Stable.c 14.1 KB
Newer Older
1 2
/* -----------------------------------------------------------------------------
 *
3
 * (c) The GHC Team, 1998-2002
4 5 6 7 8
 *
 * Stable names and stable pointers.
 *
 * ---------------------------------------------------------------------------*/

9
#include "PosixSource.h"
10 11 12
#include "Rts.h"
#include "Hash.h"
#include "RtsUtils.h"
13
#include "OSThreads.h"
14 15 16
#include "Storage.h"
#include "RtsAPI.h"
#include "RtsFlags.h"
17
#include "OSThreads.h"
Simon Marlow's avatar
Simon Marlow committed
18
#include "Trace.h"
19
#include "Stable.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

/* Comment from ADR's implementation in old RTS:

  This files (together with @ghc/runtime/storage/PerformIO.lhc@ and a
  small change in @HpOverflow.lc@) consists of the changes in the
  runtime system required to implement "Stable Pointers". But we're
  getting a bit ahead of ourselves --- what is a stable pointer and what
  is it used for?

  When Haskell calls C, it normally just passes over primitive integers,
  floats, bools, strings, etc.  This doesn't cause any problems at all
  for garbage collection because the act of passing them makes a copy
  from the heap, stack or wherever they are onto the C-world stack.
  However, if we were to pass a heap object such as a (Haskell) @String@
  and a garbage collection occured before we finished using it, we'd run
  into problems since the heap object might have been moved or even
  deleted.

  So, if a C call is able to cause a garbage collection or we want to
  store a pointer to a heap object between C calls, we must be careful
  when passing heap objects. Our solution is to keep a table of all
  objects we've given to the C-world and to make sure that the garbage
  collector collects these objects --- updating the table as required to
  make sure we can still find the object.


  Of course, all this rather begs the question: why would we want to
  pass a boxed value?

  One very good reason is to preserve laziness across the language
  interface. Rather than evaluating an integer or a string because it
  {\em might\/} be required by the C function, we can wait until the C
  function actually wants the value and then force an evaluation.

  Another very good reason (the motivating reason!) is that the C code
  might want to execute an object of sort $IO ()$ for the side-effects
  it will produce. For example, this is used when interfacing to an X
  widgets library to allow a direct implementation of callbacks.


  The @makeStablePointer :: a -> IO (StablePtr a)@ function
  converts a value into a stable pointer.  It is part of the @PrimIO@
  monad, because we want to be sure we don't allocate one twice by
  accident, and then only free one of the copies.

  \begin{verbatim}
  makeStablePtr#  :: a -> State# RealWorld -> (# RealWorld, a #)
  freeStablePtr#  :: StablePtr# a -> State# RealWorld -> State# RealWorld
  deRefStablePtr# :: StablePtr# a -> State# RealWorld -> 
        (# State# RealWorld, a #)
  \end{verbatim}

  There may be additional functions on the C side to allow evaluation,
  application, etc of a stable pointer.

*/

77 78
snEntry *stable_ptr_table = NULL;
static snEntry *stable_ptr_free = NULL;
79

80
static unsigned int SPT_size = 0;
81

82
#ifdef THREADED_RTS
83
static Mutex stable_mutex;
84
#endif
85

86 87 88 89
/* This hash table maps Haskell objects to stable names, so that every
 * call to lookupStableName on a given object will return the same
 * stable name.
 *
90 91 92
 * OLD COMMENTS about reference counting follow.  The reference count
 * in a stable name entry is now just a counter.
 *
93 94 95 96 97 98 99 100 101 102
 * Reference counting
 * ------------------
 * A plain stable name entry has a zero reference count, which means
 * the entry will dissappear when the object it points to is
 * unreachable.  For stable pointers, we need an entry that sticks
 * around and keeps the object it points to alive, so each stable name
 * entry has an associated reference count.
 *
 * A stable pointer has a weighted reference count N attached to it
 * (actually in its upper 5 bits), which represents the weight
103
 * 2^(N-1).  The stable name entry keeps a 32-bit reference count, which
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 * represents any weight between 1 and 2^32 (represented as zero).
 * When the weight is 2^32, the stable name table owns "all" of the
 * stable pointers to this object, and the entry can be garbage
 * collected if the object isn't reachable.
 *
 * A new stable pointer is given the weight log2(W/2), where W is the
 * weight stored in the table entry.  The new weight in the table is W
 * - 2^log2(W/2).
 *
 * A stable pointer can be "split" into two stable pointers, by
 * dividing the weight by 2 and giving each pointer half.
 * When freeing a stable pointer, the weight of the pointer is added
 * to the weight stored in the table entry.
 * */

