75
  = do { wanted <- newFlatWanteds DefaultOrigin theta
76 77
       ; _ignored_ev_binds <- simplifyCheck (SimplCheck (ptext (sLit "defaults"))) 
                                            (mkFlatWC wanted)
78 79
       ; return () }
\end{code}
80

81

82

83 84 85 86 87
*********************************************************************************
*                                                                                 * 
*                            Deriving
*                                                                                 *
***********************************************************************************
88

89 90
\begin{code}
simplifyDeriv :: CtOrigin
91 92 93 94
              -> PredType
	      -> [TyVar]	
	      -> ThetaType		-- Wanted
	      -> TcM ThetaType	-- Needed
95 96
-- Given  instance (wanted) => C inst_ty 
-- Simplify 'wanted' as much as possibles
97
-- Fail if not possible
98
simplifyDeriv orig pred tvs theta 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
99 100 101 102 103
  = do { tvs_skols <- tcInstSkolTyVars tvs -- Skolemize
      	 	-- The constraint solving machinery 
		-- expects *TcTyVars* not TyVars.  
		-- We use *non-overlappable* (vanilla) skolems
		-- See Note [Overlap and deriving]
104 105

       ; let skol_subst = zipTopTvSubst tvs $ map mkTyVarTy tvs_skols
106
             subst_skol = zipTopTvSubst tvs_skols $ map mkTyVarTy tvs
107
             skol_set   = mkVarSet tvs_skols
108
	     doc = parens $ ptext (sLit "deriving") <+> parens (ppr pred)
109 110 111 112 113

       ; wanted <- newFlatWanteds orig (substTheta skol_subst theta)

       ; traceTc "simplifyDeriv" (ppr tvs $$ ppr theta $$ ppr wanted)
       ; (residual_wanted, _binds)
114
             <- runTcS (SimplInfer doc) NoUntouchables $
115
                solveWanteds emptyInert (mkFlatWC wanted)
116

117 118 119
       ; let (good, bad) = partitionBagWith get_good (wc_flat residual_wanted)
                         -- See Note [Exotic derived instance contexts]
             get_good :: WantedEvVar -> Either PredType WantedEvVar
120 121
             get_good wev | validDerivPred skol_set p = Left p
                          | otherwise                 = Right wev
122
                          where p = evVarOfPred wev
123

124
       ; reportUnsolved (residual_wanted { wc_flat = bad })
125

126 127
       ; let min_theta = mkMinimalBySCs (bagToList good)
       ; return (substTheta subst_skol min_theta) }
128
\end{code}
129

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
  data Show a => Show [a] where ..
  data Show [Char] where ...

Now a data type with deriving:
  data T a = MkT [a] deriving( Show )

We want to get the derived instance
  instance Show [a] => Show (T a) where...
and NOT
  instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing

It's very like the situation when we're inferring the type
of a function
   f x = show [x]
and we want to infer
   f :: Show [a] => a -> String

BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
             the context for the derived instance. 
	     Hence tcInstSkolTyVars not tcInstSuperSkolTyVars

155 156 157 158 159 160 161
Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context.  It's a
bit unclear what rules we should apply for this; the Haskell report is
silent.  Obviously, constraints like (Eq a) are fine, but what about
	data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint.  That's probably fine too.
162

163 164 165
One could go further: consider
	data T a b c = MkT (Foo a b c) deriving( Eq )
	instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)
166

167 168
Notice that this instance (just) satisfies the Paterson termination 
conditions.  Then we *could* derive an instance decl like this:
169

170 171 172 173
	instance (C Int a, Eq b, Eq c) => Eq (T a b c) 
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.  
174

175 176 177
However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.
178

179 180
So for now we simply require that the derived instance context
should have only type-variable constraints.
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
Here is another example:
	data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
	instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!

NB: if you want to lift this condition, make sure you still meet the
termination conditions!  If not, the deriving mechanism generates
larger and larger constraints.  Example:
  data Succ a = S a
  data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show

Note the lack of a Show instance for Succ.  First we'll generate
  instance (Show (Succ a), Show a) => Show (Seq a)
and then
  instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on.  Instead we want to complain of no instance for (Show (Succ a)).

The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.

*********************************************************************************
*                                                                                 * 
*                            Inference
*                                                                                 *
***********************************************************************************
211

dreixel's avatar
dreixel committed
212 213 214 215 216 217 218 219 220 221 222 223
Note [Which variables to quantify]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose the inferred type of a function is
   T kappa (alpha:kappa) -> Int
where alpha is a type unification variable and 
      kappa is a kind unification variable
Then we want to quantify over *both* alpha and kappa.  But notice that
kappa appears "at top level" of the type, as well as inside the kind
of alpha.  So it should be fine to just look for the "top level"
kind/type variables of the type, without looking transitively into the
kinds of those type variables.

224
\begin{code}
225
simplifyInfer :: Bool
226 227 228
              -> Bool                  -- Apply monomorphism restriction
              -> [(Name, TcTauType)]   -- Variables to be generalised,
                                       -- and their tau-types
229 230 231
              -> WantedConstraints
              -> TcM ([TcTyVar],    -- Quantify over these type variables
                      [EvVar],      -- ... and these constraints
232 233 234
		      Bool,	    -- The monomorphism restriction did something
		      		    --   so the results type is not as general as
				    --   it could be
235
                      TcEvBinds)    -- ... binding these evidence variables
236
simplifyInfer _top_lvl apply_mr name_taus wanteds
237 238 239
  | isEmptyWC wanteds
  = do { gbl_tvs     <- tcGetGlobalTyVars            -- Already zonked
       ; zonked_taus <- zonkTcTypes (map snd name_taus)
dreixel's avatar
dreixel committed
240 241 242 243
       ; let tvs_to_quantify = tyVarsOfTypes zonked_taus `minusVarSet` gbl_tvs
       	     		       -- tvs_to_quantify can contain both kind and type vars
       	                       -- See Note [Which variables to quantify]
       ; qtvs <- zonkQuantifiedTyVars tvs_to_quantify
244
       ; return (qtvs, [], False, emptyTcEvBinds) }
245

246
  | otherwise
247 248 249 250
  = do { zonked_wanteds <- zonkWC wanteds
       ; zonked_taus    <- zonkTcTypes (map snd name_taus)
       ; gbl_tvs        <- tcGetGlobalTyVars

