TcSimplify.lhs 58.4 KB
Newer Older
1
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
2 3 4 5 6 7 8
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

9
module TcSimplify( 
10
       simplifyInfer, simplifyAmbiguityCheck,
11
       simplifyDefault, simplifyDeriv, 
12 13
       simplifyRule, simplifyTop, simplifyInteractive
  ) where
14

15
#include "HsVersions.h"
16

17
import HsSyn	       
18
import TcRnMonad
19
import TcErrors
20
import TcMType
21 22
import TcType 
import TcSMonad 
23
import TcInteract 
24
import Inst
25
import Unify	( niFixTvSubst, niSubstTvSet )
26
import Var
27
import VarSet
28
import VarEnv 
29
import Coercion
30
import TypeRep
31 32
import Name
import NameEnv	( emptyNameEnv )
33
import Bag
34 35
import ListSetOps
import Util
36 37 38
import PrelInfo
import PrelNames
import Class		( classKey )
39
import BasicTypes       ( RuleName )
40
import Control.Monad    ( when )
41
import Outputable
42
import FastString
43 44
import TrieMap

45 46 47
\end{code}


48 49 50 51 52
*********************************************************************************
*                                                                               * 
*                           External interface                                  *
*                                                                               *
*********************************************************************************
53

54 55 56
\begin{code}
simplifyTop :: WantedConstraints -> TcM (Bag EvBind)
-- Simplify top-level constraints
57 58 59
-- Usually these will be implications,
-- but when there is nothing to quantify we don't wrap
-- in a degenerate implication, so we do that here instead
60
simplifyTop wanteds 
61
  = simplifyCheck (SimplCheck (ptext (sLit "top level"))) wanteds
62

63 64 65 66
------------------
simplifyAmbiguityCheck :: Name -> WantedConstraints -> TcM (Bag EvBind)
simplifyAmbiguityCheck name wanteds
  = simplifyCheck (SimplCheck (ptext (sLit "ambiguity check for") <+> ppr name)) wanteds
67
 
68 69 70 71 72 73 74 75 76
------------------
simplifyInteractive :: WantedConstraints -> TcM (Bag EvBind)
simplifyInteractive wanteds 
  = simplifyCheck SimplInteractive wanteds

------------------
simplifyDefault :: ThetaType	-- Wanted; has no type variables in it
                -> TcM ()	-- Succeeds iff the constraint is soluble
simplifyDefault theta
77
  = do { wanted <- newFlatWanteds DefaultOrigin theta
78 79
       ; _ignored_ev_binds <- simplifyCheck (SimplCheck (ptext (sLit "defaults"))) 
                                            (mkFlatWC wanted)
80 81
       ; return () }
\end{code}
82

83

84
***********************************************************************************
85
*                                                                                 * 
86
*                            Deriving                                             *
87 88
*                                                                                 *
***********************************************************************************
89

90 91
\begin{code}
simplifyDeriv :: CtOrigin
92 93 94 95
              -> PredType
	      -> [TyVar]	
	      -> ThetaType		-- Wanted
	      -> TcM ThetaType	-- Needed
96 97
-- Given  instance (wanted) => C inst_ty 
-- Simplify 'wanted' as much as possibles
98
-- Fail if not possible
99
simplifyDeriv orig pred tvs theta 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
100 101 102 103 104
  = do { tvs_skols <- tcInstSkolTyVars tvs -- Skolemize
      	 	-- The constraint solving machinery 
		-- expects *TcTyVars* not TyVars.  
		-- We use *non-overlappable* (vanilla) skolems
		-- See Note [Overlap and deriving]
105 106

       ; let skol_subst = zipTopTvSubst tvs $ map mkTyVarTy tvs_skols
107
             subst_skol = zipTopTvSubst tvs_skols $ map mkTyVarTy tvs
108
             skol_set   = mkVarSet tvs_skols
109
	     doc = parens $ ptext (sLit "deriving") <+> parens (ppr pred)
110 111 112 113 114

       ; wanted <- newFlatWanteds orig (substTheta skol_subst theta)

       ; traceTc "simplifyDeriv" (ppr tvs $$ ppr theta $$ ppr wanted)
       ; (residual_wanted, _binds)
115 116
             <- solveWanteds (SimplInfer doc) NoUntouchables $
                mkFlatWC wanted
117