119
static HashTable *addrToStableHash = NULL;
120 121 122

#define INIT_SPT_SIZE 64

sof's avatar
sof committed
123
STATIC_INLINE void
124 125 126 127 128
initFreeList(snEntry *table, nat n, snEntry *free)
{
  snEntry *p;

  for (p = table + n - 1; p >= table; p--) {
sof's avatar
sof committed
129
    p->addr   = (P_)free;
130
    p->old    = NULL;
131
    p->ref    = 0;
sof's avatar
sof committed
132
    p->sn_obj = NULL;
133 134 135 136 137 138 139 140
    free = p;
  }
  stable_ptr_free = table;
}

void
initStablePtrTable(void)
{
141 142 143 144 145 146 147 148 149 150 151 152 153 154
	if (SPT_size > 0)
		return;

    SPT_size = INIT_SPT_SIZE;
    stable_ptr_table = stgMallocBytes(SPT_size * sizeof(snEntry),
				      "initStablePtrTable");

    /* we don't use index 0 in the stable name table, because that
     * would conflict with the hash table lookup operations which
     * return NULL if an entry isn't found in the hash table.
     */
    initFreeList(stable_ptr_table+1,INIT_SPT_SIZE-1,NULL);
    addrToStableHash = allocHashTable();

155
#ifdef THREADED_RTS
156
    initMutex(&stable_mutex);
157
#endif
158 159
}

160 161 162 163 164 165 166 167 168 169
void
exitStablePtrTable(void)
{
  if (addrToStableHash)
    freeHashTable(addrToStableHash, NULL);
  addrToStableHash = NULL;
  if (stable_ptr_table)
    stgFree(stable_ptr_table);
  stable_ptr_table = NULL;
  SPT_size = 0;
170 171 172
#ifdef THREADED_RTS
  closeMutex(&stable_mutex);
#endif
173 174
}

sof's avatar
sof committed
175 176
/*
 * get at the real stuff...remove indirections.
Simon Marlow's avatar
Simon Marlow committed
177 178 179
 * It untags pointers before dereferencing and
 * retags the real stuff with its tag (if there
 * is any) when returning.
sof's avatar
sof committed
180 181 182 183 184 185 186
 *
 * ToDo: move to a better home.
 */
static
StgClosure*
removeIndirections(StgClosure* p)
{
Simon Marlow's avatar
Simon Marlow committed
187 188
  StgWord tag = GET_CLOSURE_TAG(p);
  StgClosure* q = UNTAG_CLOSURE(p);
sof's avatar
sof committed
189

190 191 192 193 194
  while (get_itbl(q)->type == IND ||
         get_itbl(q)->type == IND_STATIC ||
         get_itbl(q)->type == IND_OLDGEN ||
         get_itbl(q)->type == IND_PERM ||
         get_itbl(q)->type == IND_OLDGEN_PERM ) {
195
      q = ((StgInd *)q)->indirectee;
Simon Marlow's avatar
Simon Marlow committed
196
      tag = GET_CLOSURE_TAG(q);
197
      q = UNTAG_CLOSURE(q);
sof's avatar
sof committed
198
  }
199

Simon Marlow's avatar
Simon Marlow committed
200
  return TAG_CLOSURE(tag,q);
sof's avatar
sof committed
201 202
}

203 204
static StgWord
lookupStableName_(StgPtr p)
205 206
{
  StgWord sn;
207
  void* sn_tmp;
208 209 210 211

  if (stable_ptr_free == NULL) {
    enlargeStablePtrTable();
  }
sof's avatar
sof committed
212 213

  /* removing indirections increases the likelihood
214
   * of finding a match in the stable name hash table.
sof's avatar
sof committed
215 216 217
   */
  p = (StgPtr)removeIndirections((StgClosure*)p);

Simon Marlow's avatar
Simon Marlow committed
218 219 220
  // register the untagged pointer.  This just makes things simpler.
  p = (StgPtr)UNTAG_CLOSURE((StgClosure*)p);