251
       ; traceTc "simplifyInfer {"  $ vcat
252 253 254 255 256
             [ ptext (sLit "names =") <+> ppr (map fst name_taus)
             , ptext (sLit "taus (zonked) =") <+> ppr zonked_taus
             , ptext (sLit "gbl_tvs =") <+> ppr gbl_tvs
             , ptext (sLit "closed =") <+> ppr _top_lvl
             , ptext (sLit "apply_mr =") <+> ppr apply_mr
257
             , ptext (sLit "wanted =") <+> ppr zonked_wanteds
258 259
             ]

260 261
             -- Step 1
             -- Make a guess at the quantified type variables
262 263 264
	     -- Then split the constraints on the baisis of those tyvars
	     -- to avoid unnecessarily simplifying a class constraint
	     -- See Note [Avoid unecessary constraint simplification]
dreixel's avatar
dreixel committed
265
       ; let zonked_tau_tvs = tyVarsOfTypes zonked_taus
266
             proto_qtvs = growWanteds gbl_tvs zonked_wanteds $
267
                          zonked_tau_tvs `minusVarSet` gbl_tvs
268 269 270 271 272 273 274 275 276 277
             (perhaps_bound, surely_free)
                        = partitionBag (quantifyMe proto_qtvs) (wc_flat zonked_wanteds)

       ; traceTc "simplifyInfer proto"  $ vcat
             [ ptext (sLit "zonked_tau_tvs =") <+> ppr zonked_tau_tvs
             , ptext (sLit "proto_qtvs =") <+> ppr proto_qtvs
             , ptext (sLit "surely_fref =") <+> ppr surely_free
             ]

       ; emitFlats surely_free
278 279 280 281
       ; traceTc "sinf"  $ vcat
             [ ptext (sLit "perhaps_bound =") <+> ppr perhaps_bound
             , ptext (sLit "surely_free   =") <+> ppr surely_free
             ]
282

283 284 285
            -- Step 2 
       	    -- Now simplify the possibly-bound constraints
       ; (simpl_results, tc_binds0)
286
           <- runTcS (SimplInfer (ppr (map fst name_taus))) NoUntouchables $
287 288 289 290 291 292 293 294 295 296 297
              simplifyWithApprox (zonked_wanteds { wc_flat = perhaps_bound })

       ; when (insolubleWC simpl_results)  -- Fail fast if there is an insoluble constraint
              (do { reportUnsolved simpl_results; failM })

            -- Step 3 
            -- Split again simplified_perhaps_bound, because some unifications 
            -- may have happened, and emit the free constraints. 
       ; gbl_tvs        <- tcGetGlobalTyVars
       ; zonked_tau_tvs <- zonkTcTyVarsAndFV zonked_tau_tvs
       ; zonked_simples <- zonkWantedEvVars (wc_flat simpl_results)
298
       ; let init_tvs 	     = zonked_tau_tvs `minusVarSet` gbl_tvs
299 300 301 302
             poly_qtvs       = growWantedEVs gbl_tvs zonked_simples init_tvs
	     (pbound, pfree) = partitionBag (quantifyMe poly_qtvs) zonked_simples

	     -- Monomorphism restriction
303
             mr_qtvs  	     = init_tvs `minusVarSet` constrained_tvs
304
             constrained_tvs = tyVarsOfEvVarXs zonked_simples
305 306 307 308 309
	     mr_bites        = apply_mr && not (isEmptyBag pbound)

             (qtvs, (bound, free))
                | mr_bites  = (mr_qtvs,   (emptyBag, zonked_simples))
                | otherwise = (poly_qtvs, (pbound,   pfree))
310 311
       ; emitFlats free

312
       ; if isEmptyVarSet qtvs && isEmptyBag bound
313 314 315
         then ASSERT( isEmptyBag (wc_insol simpl_results) )
              do { traceTc "} simplifyInfer/no quantification" empty
                 ; emitImplications (wc_impl simpl_results)
316
                 ; return ([], [], mr_bites, EvBinds tc_binds0) }
317 318 319 320
         else do

            -- Step 4, zonk quantified variables 
       { let minimal_flat_preds = mkMinimalBySCs $ map evVarOfPred $ bagToList bound
321 322
             skol_info = InferSkol [ (name, mkSigmaTy [] minimal_flat_preds ty)
                                   | (name, ty) <- name_taus ]
323 324 325 326
                        -- Don't add the quantified variables here, because
                        -- they are also bound in ic_skols and we want them to be
                        -- tidied uniformly

dreixel's avatar
dreixel committed
327
       ; qtvs_to_return <- zonkQuantifiedTyVars qtvs
328 329 330 331 332 333 334

            -- Step 5
            -- Minimize `bound' and emit an implication
       ; minimal_bound_ev_vars <- mapM TcMType.newEvVar minimal_flat_preds
       ; ev_binds_var <- newTcEvBinds
       ; mapBagM_ (\(EvBind evar etrm) -> addTcEvBind ev_binds_var evar etrm) tc_binds0
       ; lcl_env <- getLclTypeEnv
dreixel's avatar
dreixel committed
335
       ; gloc <- getCtLoc skol_info
336 337 338 339 340 341 342 343 344 345 346 347
       ; let implic = Implic { ic_untch    = NoUntouchables
                             , ic_env      = lcl_env
                             , ic_skols    = mkVarSet qtvs_to_return
                             , ic_given    = minimal_bound_ev_vars
                             , ic_wanted   = simpl_results { wc_flat = bound }
                             , ic_insol    = False
                             , ic_binds    = ev_binds_var
                             , ic_loc      = gloc }
       ; emitImplication implic
       ; traceTc "} simplifyInfer/produced residual implication for quantification" $
             vcat [ ptext (sLit "implic =") <+> ppr implic
                       -- ic_skols, ic_given give rest of result
348
                  , ptext (sLit "qtvs =") <+> ppr qtvs_to_return
349 350 351 352 353
                  , ptext (sLit "spb =") <+> ppr zonked_simples
                  , ptext (sLit "bound =") <+> ppr bound ]



354 355
       ; return ( qtvs_to_return, minimal_bound_ev_vars
                , mr_bites,  TcEvBinds ev_binds_var) } }
356
\end{code}
357 358