118 119
       ; let (good, bad) = partitionBagWith get_good (wc_flat residual_wanted)
                         -- See Note [Exotic derived instance contexts]
120 121 122
             get_good :: Ct -> Either PredType Ct
             get_good ct | validDerivPred skol_set p = Left p
                         | otherwise                 = Right ct
123
                         where p = ctPred ct
124

125
       ; reportUnsolved (residual_wanted { wc_flat = bad })
126

127 128
       ; let min_theta = mkMinimalBySCs (bagToList good)
       ; return (substTheta subst_skol min_theta) }
129
\end{code}
130

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
  data Show a => Show [a] where ..
  data Show [Char] where ...

Now a data type with deriving:
  data T a = MkT [a] deriving( Show )

We want to get the derived instance
  instance Show [a] => Show (T a) where...
and NOT
  instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing

It's very like the situation when we're inferring the type
of a function
   f x = show [x]
and we want to infer
   f :: Show [a] => a -> String

BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
             the context for the derived instance. 
	     Hence tcInstSkolTyVars not tcInstSuperSkolTyVars

156 157 158 159 160 161 162
Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context.  It's a
bit unclear what rules we should apply for this; the Haskell report is
silent.  Obviously, constraints like (Eq a) are fine, but what about
	data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint.  That's probably fine too.
163

164 165 166
One could go further: consider
	data T a b c = MkT (Foo a b c) deriving( Eq )
	instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)
167

168 169
Notice that this instance (just) satisfies the Paterson termination 
conditions.  Then we *could* derive an instance decl like this:
170

171 172 173 174
	instance (C Int a, Eq b, Eq c) => Eq (T a b c) 
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.  
175

176 177 178
However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.
179

180 181
So for now we simply require that the derived instance context
should have only type-variable constraints.
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
Here is another example:
	data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
	instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!

NB: if you want to lift this condition, make sure you still meet the
termination conditions!  If not, the deriving mechanism generates
larger and larger constraints.  Example:
  data Succ a = S a
  data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show

Note the lack of a Show instance for Succ.  First we'll generate
  instance (Show (Succ a), Show a) => Show (Seq a)
and then
  instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on.  Instead we want to complain of no instance for (Show (Succ a)).

The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.

*********************************************************************************
*                                                                                 * 
*                            Inference
*                                                                                 *
***********************************************************************************
212

dreixel's avatar
dreixel committed
213 214 215 216 217 218 219 220 221 222 223 224
Note [Which variables to quantify]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose the inferred type of a function is
   T kappa (alpha:kappa) -> Int
where alpha is a type unification variable and 
      kappa is a kind unification variable
Then we want to quantify over *both* alpha and kappa.  But notice that
kappa appears "at top level" of the type, as well as inside the kind
of alpha.  So it should be fine to just look for the "top level"
kind/type variables of the type, without looking transitively into the
kinds of those type variables.

225
\begin{code}
226
simplifyInfer :: Bool
227 228 229
              -> Bool                  -- Apply monomorphism restriction
              -> [(Name, TcTauType)]   -- Variables to be generalised,
                                       -- and their tau-types
230 231 232
              -> WantedConstraints
              -> TcM ([TcTyVar],    -- Quantify over these type variables
                      [EvVar],      -- ... and these constraints
233 234 235
		      Bool,	    -- The monomorphism restriction did something
		      		    --   so the results type is not as general as
				    --   it could be
236
                      TcEvBinds)    -- ... binding these evidence variables
237
simplifyInfer _top_lvl apply_mr name_taus wanteds
238 239 240
  | isEmptyWC wanteds
  = do { gbl_tvs     <- tcGetGlobalTyVars            -- Already zonked
       ; zonked_taus <- zonkTcTypes (map snd name_taus)
dreixel's avatar
dreixel committed
241 242 243 244
       ; let tvs_to_quantify = tyVarsOfTypes zonked_taus `minusVarSet` gbl_tvs
       	     		       -- tvs_to_quantify can contain both kind and type vars
       	                       -- See Note [Which variables to quantify]
       ; qtvs <- zonkQuantifiedTyVars tvs_to_quantify
245
       ; return (qtvs, [], False, emptyTcEvBinds) }
246