221 222
  sn_tmp = lookupHashTable(addrToStableHash,(W_)p);
  sn = (StgWord)sn_tmp;
223 224 225
  
  if (sn != 0) {
    ASSERT(stable_ptr_table[sn].addr == p);
Simon Marlow's avatar
Simon Marlow committed
226
    debugTrace(DEBUG_stable, "cached stable name %ld at %p",sn,p);
227 228 229
    return sn;
  } else {
    sn = stable_ptr_free - stable_ptr_table;
230
    stable_ptr_free  = (snEntry*)(stable_ptr_free->addr);
231
    stable_ptr_table[sn].ref = 0;
232
    stable_ptr_table[sn].addr = p;
233
    stable_ptr_table[sn].sn_obj = NULL;
Simon Marlow's avatar
Simon Marlow committed
234
    /* debugTrace(DEBUG_stable, "new stable name %d at %p\n",sn,p); */
235 236 237 238 239 240 241 242
    
    /* add the new stable name to the hash table */
    insertHashTable(addrToStableHash, (W_)p, (void *)sn);

    return sn;
  }
}

243 244 245 246
StgWord
lookupStableName(StgPtr p)
{
    StgWord res;
247 248

    initStablePtrTable();
249 250 251 252 253 254
    ACQUIRE_LOCK(&stable_mutex);
    res = lookupStableName_(p);
    RELEASE_LOCK(&stable_mutex);
    return res;
}

sof's avatar
sof committed
255
STATIC_INLINE void
256 257
freeStableName(snEntry *sn)
{
258
  ASSERT(sn->sn_obj == NULL);
259
  if (sn->addr != NULL) {
260
      removeHashTable(addrToStableHash, (W_)sn->addr, NULL);
261
  }
262 263 264 265 266 267 268
  sn->addr = (P_)stable_ptr_free;
  stable_ptr_free = sn;
}

StgStablePtr
getStablePtr(StgPtr p)
{
269 270
  StgWord sn;

271
  initStablePtrTable();
272 273
  ACQUIRE_LOCK(&stable_mutex);
  sn = lookupStableName_(p);
274
  stable_ptr_table[sn].ref++;
275
  RELEASE_LOCK(&stable_mutex);
276
  return (StgStablePtr)(sn);
277 278
}

279 280 281
void
freeStablePtr(StgStablePtr sp)
{
282 283
    snEntry *sn;

284
	initStablePtrTable();
285 286 287
    ACQUIRE_LOCK(&stable_mutex);

    sn = &stable_ptr_table[(StgWord)sp];
288
    
289 290 291 292 293 294 295
    ASSERT((StgWord)sp < SPT_size  &&  sn->addr != NULL  &&  sn->ref > 0);

    sn->ref--;

    // If this entry has no StableName attached, then just free it
    // immediately.  This is important; it might be a while before the
    // next major GC which actually collects the entry.
296
    if (sn->sn_obj == NULL && sn->ref == 0) {
297 298
	freeStableName(sn);
    }
299 300

    RELEASE_LOCK(&stable_mutex);
301 302
}

303 304 305 306
void
enlargeStablePtrTable(void)
{
  nat old_SPT_size = SPT_size;
307

308
    // 2nd and subsequent times
309 310 311
  SPT_size *= 2;
  stable_ptr_table =
    stgReallocBytes(stable_ptr_table,
sof's avatar
sof committed
312
		      SPT_size * sizeof(snEntry),
313
		      "enlargeStablePtrTable");
sof's avatar
sof committed
314

315
  initFreeList(stable_ptr_table + old_SPT_size, old_SPT_size, NULL);
316 317 318 319 320
}

/* -----------------------------------------------------------------------------
 * Treat stable pointers as roots for the garbage collector.
 *
321
 * A stable pointer is any stable name entry with a ref > 0.  We'll
322 323 324 325
 * take the opportunity to zero the "keep" flags at the same time.
 * -------------------------------------------------------------------------- */

void
326
markStablePtrTable(evac_fn evac, void *user)
327
{
328 329 330 331 332 333 334 335 336 337
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // Mark all the stable *pointers* (not stable names).
    // _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
	q = p->addr;

338 339 340
	// Internal pointers are free slots.  If q == NULL, it's a
	// stable name where the object has been GC'd, but the
	// StableName object (sn_obj) is still alive.
341 342 343 344 345 346 347
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {

	    // save the current addr away: we need to be able to tell
	    // whether the objects moved in order to be able to update
	    // the hash table later.
	    p->old = p->addr;