359 360
Note [Minimize by Superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
361

362 363 364 365 366 367 368
When we quantify over a constraint, in simplifyInfer we need to
quantify over a constraint that is minimal in some sense: For
instance, if the final wanted constraint is (Eq alpha, Ord alpha),
we'd like to quantify over Ord alpha, because we can just get Eq alpha
from superclass selection from Ord alpha. This minimization is what
mkMinimalBySCs does. Then, simplifyInfer uses the minimal constraint
to check the original wanted.
369

370 371 372 373
\begin{code}
simplifyWithApprox :: WantedConstraints -> TcS WantedConstraints
simplifyWithApprox wanted
 = do { traceTcS "simplifyApproxLoop" (ppr wanted)
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
      ; results <- solveWanteds emptyInert wanted

      ; let (residual_implics, floats) = approximateImplications (wc_impl results)

        -- If no new work was produced then we are done with simplifyApproxLoop
      ; if insolubleWC results || isEmptyBag floats
        then return results

        else solveWanteds emptyInert
                (WC { wc_flat = floats `unionBags` wc_flat results
                    , wc_impl = residual_implics
                    , wc_insol = emptyBag }) }

approximateImplications :: Bag Implication -> (Bag Implication, Bag WantedEvVar)
-- Extracts any nested constraints that don't mention the skolems
approximateImplications impls
  = do_bag (float_implic emptyVarSet) impls
392
  where 
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    do_bag :: forall a b c. (a -> (Bag b, Bag c)) -> Bag a -> (Bag b, Bag c)
    do_bag f = foldrBag (plus . f) (emptyBag, emptyBag)
    plus :: forall b c. (Bag b, Bag c) -> (Bag b, Bag c) -> (Bag b, Bag c)
    plus (a1,b1) (a2,b2) = (a1 `unionBags` a2, b1 `unionBags` b2)

    float_implic :: TyVarSet -> Implication -> (Bag Implication, Bag WantedEvVar)
    float_implic skols imp
      = (unitBag (imp { ic_wanted = wanted' }), floats)
      where
        (wanted', floats) = float_wc (skols `unionVarSet` ic_skols imp) (ic_wanted imp)

    float_wc skols wc@(WC { wc_flat = flat, wc_impl = implic })
      = (wc { wc_flat = flat', wc_impl = implic' }, floats1 `unionBags` floats2)
      where
        (flat',   floats1) = do_bag (float_flat   skols) flat
        (implic', floats2) = do_bag (float_implic skols) implic

    float_flat :: TcTyVarSet -> WantedEvVar -> (Bag WantedEvVar, Bag WantedEvVar)
    float_flat skols wev
      | tyVarsOfEvVarX wev `disjointVarSet` skols = (emptyBag, unitBag wev)
      | otherwise                                 = (unitBag wev, emptyBag)
414
\end{code}
415

416
\begin{code}
417 418
-- (growX gbls wanted tvs) grows a seed 'tvs' against the 
-- X-constraint 'wanted', nuking the 'gbls' at each stage
419 420
-- It's conservative in that if the seed could *possibly*
-- grow to include a type variable, then it does
421

422 423 424 425 426 427 428
growWanteds :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWanteds gbl_tvs wc = fixVarSet (growWC gbl_tvs wc)

growWantedEVs :: TyVarSet -> Bag WantedEvVar -> TyVarSet -> TyVarSet
growWantedEVs gbl_tvs ws tvs
  | isEmptyBag ws = tvs
  | otherwise     = fixVarSet (growPreds gbl_tvs evVarOfPred ws) tvs
429

430 431 432 433 434
--------  Helper functions, do not do fixpoint ------------------------
growWC :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWC gbl_tvs wc = growImplics gbl_tvs             (wc_impl wc) .
                    growPreds   gbl_tvs evVarOfPred (wc_flat wc) .
                    growPreds   gbl_tvs evVarOfPred (wc_insol wc)
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449
growImplics :: TyVarSet -> Bag Implication -> TyVarSet -> TyVarSet
growImplics gbl_tvs implics tvs
  = foldrBag grow_implic tvs implics
  where
    grow_implic implic tvs
      = grow tvs `minusVarSet` ic_skols implic
      where
        grow = growWC gbl_tvs (ic_wanted implic) .
               growPreds gbl_tvs evVarPred (listToBag (ic_given implic))
               -- We must grow from givens too; see test IPRun

growPreds :: TyVarSet -> (a -> PredType) -> Bag a -> TyVarSet -> TyVarSet
growPreds gbl_tvs get_pred items tvs
  = foldrBag extend tvs items
450
  where
451 452
    extend item tvs = tvs `unionVarSet`
                      (growPredTyVars (get_pred item) tvs `minusVarSet` gbl_tvs)
453 454 455 456 457 458 459

--------------------
quantifyMe :: TyVarSet      -- Quantifying over these
	   -> WantedEvVar
	   -> Bool	    -- True <=> quantify over this wanted
quantifyMe qtvs wev
  | isIPPred pred = True  -- Note [Inheriting implicit parameters]
batterseapower's avatar
batterseapower committed
460
  | otherwise	  = tyVarsOfType pred `intersectsVarSet` qtvs
461
  where
462
    pred = evVarOfPred wev
463
\end{code}
464

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
Note [Avoid unecessary constraint simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When inferring the type of a let-binding, with simplifyInfer,
try to avoid unnecessariliy simplifying class constraints.
Doing so aids sharing, but it also helps with delicate 
situations like
   instance C t => C [t] where ..
   f :: C [t] => ....
   f x = let g y = ...(constraint C [t])... 
         in ...
When inferring a type for 'g', we don't want to apply the
instance decl, because then we can't satisfy (C t).  So we
just notice that g isn't quantified over 't' and partition
the contraints before simplifying.

This only half-works, but then let-generalisation only half-works.


483 484
Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
485 486 487
Consider this:

	f x = (x::Int) + ?y
488

489 490 491
where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:
492

493 494 495
	f :: Int -> Int

(so we get ?y from the context of f's definition), or
496 497 498

	f :: (?y::Int) => Int -> Int

499 500 501 502 503 504
At first you might think the first was better, becuase then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site.  But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.