247
  | otherwise
248 249 250 251
  = do { zonked_wanteds <- zonkWC wanteds
       ; zonked_taus    <- zonkTcTypes (map snd name_taus)
       ; gbl_tvs        <- tcGetGlobalTyVars

252
       ; traceTc "simplifyInfer {"  $ vcat
253 254 255 256 257
             [ ptext (sLit "names =") <+> ppr (map fst name_taus)
             , ptext (sLit "taus (zonked) =") <+> ppr zonked_taus
             , ptext (sLit "gbl_tvs =") <+> ppr gbl_tvs
             , ptext (sLit "closed =") <+> ppr _top_lvl
             , ptext (sLit "apply_mr =") <+> ppr apply_mr
258
             , ptext (sLit "wanted =") <+> ppr zonked_wanteds
259 260
             ]

261 262
             -- Step 1
             -- Make a guess at the quantified type variables
263 264 265
	     -- Then split the constraints on the baisis of those tyvars
	     -- to avoid unnecessarily simplifying a class constraint
	     -- See Note [Avoid unecessary constraint simplification]
dreixel's avatar
dreixel committed
266
       ; let zonked_tau_tvs = tyVarsOfTypes zonked_taus
267
             proto_qtvs = growWanteds gbl_tvs zonked_wanteds $
268
                          zonked_tau_tvs `minusVarSet` gbl_tvs
269 270 271 272 273 274 275 276 277
             (perhaps_bound, surely_free)
                        = partitionBag (quantifyMe proto_qtvs) (wc_flat zonked_wanteds)

       ; traceTc "simplifyInfer proto"  $ vcat
             [ ptext (sLit "zonked_tau_tvs =") <+> ppr zonked_tau_tvs
             , ptext (sLit "proto_qtvs =") <+> ppr proto_qtvs
             , ptext (sLit "surely_fref =") <+> ppr surely_free
             ]

278
       ; emitWantedCts surely_free
279 280 281 282
       ; traceTc "sinf"  $ vcat
             [ ptext (sLit "perhaps_bound =") <+> ppr perhaps_bound
             , ptext (sLit "surely_free   =") <+> ppr surely_free
             ]
283

284 285 286
            -- Step 2 
       	    -- Now simplify the possibly-bound constraints
       ; (simpl_results, tc_binds0)
287
           <- runTcS (SimplInfer (ppr (map fst name_taus))) NoUntouchables emptyInert emptyWorkList $
288 289 290 291 292 293 294 295 296 297
              simplifyWithApprox (zonked_wanteds { wc_flat = perhaps_bound })

       ; when (insolubleWC simpl_results)  -- Fail fast if there is an insoluble constraint
              (do { reportUnsolved simpl_results; failM })

            -- Step 3 
            -- Split again simplified_perhaps_bound, because some unifications 
            -- may have happened, and emit the free constraints. 
       ; gbl_tvs        <- tcGetGlobalTyVars
       ; zonked_tau_tvs <- zonkTcTyVarsAndFV zonked_tau_tvs
298
       ; zonked_simples <- zonkCts (wc_flat simpl_results)
299
       ; let init_tvs 	     = zonked_tau_tvs `minusVarSet` gbl_tvs
300 301 302 303
             poly_qtvs       = growWantedEVs gbl_tvs zonked_simples init_tvs
	     (pbound, pfree) = partitionBag (quantifyMe poly_qtvs) zonked_simples

	     -- Monomorphism restriction
304
             mr_qtvs  	     = init_tvs `minusVarSet` constrained_tvs
305
             constrained_tvs = tyVarsOfCts zonked_simples
306 307 308 309 310
	     mr_bites        = apply_mr && not (isEmptyBag pbound)

             (qtvs, (bound, free))
                | mr_bites  = (mr_qtvs,   (emptyBag, zonked_simples))
                | otherwise = (poly_qtvs, (pbound,   pfree))
311
       ; emitWantedCts free
312

313
       ; if isEmptyVarSet qtvs && isEmptyBag bound
314 315 316
         then ASSERT( isEmptyBag (wc_insol simpl_results) )
              do { traceTc "} simplifyInfer/no quantification" empty
                 ; emitImplications (wc_impl simpl_results)
317
                 ; return ([], [], mr_bites, EvBinds tc_binds0) }
318 319 320
         else do