348 349
	    // if the ref is non-zero, treat addr as a root
	    if (p->ref != 0) {
350
		evac(user, (StgClosure **)&p->addr);
351 352 353 354
	    }
	}
    }
}
355

356 357 358 359 360 361 362
/* -----------------------------------------------------------------------------
 * Thread the stable pointer table for compacting GC.
 * 
 * Here we must call the supplied evac function for each pointer into
 * the heap from the stable pointer table, because the compacting
 * collector may move the object it points to.
 * -------------------------------------------------------------------------- */
363

364
void
365
threadStablePtrTable( evac_fn evac, void *user )
366 367 368 369 370 371 372 373
{
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
	
374
	if (p->sn_obj != NULL) {
375
	    evac(user, (StgClosure **)&p->sn_obj);
376 377 378
	}

	q = p->addr;
379
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
380
	    evac(user, (StgClosure **)&p->addr);
381 382 383 384 385 386 387 388 389
	}
    }
}

/* -----------------------------------------------------------------------------
 * Garbage collect any dead entries in the stable pointer table.
 *
 * A dead entry has:
 *
390
 *          - a zero reference count
391
 *          - a dead sn_obj
392
 *
393 394 395 396
 * Both of these conditions must be true in order to re-use the stable
 * name table entry.  We can re-use stable name table entries for live
 * heap objects, as long as the program has no StableName objects that
 * refer to the entry.
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
 * -------------------------------------------------------------------------- */

void
gcStablePtrTable( void )
{
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // NOTE: _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
	
	// Update the pointer to the StableName object, if there is one
	if (p->sn_obj != NULL) {
	    p->sn_obj = isAlive(p->sn_obj);
	}
	
415 416 417
	// Internal pointers are free slots.  If q == NULL, it's a
	// stable name where the object has been GC'd, but the
	// StableName object (sn_obj) is still alive.
418 419 420 421
	q = p->addr;
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {

	    // StableNames only:
422
	    if (p->ref == 0) {
423 424 425
		if (p->sn_obj == NULL) {
		    // StableName object is dead
		    freeStableName(p);
426 427
		    debugTrace(DEBUG_stable, "GC'd Stable name %ld",
			       (long)(p - stable_ptr_table));
428 429 430
		    continue;
		    
		} else {
431
		  p->addr = (StgPtr)isAlive((StgClosure *)p->addr);
Simon Marlow's avatar
Simon Marlow committed
432 433
		  debugTrace(DEBUG_stable, 
			     "stable name %ld still alive at %p, ref %ld\n",
434
			     (long)(p - stable_ptr_table), p->addr, p->ref);
435 436 437 438 439 440 441 442
		}
	    }
	}
    }
}

/* -----------------------------------------------------------------------------
 * Update the StablePtr/StableName hash table
443 444 445 446 447 448 449 450
 *
 * The boolean argument 'full' indicates that a major collection is
 * being done, so we might as well throw away the hash table and build
 * a new one.  For a minor collection, we just re-hash the elements
 * that changed.
 * -------------------------------------------------------------------------- */

void
451
updateStablePtrTable(rtsBool full)
452
{
453 454 455 456 457
    snEntry *p, *end_stable_ptr_table;
    
    if (full && addrToStableHash != NULL) {
	freeHashTable(addrToStableHash,NULL);
	addrToStableHash = allocHashTable();
458
    }
459 460 461 462 463
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // NOTE: _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
464
	
465 466 467 468 469 470 471 472 473 474 475
	if (p->addr == NULL) {
	    if (p->old != NULL) {
		// The target has been garbage collected.  Remove its
		// entry from the hash table.
		removeHashTable(addrToStableHash, (W_)p->old, NULL);
		p->old = NULL;
	    }
	}
	else if (p->addr < (P_)stable_ptr_table 
		 || p->addr >= (P_)end_stable_ptr_table) {
	    // Target still alive, Re-hash this stable name 
476
	    if (full) {
477 478 479 480 481 482
		insertHashTable(addrToStableHash, (W_)p->addr, 
				(void *)(p - stable_ptr_table));
	    } else if (p->addr != p->old) {
		removeHashTable(addrToStableHash, (W_)p->old, NULL);
		insertHashTable(addrToStableHash, (W_)p->addr, 
				(void *)(p - stable_ptr_table));
483
	    }
484 485 486
	}
    }
}