505 506
BOTTOM LINE: when *inferring types* you *must* quantify 
over implicit parameters. See the predicate isFreeWhenInferring.
507

508

509 510 511 512 513
*********************************************************************************
*                                                                                 * 
*                             RULES                                               *
*                                                                                 *
***********************************************************************************
514

515 516
Note [Simplifying RULE lhs constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
517
On the LHS of transformation rules we only simplify only equalities,
518 519 520 521
but not dictionaries.  We want to keep dictionaries unsimplified, to
serve as the available stuff for the RHS of the rule.  We *do* want to
simplify equalities, however, to detect ill-typed rules that cannot be
applied.
522

523 524 525
Implementation: the TcSFlags carried by the TcSMonad controls the
amount of simplification, so simplifyRuleLhs just sets the flag
appropriately.
526

527 528 529 530 531 532 533 534 535 536
Example.  Consider the following left-hand side of a rule
	f (x == y) (y > z) = ...
If we typecheck this expression we get constraints
	d1 :: Ord a, d2 :: Eq a
We do NOT want to "simplify" to the LHS
	forall x::a, y::a, z::a, d1::Ord a.
	  f ((==) (eqFromOrd d1) x y) ((>) d1 y z) = ...
Instead we want	
	forall x::a, y::a, z::a, d1::Ord a, d2::Eq a.
	  f ((==) d2 x y) ((>) d1 y z) = ...
537

538
Here is another example:
539 540
	fromIntegral :: (Integral a, Num b) => a -> b
	{-# RULES "foo"  fromIntegral = id :: Int -> Int #-}
541 542
In the rule, a=b=Int, and Num Int is a superclass of Integral Int. But
we *dont* want to get
543
	forall dIntegralInt.
544
	   fromIntegral Int Int dIntegralInt (scsel dIntegralInt) = id Int
545
because the scsel will mess up RULE matching.  Instead we want
546
	forall dIntegralInt, dNumInt.
547
	  fromIntegral Int Int dIntegralInt dNumInt = id Int
548

549 550 551 552 553 554 555
Even if we have 
	g (x == y) (y == z) = ..
where the two dictionaries are *identical*, we do NOT WANT
	forall x::a, y::a, z::a, d1::Eq a
	  f ((==) d1 x y) ((>) d1 y z) = ...
because that will only match if the dict args are (visibly) equal.
Instead we want to quantify over the dictionaries separately.
556

557 558
In short, simplifyRuleLhs must *only* squash equalities, leaving
all dicts unchanged, with absolutely no sharing.  
559

560 561 562 563 564 565 566 567 568
HOWEVER, under a nested implication things are different
Consider
  f :: (forall a. Eq a => a->a) -> Bool -> ...
  {-# RULES "foo" forall (v::forall b. Eq b => b->b).
       f b True = ...
    #=}
Here we *must* solve the wanted (Eq a) from the given (Eq a)
resulting from skolemising the agument type of g.  So we 
revert to SimplCheck when going under an implication.  
569 570

\begin{code}
571 572 573 574 575 576 577 578 579
simplifyRule :: RuleName 
             -> [TcTyVar]		-- Explicit skolems
             -> WantedConstraints	-- Constraints from LHS
             -> WantedConstraints	-- Constraints from RHS
             -> TcM ([EvVar], 		-- LHS dicts
                     TcEvBinds,		-- Evidence for LHS
                     TcEvBinds)		-- Evidence for RHS
-- See Note [Simplifying RULE lhs constraints]
simplifyRule name tv_bndrs lhs_wanted rhs_wanted
580 581 582 583 584 585 586
  = do { loc        <- getCtLoc (RuleSkol name)
       ; zonked_lhs <- zonkWC lhs_wanted
       ; let untch = NoUntouchables
	     	 -- We allow ourselves to unify environment 
		 -- variables; hence *no untouchables*

       ; (lhs_results, lhs_binds)
587
              <- runTcS (SimplRuleLhs name) untch $
588
                 solveWanteds emptyInert zonked_lhs
589 590 591 592 593 594 595

       ; traceTc "simplifyRule" $
         vcat [ text "zonked_lhs"   <+> ppr zonked_lhs 
              , text "lhs_results" <+> ppr lhs_results
              , text "lhs_binds"    <+> ppr lhs_binds 
              , text "rhs_wanted"   <+> ppr rhs_wanted ]

596 597

       -- Don't quantify over equalities (judgement call here)
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
       ; let (eqs, dicts) = partitionBag (isEqPred . evVarOfPred)
                                         (wc_flat lhs_results)
             lhs_dicts    = map evVarOf (bagToList dicts)
                                 -- Dicts and implicit parameters

           -- Fail if we have not got down to unsolved flats
       ; ev_binds_var <- newTcEvBinds
       ; emitImplication $ Implic { ic_untch  = untch
                                  , ic_env    = emptyNameEnv
                                  , ic_skols  = mkVarSet tv_bndrs
                                  , ic_given  = lhs_dicts
                                  , ic_wanted = lhs_results { wc_flat = eqs }
                                  , ic_insol  = insolubleWC lhs_results
                                  , ic_binds  = ev_binds_var
                                  , ic_loc    = loc }
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

	     -- Notice that we simplify the RHS with only the explicitly
	     -- introduced skolems, allowing the RHS to constrain any 
	     -- unification variables.
	     -- Then, and only then, we call zonkQuantifiedTypeVariables
	     -- Example   foo :: Ord a => a -> a
	     --		  foo_spec :: Int -> Int
	     --		  {-# RULE "foo"  foo = foo_spec #-}
	     --	    Here, it's the RHS that fixes the type variable

	     -- So we don't want to make untouchable the type
	     -- variables in the envt of the RHS, because they include
	     -- the template variables of the RULE

	     -- Hence the rather painful ad-hoc treatement here
       ; rhs_binds_var@(EvBindsVar evb_ref _)  <- newTcEvBinds
629 630
       ; let doc = ptext (sLit "rhs of rule") <+> doubleQuotes (ftext name)
       ; rhs_binds1 <- simplifyCheck (SimplCheck doc) $
631 632 633 634 635 636 637 638 639 640 641
            WC { wc_flat = emptyBag
               , wc_insol = emptyBag
               , wc_impl = unitBag $
                    Implic { ic_untch   = NoUntouchables
                            , ic_env    = emptyNameEnv
                            , ic_skols  = mkVarSet tv_bndrs
                            , ic_given  = lhs_dicts
                            , ic_wanted = rhs_wanted
                            , ic_insol  = insolubleWC rhs_wanted
                            , ic_binds  = rhs_binds_var
                            , ic_loc    = loc } }
642 643 644 645 646
       ; rhs_binds2 <- readTcRef evb_ref