            -- Step 4, zonk quantified variables 
321
       { let minimal_flat_preds = mkMinimalBySCs $ 
322
                                  map ctPred $ bagToList bound
323 324
             skol_info = InferSkol [ (name, mkSigmaTy [] minimal_flat_preds ty)
                                   | (name, ty) <- name_taus ]
325 326 327 328
                        -- Don't add the quantified variables here, because
                        -- they are also bound in ic_skols and we want them to be
                        -- tidied uniformly

dreixel's avatar
dreixel committed
329
       ; qtvs_to_return <- zonkQuantifiedTyVars qtvs
330 331 332 333 334 335 336

            -- Step 5
            -- Minimize `bound' and emit an implication
       ; minimal_bound_ev_vars <- mapM TcMType.newEvVar minimal_flat_preds
       ; ev_binds_var <- newTcEvBinds
       ; mapBagM_ (\(EvBind evar etrm) -> addTcEvBind ev_binds_var evar etrm) tc_binds0
       ; lcl_env <- getLclTypeEnv
dreixel's avatar
dreixel committed
337
       ; gloc <- getCtLoc skol_info
338 339 340 341 342 343 344 345 346 347 348 349
       ; let implic = Implic { ic_untch    = NoUntouchables
                             , ic_env      = lcl_env
                             , ic_skols    = mkVarSet qtvs_to_return
                             , ic_given    = minimal_bound_ev_vars
                             , ic_wanted   = simpl_results { wc_flat = bound }
                             , ic_insol    = False
                             , ic_binds    = ev_binds_var
                             , ic_loc      = gloc }
       ; emitImplication implic
       ; traceTc "} simplifyInfer/produced residual implication for quantification" $
             vcat [ ptext (sLit "implic =") <+> ppr implic
                       -- ic_skols, ic_given give rest of result
350
                  , ptext (sLit "qtvs =") <+> ppr qtvs_to_return
351 352 353 354 355
                  , ptext (sLit "spb =") <+> ppr zonked_simples
                  , ptext (sLit "bound =") <+> ppr bound ]



356 357
       ; return ( qtvs_to_return, minimal_bound_ev_vars
                , mr_bites,  TcEvBinds ev_binds_var) } }
358
\end{code}
359 360


361 362
Note [Minimize by Superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
363

364 365 366 367 368 369 370
When we quantify over a constraint, in simplifyInfer we need to
quantify over a constraint that is minimal in some sense: For
instance, if the final wanted constraint is (Eq alpha, Ord alpha),
we'd like to quantify over Ord alpha, because we can just get Eq alpha
from superclass selection from Ord alpha. This minimization is what
mkMinimalBySCs does. Then, simplifyInfer uses the minimal constraint
to check the original wanted.
371

372
\begin{code}
373

374
simplifyWithApprox :: WantedConstraints -> TcS WantedConstraints
375
-- Post: returns only wanteds (no deriveds)
376 377
simplifyWithApprox wanted
 = do { traceTcS "simplifyApproxLoop" (ppr wanted)
378

379 380 381 382 383 384 385 386 387
      ; let all_flats = wc_flat wanted `unionBags` keepWanted (wc_insol wanted) 
      ; solveInteractCts $ bagToList all_flats
      ; unsolved_implics <- simpl_loop 1 (wc_impl wanted)

      ; let (residual_implics,floats) = approximateImplications unsolved_implics

      -- Solve extra stuff for real: notice that all the extra unsolved constraints will 
      -- be in the inerts of the monad, so we are OK
      ; traceTcS "simplifyApproxLoop" $ text "Calling solve_wanteds!"
388 389 390 391 392
      ; wants_or_ders <- solve_wanteds (WC { wc_flat  = floats -- They are floated so they are not in the evvar cache
                                           , wc_impl  = residual_implics
                                           , wc_insol = emptyBag })
      ; return $ 
        wants_or_ders { wc_flat = keepWanted (wc_flat wants_or_ders) } }
393

394 395

approximateImplications :: Bag Implication -> (Bag Implication, Cts)
396 397 398
-- Extracts any nested constraints that don't mention the skolems
approximateImplications impls
  = do_bag (float_implic emptyVarSet) impls
399
  where 
400 401 402 403 404
    do_bag :: forall a b c. (a -> (Bag b, Bag c)) -> Bag a -> (Bag b, Bag c)
    do_bag f = foldrBag (plus . f) (emptyBag, emptyBag)
    plus :: forall b c. (Bag b, Bag c) -> (Bag b, Bag c) -> (Bag b, Bag c)
    plus (a1,b1) (a2,b2) = (a1 `unionBags` a2, b1 `unionBags` b2)

405
    float_implic :: TyVarSet -> Implication -> (Bag Implication, Cts)
406 407 408 409 410 411 412 413 414 415 416
    float_implic skols imp
      = (unitBag (imp { ic_wanted = wanted' }), floats)
      where
        (wanted', floats) = float_wc (skols `unionVarSet` ic_skols imp) (ic_wanted imp)

    float_wc skols wc@(WC { wc_flat = flat, wc_impl = implic })
      = (wc { wc_flat = flat', wc_impl = implic' }, floats1 `unionBags` floats2)
      where
        (flat',   floats1) = do_bag (float_flat   skols) flat
        (implic', floats2) = do_bag (float_implic skols) implic

417 418 419 420
    float_flat :: TcTyVarSet -> Ct -> (Cts, Cts)
    float_flat skols ct
      | tyVarsOfCt ct `disjointVarSet` skols = (emptyBag, unitBag ct)
      | otherwise                            = (unitBag ct, emptyBag)
421
\end{code}
422

423
\begin{code}
424 425
-- (growX gbls wanted tvs) grows a seed 'tvs' against the 
-- X-constraint 'wanted', nuking the 'gbls' at each stage
426 427
-- It's conservative in that if the seed could *possibly*
-- grow to include a type variable, then it does
428

429 430 431
growWanteds :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWanteds gbl_tvs wc = fixVarSet (growWC gbl_tvs wc)

432
growWantedEVs :: TyVarSet -> Cts -> TyVarSet -> TyVarSet
433 434
growWantedEVs gbl_tvs ws tvs
  | isEmptyBag ws = tvs
435
  | otherwise     = fixVarSet (growPreds gbl_tvs ctPred ws) tvs
436

437 438 439
--------  Helper functions, do not do fixpoint ------------------------
growWC :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWC gbl_tvs wc = growImplics gbl_tvs             (wc_impl wc) .
440 441
                    growPreds   gbl_tvs ctPred (wc_flat wc) .
                    growPreds   gbl_tvs ctPred (wc_insol wc)
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456
growImplics :: TyVarSet -> Bag Implication -> TyVarSet -> TyVarSet
growImplics gbl_tvs implics tvs
  = foldrBag grow_implic tvs implics
  where
    grow_implic implic tvs
      = grow tvs `minusVarSet` ic_skols implic
      where
        grow = growWC gbl_tvs (ic_wanted implic) .
               growPreds gbl_tvs evVarPred (listToBag (ic_given implic))
               -- We must grow from givens too; see test IPRun

growPreds :: TyVarSet -> (a -> PredType) -> Bag a -> TyVarSet -> TyVarSet
growPreds gbl_tvs get_pred items tvs
  = foldrBag extend tvs items
457
  where
458 459
    extend item tvs = tvs `unionVarSet`
                      (growPredTyVars (get_pred item) tvs `minusVarSet` gbl_tvs)
460 461 462

--------------------
quantifyMe :: TyVarSet      -- Quantifying over these
463
	   -> Ct
464
	   -> Bool	    -- True <=> quantify over this wanted
465
quantifyMe qtvs ct
466
  | isIPPred pred = True  -- Note [Inheriting implicit parameters]
batterseapower's avatar
batterseapower committed
467
  | otherwise	  = tyVarsOfType pred `intersectsVarSet` qtvs
468
  where
469
    pred = ctPred ct
470
\end{code}
471

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
Note [Avoid unecessary constraint simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When inferring the type of a let-binding, with simplifyInfer,
try to avoid unnecessariliy simplifying class constraints.
Doing so aids sharing, but it also helps with delicate 
situations like
   instance C t => C [t] where ..
   f :: C [t] => ....
   f x = let g y = ...(constraint C [t])... 
         in ...
When inferring a type for 'g', we don't want to apply the
instance decl, because then we can't satisfy (C t).  So we
just notice that g isn't quantified over 't' and partition
the contraints before simplifying.