       ; return ( lhs_dicts
                , EvBinds lhs_binds 
                , EvBinds (rhs_binds1 `unionBags` evBindMapBinds rhs_binds2)) }
647 648 649
\end{code}


650 651 652 653 654
*********************************************************************************
*                                                                                 * 
*                                 Main Simplifier                                 *
*                                                                                 *
***********************************************************************************
655 656

\begin{code}
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
simplifyCheck :: SimplContext
	      -> WantedConstraints	-- Wanted
              -> TcM (Bag EvBind)
-- Solve a single, top-level implication constraint
-- e.g. typically one created from a top-level type signature
-- 	    f :: forall a. [a] -> [a]
--          f x = rhs
-- We do this even if the function has no polymorphism:
--    	    g :: Int -> Int

--          g y = rhs
-- (whereas for *nested* bindings we would not create
--  an implication constraint for g at all.)
--
-- Fails if can't solve something in the input wanteds
simplifyCheck ctxt wanteds
673
  = do { wanteds <- zonkWC wanteds
674 675 676 677

       ; traceTc "simplifyCheck {" (vcat
             [ ptext (sLit "wanted =") <+> ppr wanteds ])

678 679
       ; (unsolved, ev_binds) <- runTcS ctxt NoUntouchables $
                                 solveWanteds emptyInert wanteds
680 681

       ; traceTc "simplifyCheck }" $
682
         ptext (sLit "unsolved =") <+> ppr unsolved
683

684
       ; reportUnsolved unsolved
685 686 687 688

       ; return ev_binds }

----------------
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
solveWanteds :: InertSet                            -- Given
             -> WantedConstraints
             -> TcS WantedConstraints
solveWanteds inert wanted
  = do { (unsolved_flats, unsolved_implics, insols)
             <- solve_wanteds inert wanted
       ; return (WC { wc_flat = keepWanted unsolved_flats   -- Discard Derived
                    , wc_impl = unsolved_implics
                    , wc_insol = insols }) }

solve_wanteds :: InertSet                            -- Given
              -> WantedConstraints
              -> TcS (Bag FlavoredEvVar, Bag Implication, Bag FlavoredEvVar)
-- solve_wanteds iterates when it is able to float equalities
-- out of one or more of the implications
solve_wanteds inert wanted@(WC { wc_flat = flats, wc_impl = implics, wc_insol = insols })
  = do { traceTcS "solveWanteds {" (ppr wanted)

                 -- Try the flat bit
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
708 709 710 711 712
                 -- Discard from insols all the derived/given constraints
                 -- because they will show up again when we try to solve
                 -- everything else.  Solving them a second time is a bit
                 -- of a waste, but the code is simple, and the program is
                 -- wrong anyway!
713 714 715 716 717
       ; let all_flats = flats `unionBags` keepWanted insols
       ; inert1 <- solveInteractWanted inert (bagToList all_flats)

       ; (unsolved_flats, unsolved_implics) <- simpl_loop 1 inert1 implics

718 719
       ; bb <- getTcEvBindsBag
       ; tb <- getTcSTyBindsMap
720
       ; traceTcS "solveWanteds }" $
721
                 vcat [ text "unsolved_flats   =" <+> ppr unsolved_flats
722
                      , text "unsolved_implics =" <+> ppr unsolved_implics
723 724 725 726
                      , text "current evbinds  =" <+> vcat (map ppr (varEnvElts bb))
                      , text "current tybinds  =" <+> vcat (map ppr (varEnvElts tb))
                      ]

727
       ; (subst, remaining_flats) <- solveCTyFunEqs unsolved_flats
728
                -- See Note [Solving Family Equations]
729 730 731 732 733 734 735 736
                -- NB: remaining_flats has already had subst applied

       ; let (insoluble_flats, unsolved_flats) = partitionBag isCFrozenErr remaining_flats

       ; return ( mapBag (substFlavoredEvVar subst . deCanonicalise) unsolved_flats
                , mapBag (substImplication subst) unsolved_implics
                , mapBag (substFlavoredEvVar subst . deCanonicalise) insoluble_flats ) }

737
  where
738 739
    simpl_loop :: Int
               -> InertSet
740
               -> Bag Implication
741 742
               -> TcS (CanonicalCts, Bag Implication) -- CanonicalCts are Wanted or Derived
    simpl_loop n inert implics
743
      | n>10
744
      = trace "solveWanteds: loop" $	                -- Always bleat
745
        do { traceTcS "solveWanteds: loop" (ppr inert)  -- Bleat more informatively
746
           ; let (_, unsolved_cans) = extractUnsolved inert
747
           ; return (unsolved_cans, implics) }
748 749

      | otherwise
750 751 752
      = do { traceTcS "solveWanteds: simpl_loop start {" $
                 vcat [ text "n =" <+> ppr n
                      , text "implics =" <+> ppr implics
753 754 755
                      , text "inert   =" <+> ppr inert ]
           
           ; let (just_given_inert, unsolved_cans) = extractUnsolved inert
756
                     -- unsolved_cans contains either Wanted or Derived!
757

758
           ; (implic_eqs, unsolved_implics) 
759
                  <- solveNestedImplications just_given_inert unsolved_cans implics
760 761

                -- Apply defaulting rules if and only if there
762 763
		-- no floated equalities.  If there are, they may
		-- solve the remaining wanteds, so don't do defaulting.
764 765 766
           ; improve_eqs <- if not (isEmptyBag implic_eqs)
			    then return implic_eqs
                            else applyDefaultingRules just_given_inert unsolved_cans
767

768
           ; traceTcS "solveWanteds: simpl_loop end }" $
769 770
                 vcat [ text "improve_eqs      =" <+> ppr improve_eqs
                      , text "unsolved_flats   =" <+> ppr unsolved_cans
771 772
                      , text "unsolved_implics =" <+> ppr unsolved_implics ]