This only half-works, but then let-generalisation only half-works.


490 491
Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
492 493 494
Consider this:

	f x = (x::Int) + ?y
495

496 497 498
where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:
499

500 501 502
	f :: Int -> Int

(so we get ?y from the context of f's definition), or
503 504 505

	f :: (?y::Int) => Int -> Int

506 507 508 509 510 511
At first you might think the first was better, becuase then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site.  But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.

512 513
BOTTOM LINE: when *inferring types* you *must* quantify 
over implicit parameters. See the predicate isFreeWhenInferring.
514

515

516 517 518 519 520
*********************************************************************************
*                                                                                 * 
*                             RULES                                               *
*                                                                                 *
***********************************************************************************
521

522 523
Note [Simplifying RULE lhs constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
524
On the LHS of transformation rules we only simplify only equalities,
525 526 527 528
but not dictionaries.  We want to keep dictionaries unsimplified, to
serve as the available stuff for the RHS of the rule.  We *do* want to
simplify equalities, however, to detect ill-typed rules that cannot be
applied.
529

530 531 532
Implementation: the TcSFlags carried by the TcSMonad controls the
amount of simplification, so simplifyRuleLhs just sets the flag
appropriately.
533

534 535 536 537 538 539 540 541 542 543
Example.  Consider the following left-hand side of a rule
	f (x == y) (y > z) = ...
If we typecheck this expression we get constraints
	d1 :: Ord a, d2 :: Eq a
We do NOT want to "simplify" to the LHS
	forall x::a, y::a, z::a, d1::Ord a.
	  f ((==) (eqFromOrd d1) x y) ((>) d1 y z) = ...
Instead we want	
	forall x::a, y::a, z::a, d1::Ord a, d2::Eq a.
	  f ((==) d2 x y) ((>) d1 y z) = ...
544

545
Here is another example:
546 547
	fromIntegral :: (Integral a, Num b) => a -> b
	{-# RULES "foo"  fromIntegral = id :: Int -> Int #-}
548 549
In the rule, a=b=Int, and Num Int is a superclass of Integral Int. But
we *dont* want to get
550
	forall dIntegralInt.
551
	   fromIntegral Int Int dIntegralInt (scsel dIntegralInt) = id Int
552
because the scsel will mess up RULE matching.  Instead we want
553
	forall dIntegralInt, dNumInt.
554
	  fromIntegral Int Int dIntegralInt dNumInt = id Int
555

556 557 558 559 560 561 562
Even if we have 
	g (x == y) (y == z) = ..
where the two dictionaries are *identical*, we do NOT WANT
	forall x::a, y::a, z::a, d1::Eq a
	  f ((==) d1 x y) ((>) d1 y z) = ...
because that will only match if the dict args are (visibly) equal.
Instead we want to quantify over the dictionaries separately.
563

564 565
In short, simplifyRuleLhs must *only* squash equalities, leaving
all dicts unchanged, with absolutely no sharing.  
566

567 568 569 570 571 572 573 574 575
HOWEVER, under a nested implication things are different
Consider
  f :: (forall a. Eq a => a->a) -> Bool -> ...
  {-# RULES "foo" forall (v::forall b. Eq b => b->b).
       f b True = ...
    #=}
Here we *must* solve the wanted (Eq a) from the given (Eq a)
resulting from skolemising the agument type of g.  So we 
revert to SimplCheck when going under an implication.  
576 577

\begin{code}
578 579 580 581 582 583 584 585 586
simplifyRule :: RuleName 
             -> [TcTyVar]		-- Explicit skolems
             -> WantedConstraints	-- Constraints from LHS
             -> WantedConstraints	-- Constraints from RHS
             -> TcM ([EvVar], 		-- LHS dicts
                     TcEvBinds,		-- Evidence for LHS
                     TcEvBinds)		-- Evidence for RHS
-- See Note [Simplifying RULE lhs constraints]
simplifyRule name tv_bndrs lhs_wanted rhs_wanted
587 588 589 590 591 592 593
  = do { loc        <- getCtLoc (RuleSkol name)
       ; zonked_lhs <- zonkWC lhs_wanted
       ; let untch = NoUntouchables
	     	 -- We allow ourselves to unify environment 
		 -- variables; hence *no untouchables*

       ; (lhs_results, lhs_binds)
594
              <- solveWanteds (SimplRuleLhs name) untch zonked_lhs
595 596 597 598 599 600 601

       ; traceTc "simplifyRule" $
         vcat [ text "zonked_lhs"   <+> ppr zonked_lhs 
              , text "lhs_results" <+> ppr lhs_results
              , text "lhs_binds"    <+> ppr lhs_binds 
              , text "rhs_wanted"   <+> ppr rhs_wanted ]

602 603

       -- Don't quantify over equalities (judgement call here)
604
       ; let (eqs, dicts) = partitionBag (isEqPred . ctPred)
605
                                         (wc_flat lhs_results)
606
             lhs_dicts    = map cc_id (bagToList dicts)
607 608 609 610 611 612 613 614 615 616 617 618
                                 -- Dicts and implicit parameters

           -- Fail if we have not got down to unsolved flats
       ; ev_binds_var <- newTcEvBinds
       ; emitImplication $ Implic { ic_untch  = untch
                                  , ic_env    = emptyNameEnv
                                  , ic_skols  = mkVarSet tv_bndrs
                                  , ic_given  = lhs_dicts
                                  , ic_wanted = lhs_results { wc_flat = eqs }
                                  , ic_insol  = insolubleWC lhs_results
                                  , ic_binds  = ev_binds_var
                                  , ic_loc    = loc }
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

	     -- Notice that we simplify the RHS with only the explicitly
	     -- introduced skolems, allowing the RHS to constrain any 
	     -- unification variables.
	     -- Then, and only then, we call zonkQuantifiedTypeVariables
	     -- Example   foo :: Ord a => a -> a
	     --		  foo_spec :: Int -> Int
	     --		  {-# RULE "foo"  foo = foo_spec #-}
	     --	    Here, it's the RHS that fixes the type variable

	     -- So we don't want to make untouchable the type
	     -- variables in the envt of the RHS, because they include
	     -- the template variables of the RULE

	     -- Hence the rather painful ad-hoc treatement here
       ; rhs_binds_var@(EvBindsVar evb_ref _)  <- newTcEvBinds
635 636
       ; let doc = ptext (sLit "rhs of rule") <+> doubleQuotes (ftext name)
       ; rhs_binds1 <- simplifyCheck (SimplCheck doc) $
637 638 639 640 641 642 643 644 645 646 647
            WC { wc_flat = emptyBag
               , wc_insol = emptyBag
               , wc_impl = unitBag $
                    Implic { ic_untch   = NoUntouchables
                            , ic_env    = emptyNameEnv
                            , ic_skols  = mkVarSet tv_bndrs
                            , ic_given  = lhs_dicts
                            , ic_wanted = rhs_wanted
                            , ic_insol  = insolubleWC rhs_wanted
                            , ic_binds  = rhs_binds_var
                            , ic_loc    = loc } }
648 649 650 651 652
       ; rhs_binds2 <- readTcRef evb_ref

       ; return ( lhs_dicts
                , EvBinds lhs_binds 
                , EvBinds (rhs_binds1 `unionBags` evBindMapBinds rhs_binds2)) }
653 654 655
\end{code}


656 657 658 659 660
*********************************************************************************
*                                                                                 * 
*                                 Main Simplifier                                 *
*                                                                                 *
***********************************************************************************
661 662

\begin{code}
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
simplifyCheck :: SimplContext
	      -> WantedConstraints	-- Wanted
              -> TcM (Bag EvBind)
-- Solve a single, top-level implication constraint
-- e.g. typically one created from a top-level type signature
-- 	    f :: forall a. [a] -> [a]
--          f x = rhs
-- We do this even if the function has no polymorphism:
--    	    g :: Int -> Int