773 774 775 776
           ; (improve_eqs_already_in_inert, inert_with_improvement)
               <- solveInteract inert improve_eqs 

           ; if improve_eqs_already_in_inert then
777
                 return (unsolved_cans, unsolved_implics)
778
             else 
779 780 781
                 simpl_loop (n+1) inert_with_improvement 
                                         -- Contain unsolved_cans and the improve_eqs
                                  unsolved_implics
782 783
           }

dimitris's avatar
dimitris committed
784 785 786 787
givensFromWanteds :: SimplContext -> CanonicalCts -> Bag FlavoredEvVar
-- Extract the Wanted ones from CanonicalCts and conver to
-- Givens; not Given/Solved, see Note [Preparing inert set for implications]
givensFromWanteds _ctxt = foldrBag getWanted emptyBag
788 789 790
  where
    getWanted :: CanonicalCt -> Bag FlavoredEvVar -> Bag FlavoredEvVar
    getWanted cc givens
dimitris's avatar
dimitris committed
791 792 793 794 795 796 797 798 799 800 801 802 803
      | pushable_wanted cc
      = let given = mkEvVarX (cc_id cc) (mkGivenFlavor (cc_flavor cc) UnkSkol)
        in given `consBag` givens     -- and not mkSolvedFlavor,
                                      -- see Note [Preparing inert set for implications]
      | otherwise = givens

    pushable_wanted :: CanonicalCt -> Bool 
    pushable_wanted cc 
      | not (isCFrozenErr cc) 
      , isWantedCt cc 
      = isEqPred (evVarPred (cc_id cc)) -- see Note [Preparing inert set for implications]
      | otherwise = False 
 
804 805
solveNestedImplications :: InertSet -> CanonicalCts
                        -> Bag Implication
806
                        -> TcS (Bag FlavoredEvVar, Bag Implication)
807
solveNestedImplications just_given_inert unsolved_cans implics
808 809 810
  | isEmptyBag implics
  = return (emptyBag, emptyBag)
  | otherwise 
811 812
  = do {  -- See Note [Preparing inert set for implications]
	  -- Push the unsolved wanteds inwards, but as givens
dimitris's avatar
dimitris committed
813 814 815 816
             
       ; simpl_ctx <- getTcSContext 

       ; let pushed_givens    = givensFromWanteds simpl_ctx unsolved_cans
817 818 819
             tcs_untouchables = filterVarSet isFlexiTcsTv $
                                tyVarsOfEvVarXs pushed_givens
             -- See Note [Extra TcsTv untouchables]
820

821 822
       ; traceTcS "solveWanteds: preparing inerts for implications {"  
                  (vcat [ppr tcs_untouchables, ppr pushed_givens])
dimitris's avatar
dimitris committed
823 824

       ; (_, inert_for_implics) <- solveInteract just_given_inert pushed_givens 
825

826
       ; traceTcS "solveWanteds: } now doing nested implications {" $
827 828 829 830 831 832 833 834 835 836 837 838
         vcat [ text "inerts_for_implics =" <+> ppr inert_for_implics
              , text "implics =" <+> ppr implics ]

       ; (implic_eqs, unsolved_implics)
           <- flatMapBagPairM (solveImplication tcs_untouchables inert_for_implics) implics

       ; traceTcS "solveWanteds: done nested implications }" $
                  vcat [ text "implic_eqs ="       <+> ppr implic_eqs
                       , text "unsolved_implics =" <+> ppr unsolved_implics ]

       ; return (implic_eqs, unsolved_implics) }

839 840 841 842 843
solveImplication :: TcTyVarSet                -- Untouchable TcS unification variables
                 -> InertSet                  -- Given
                 -> Implication               -- Wanted
                 -> TcS (Bag FlavoredEvVar, -- All wanted or derived unifications: var = type
                         Bag Implication)     -- Unsolved rest (always empty or singleton)
844 845 846 847 848 849 850
-- Returns: 
--  1. A bag of floatable wanted constraints, not mentioning any skolems, 
--     that are of the form unification var = type
-- 
--  2. Maybe a unsolved implication, empty if entirely solved! 
-- 
-- Precondition: everything is zonked by now
851
solveImplication tcs_untouchables inert
852 853 854 855
     imp@(Implic { ic_untch  = untch 
                 , ic_binds  = ev_binds
                 , ic_skols  = skols 
                 , ic_given  = givens
856
                 , ic_wanted = wanteds
857
                 , ic_loc    = loc })
858
  = nestImplicTcS ev_binds (untch, tcs_untouchables) $
859 860 861 862
    recoverTcS (return (emptyBag, emptyBag)) $
       -- Recover from nested failures.  Even the top level is
       -- just a bunch of implications, so failing at the first
       -- one is bad
863 864 865
    do { traceTcS "solveImplication {" (ppr imp) 

         -- Solve flat givens
866
       ; given_inert <- solveInteractGiven inert loc givens 
867 868

         -- Simplify the wanteds
869 870 871 872 873 874
       ; (unsolved_flats, unsolved_implics, insols)
             <- solve_wanteds given_inert wanteds

       ; let (res_flat_free, res_flat_bound)
                 = floatEqualities skols givens unsolved_flats
             final_flat = keepWanted res_flat_bound
875

876 877 878 879 880 881
       ; let res_wanted = WC { wc_flat = final_flat
                             , wc_impl = unsolved_implics
                             , wc_insol = insols }
             res_implic = unitImplication $
                          imp { ic_wanted = res_wanted
                              , ic_insol  = insolubleWC res_wanted }
882 883 884

       ; traceTcS "solveImplication end }" $ vcat
             [ text "res_flat_free =" <+> ppr res_flat_free
885
             , text "res_implic =" <+> ppr res_implic ]
886

887
       ; return (res_flat_free, res_implic) }
888 889


890 891 892 893 894 895
floatEqualities :: TcTyVarSet -> [EvVar]
                -> Bag FlavoredEvVar -> (Bag FlavoredEvVar, Bag FlavoredEvVar)
-- Post: The returned FlavoredEvVar's are only Wanted or Derived
-- and come from the input wanted ev vars or deriveds 
floatEqualities skols can_given wantders
  | hasEqualities can_given = (emptyBag, wantders)
896
          -- Note [Float Equalities out of Implications]
897 898 899 900
  | otherwise = partitionBag is_floatable wantders
  

  where is_floatable :: FlavoredEvVar -> Bool
batterseapower's avatar
batterseapower committed
901 902
        is_floatable (EvVarX eqv _fl)
          | isEqPred (evVarPred eqv) = skols `disjointVarSet` tvs_under_fsks (evVarPred eqv)
903
        is_floatable _flev = False
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

        tvs_under_fsks :: Type -> TyVarSet
        -- ^ NB: for type synonyms tvs_under_fsks does /not/ expand the synonym
        tvs_under_fsks (TyVarTy tv)     
          | not (isTcTyVar tv)               = unitVarSet tv
          | FlatSkol ty <- tcTyVarDetails tv = tvs_under_fsks ty
          | otherwise                        = unitVarSet tv
        tvs_under_fsks (TyConApp _ tys) = unionVarSets (map tvs_under_fsks tys)
        tvs_under_fsks (FunTy arg res)  = tvs_under_fsks arg `unionVarSet` tvs_under_fsks res
        tvs_under_fsks (AppTy fun arg)  = tvs_under_fsks fun `unionVarSet` tvs_under_fsks arg
        tvs_under_fsks (ForAllTy tv ty) -- The kind of a coercion binder 
        	     	       	      -- can mention type variables!
          | isTyVar tv		      = inner_tvs `delVarSet` tv
          | otherwise  {- Coercion -} = -- ASSERT( not (tv `elemVarSet` inner_tvs) )
                                        inner_tvs `unionVarSet` tvs_under_fsks (tyVarKind tv)
          where
            inner_tvs = tvs_under_fsks ty
921
\end{code}
922

923 924 925 926
Note [Preparing inert set for implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before solving the nested implications, we convert any unsolved flat wanteds
to givens, and add them to the inert set.  Reasons:
927 928

  a) In checking mode, suppresses unnecessary errors.  We already have
929
     on unsolved-wanted error; adding it to the givens prevents any 
930
     consequential errors from showing up
931

932 933 934 935
  b) More importantly, in inference mode, we are going to quantify over this
     constraint, and we *don't* want to quantify over any constraints that
     are deducible from it.

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
  c) Flattened type-family equalities must be exposed to the nested
     constraints.  Consider
	F b ~ alpha, (forall c.  F b ~ alpha)
     Obviously this is soluble with [alpha := F b].  But the
     unification is only done by solveCTyFunEqs, right at the end of
     solveWanteds, and if we aren't careful we'll end up with an
     unsolved goal inside the implication.  We need to "push" the
     as-yes-unsolved (F b ~ alpha) inwards, as a *given*, so that it
     can be used to solve the inner (F b
     ~ alpha).  See Trac #4935.

  d) There are other cases where interactions between wanteds that can help
     to solve a constraint. For example

  	class C a b | a -> b

  	(C Int alpha), (forall d. C d blah => C Int a)

     If we push the (C Int alpha) inwards, as a given, it can produce
     a fundep (alpha~a) and this can float out again and be used to
     fix alpha.  (In general we can't float class constraints out just
     in case (C d blah) might help to solve (C Int a).)

959 960 961 962 963 964 965 966
The unsolved wanteds are *canonical* but they may not be *inert*,
because when made into a given they might interact with other givens.
Hence the call to solveInteract.  Example:

 Original inert set = (d :_g D a) /\ (co :_w  a ~ [beta]) 

We were not able to solve (a ~w [beta]) but we can't just assume it as
given because the resulting set is not inert. Hence we have to do a
967 968
'solveInteract' step first. 

dimitris's avatar
dimitris committed
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
Finally, note that we convert them to [Given] and NOT [Given/Solved].
The reason is that Given/Solved are weaker than Givens and may be discarded.
As an example consider the inference case, where we may have, the following 
original constraints: 
     [Wanted] F Int ~ Int
             (F Int ~ a => F Int ~ a)
If we convert F Int ~ Int to [Given/Solved] instead of Given, then the next 
given (F Int ~ a) is going to cause the Given/Solved to be ignored, casting 
the (F Int ~ a) insoluble. Hence we should really convert the residual 
wanteds to plain old Given. 

We need only push in unsolved equalities both in checking mode and inference mode: 

  (1) In checking mode we should not push given dictionaries in because of
example LongWayOverlapping.hs, where we might get strange overlap
errors between far-away constraints in the program.  But even in
checking mode, we must still push type family equations. Consider:

   type instance F True a b = a 
   type instance F False a b = b

   [w] F c a b ~ gamma 
   (c ~ True) => a ~ gamma 
   (c ~ False) => b ~ gamma

Since solveCTyFunEqs happens at the very end of solving, the only way to solve
the two implications is temporarily consider (F c a b ~ gamma) as Given (NB: not 
merely Given/Solved because it has to interact with the top-level instance 
environment) and push it inside the implications. Now, when we come out again at
the end, having solved the implications solveCTyFunEqs will solve this equality.

  (2) In inference mode, we recheck the final constraint in checking mode and
hence we will be able to solve inner implications from top-level quantified
constraints nonetheless.


1005 1006
Note [Extra TcsTv untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1007 1008 1009 1010 1011
Furthemore, we record the inert set simplifier-generated unification
variables of the TcsTv kind (such as variables from instance that have
been applied, or unification flattens). These variables must be passed
to the implications as extra untouchable variables. Otherwise we have
the danger of double unifications. Example (from trac ticket #4494):
1012 1013 1014

   (F Int ~ uf)  /\  (forall a. C a => F Int ~ beta) 

1015 1016 1017
In this example, beta is touchable inside the implication. The first
solveInteract step leaves 'uf' ununified. Then we move inside the
implication where a new constraint
1018
       uf  ~  beta  
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
emerges. We may spontaneously solve it to get uf := beta, so the whole
implication disappears but when we pop out again we are left with (F
Int ~ uf) which will be unified by our final solveCTyFunEqs stage and
uf will get unified *once more* to (F Int).

The solution is to record the TcsTvs (i.e. the simplifier-generated
unification variables) that are generated when solving the flats, and
make them untouchables for the nested implication. In the example
above uf would become untouchable, so beta would be forced to be
unified as beta := uf.

NB: A consequence is that every simplifier-generated TcsTv variable
    that gets floated out of an implication becomes now untouchable
    next time we go inside that implication to solve any residual
    constraints. In effect, by floating an equality out of the
    implication we are committing to have it solved in the outside.
1035

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1036 1037 1038 1039
Note [Float Equalities out of Implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
We want to float equalities out of vanilla existentials, but *not* out 
of GADT pattern matches. 
1040

1041

1042 1043
\begin{code}

1044
solveCTyFunEqs :: CanonicalCts -> TcS (TvSubst, CanonicalCts)
1045 1046 1047 1048
-- Default equalities (F xi ~ alpha) by setting (alpha := F xi), whenever possible
-- See Note [Solving Family Equations]
-- Returns: a bunch of unsolved constraints from the original CanonicalCts and implications
--          where the newly generated equalities (alpha := F xi) have been substituted through.
1049
solveCTyFunEqs cts
1050
 = do { untch   <- getUntouchables 
1051 1052
      ; let (unsolved_can_cts, (ni_subst, cv_binds))
                = getSolvableCTyFunEqs untch cts
1053
      ; traceTcS "defaultCTyFunEqs" (vcat [text "Trying to default family equations:"
1054
                                          , ppr ni_subst, ppr cv_binds
1055
                                          ])
1056 1057 1058 1059
      ; mapM_ solve_one cv_binds

      ; return (niFixTvSubst ni_subst, unsolved_can_cts) }
  where
1060
    solve_one (cv,tv,ty) = do { setWantedTyBind tv ty
batterseapower's avatar
batterseapower committed
1061
                              ; setEqBind cv (mkReflCo ty) }
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
------------
type FunEqBinds = (TvSubstEnv, [(CoVar, TcTyVar, TcType)])
  -- The TvSubstEnv is not idempotent, but is loop-free
  -- See Note [Non-idempotent substitution] in Unify
emptyFunEqBinds :: FunEqBinds
emptyFunEqBinds = (emptyVarEnv, [])

extendFunEqBinds :: FunEqBinds -> CoVar -> TcTyVar -> TcType -> FunEqBinds
extendFunEqBinds (tv_subst, cv_binds) cv tv ty
  = (extendVarEnv tv_subst tv ty, (cv, tv, ty):cv_binds)

------------
1075
getSolvableCTyFunEqs :: TcsUntouchables
1076
                     -> CanonicalCts                -- Precondition: all Wanteds or Derived!
1077 1078
                     -> (CanonicalCts, FunEqBinds)  -- Postcondition: returns the unsolvables
getSolvableCTyFunEqs untch cts
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
  = Bag.foldlBag dflt_funeq (emptyCCan, emptyFunEqBinds) cts
  where
    dflt_funeq :: (CanonicalCts, FunEqBinds) -> CanonicalCt
               -> (CanonicalCts, FunEqBinds)
    dflt_funeq (cts_in, feb@(tv_subst, _))
               (CFunEqCan { cc_id = cv
                          , cc_flavor = fl
                          , cc_fun = tc
                          , cc_tyargs = xis
                          , cc_rhs = xi })
      | Just tv <- tcGetTyVar_maybe xi      -- RHS is a type variable

      , isTouchableMetaTyVar_InRange untch tv
           -- And it's a *touchable* unification variable

      , typeKind xi `isSubKind` tyVarKind tv
         -- Must do a small kind check since TcCanonical invariants 
         -- on family equations only impose compatibility, not subkinding

      , not (tv `elemVarEnv` tv_subst)
           -- Check not in extra_binds
           -- See Note [Solving Family Equations], Point 1

      , not (tv `elemVarSet` niSubstTvSet tv_subst (tyVarsOfTypes xis))
           -- Occurs check: see Note [Solving Family Equations], Point 2
dimitris's avatar
dimitris committed
1104
      = ASSERT ( not (isGivenOrSolved fl) )
1105 1106 1107 1108
        (cts_in, extendFunEqBinds feb cv tv (mkTyConApp tc xis))

    dflt_funeq (cts_in, fun_eq_binds) ct
      = (cts_in `extendCCans` ct, fun_eq_binds)
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
\end{code}

Note [Solving Family Equations] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
After we are done with simplification we may be left with constraints of the form:
     [Wanted] F xis ~ beta 
If 'beta' is a touchable unification variable not already bound in the TyBinds 
then we'd like to create a binding for it, effectively "defaulting" it to be 'F xis'.

When is it ok to do so? 
    1) 'beta' must not already be defaulted to something. Example: 

           [Wanted] F Int  ~ beta   <~ Will default [beta := F Int]
           [Wanted] F Char ~ beta   <~ Already defaulted, can't default again. We 
                                       have to report this as unsolved.

    2) However, we must still do an occurs check when defaulting (F xis ~ beta), to 
       set [beta := F xis] only if beta is not among the free variables of xis.

    3) Notice that 'beta' can't be bound in ty binds already because we rewrite RHS 
       of type family equations. See Inert Set invariants in TcInteract. 


1132 1133 1134 1135 1136 1137 1138
*********************************************************************************
*                                                                               * 
*                          Defaulting and disamgiguation                        *
*                                                                               *
*********************************************************************************

Basic plan behind applyDefaulting rules: 
1139
 
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
 Step 1:  
    Split wanteds into defaultable groups, `groups' and the rest `rest_wanted' 
    For each defaultable group, do: 
      For each possible substitution for [alpha |-> tau] where `alpha' is the 
      group's variable, do: 
        1) Make up new TcEvBinds
        2) Extend TcS with (groupVariable 
        3) given_inert <- solveOne inert (given : a ~ tau) 
        4) (final_inert,unsolved) <- solveWanted (given_inert) (group_constraints)
        5) if unsolved == empty then 
                 sneakyUnify a |-> tau 
                 write the evidence bins
                 return (final_inert ++ group_constraints,[]) 
                      -- will contain the info (alpha |-> tau)!!
                 goto next defaultable group 
           if unsolved <> empty then 
                 throw away evidence binds
                 try next substitution 
     If you've run out of substitutions for this group, too bad, you failed 
                 return (inert,group) 
                 goto next defaultable group
 
 Step 2: 
   Collect all the (canonical-cts, wanteds) gathered this way. 
   - Do a solveGiven over the canonical-cts to make sure they are inert 
------------------------------------------------------------------------------------------
1166

1167