--          g y = rhs
-- (whereas for *nested* bindings we would not create
--  an implication constraint for g at all.)
--
-- Fails if can't solve something in the input wanteds
simplifyCheck ctxt wanteds
679
  = do { wanteds <- zonkWC wanteds
680 681 682 683

       ; traceTc "simplifyCheck {" (vcat
             [ ptext (sLit "wanted =") <+> ppr wanteds ])

684 685
       ; (unsolved, ev_binds) <- 
           solveWanteds ctxt NoUntouchables wanteds
686 687

       ; traceTc "simplifyCheck }" $
688
         ptext (sLit "unsolved =") <+> ppr unsolved
689

690
       ; reportUnsolved unsolved
691 692 693 694

       ; return ev_binds }

----------------
695 696
solveWanteds :: SimplContext 
             -> Untouchables
697
             -> WantedConstraints
698 699 700 701 702 703 704 705 706 707 708 709 710
             -> TcM (WantedConstraints, Bag EvBind)
-- Returns: residual constraints, plus evidence bindings 
-- NB: When we are called from TcM there are no inerts to pass down to TcS
solveWanteds ctxt untch wanted
  = do { (wc_out, ev_binds) <- runTcS ctxt untch emptyInert emptyWorkList $
                               solve_wanteds wanted
       ; let wc_ret = wc_out { wc_flat = keepWanted (wc_flat wc_out) } 
                      -- Discard Derived
       ; return (wc_ret, ev_binds) }

solve_wanteds :: WantedConstraints
              -> TcS WantedConstraints  -- NB: wc_flats may be wanted *or* derived now
solve_wanteds wanted@(WC { wc_flat = flats, wc_impl = implics, wc_insol = insols }) 
711 712 713
  = do { traceTcS "solveWanteds {" (ppr wanted)

                 -- Try the flat bit
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
714 715 716 717 718
                 -- Discard from insols all the derived/given constraints
                 -- because they will show up again when we try to solve
                 -- everything else.  Solving them a second time is a bit
                 -- of a waste, but the code is simple, and the program is
                 -- wrong anyway!
719

720
       ; let all_flats = flats `unionBags` keepWanted insols
721
       ; solveInteractCts $ bagToList all_flats
722

723 724 725
       -- solve_wanteds iterates when it is able to float equalities 
       -- out of one or more of the implications. 
       ; unsolved_implics <- simpl_loop 1 implics
726

727 728 729
       ; (insoluble_flats,unsolved_flats) <- extractUnsolvedTcS 

       ; bb <- getTcEvBindsMap
730
       ; tb <- getTcSTyBindsMap
731

732
       ; traceTcS "solveWanteds }" $
733
                 vcat [ text "unsolved_flats   =" <+> ppr unsolved_flats
734
                      , text "unsolved_implics =" <+> ppr unsolved_implics
735
                      , text "current evbinds  =" <+> ppr (evBindMapBinds bb)
736 737 738
                      , text "current tybinds  =" <+> vcat (map ppr (varEnvElts tb))
                      ]

739
       ; (subst, remaining_unsolved_flats) <- solveCTyFunEqs unsolved_flats
740
                -- See Note [Solving Family Equations]
741 742
                -- NB: remaining_flats has already had subst applied

743 744 745 746 747 748 749 750 751 752 753 754 755 756
       ; return $ 
         WC { wc_flat  = mapBag (substCt subst) remaining_unsolved_flats
            , wc_impl  = mapBag (substImplication subst) unsolved_implics
            , wc_insol = mapBag (substCt subst) insoluble_flats }
       }

simpl_loop :: Int
           -> Bag Implication
           -> TcS (Bag Implication)
simpl_loop n implics
  | n > 10 
  = traceTcS "solveWanteds: loop!" empty >> return implics
  | otherwise 
  = do { (implic_eqs, unsolved_implics) <- solveNestedImplications implics
757

758 759
       ; inerts <- getTcSInerts
       ; let ((_,unsolved_flats),_) = extractUnsolved inerts
760

761 762 763
       ; ecache_pre <- getTcSEvVarCacheMap
       ; let pr = ppr ((\k z m -> foldTM k m z) (:) [] ecache_pre)
       ; traceTcS "ecache_pre"  $ pr
dimitris's avatar
dimitris committed
764

765 766 767
       ; improve_eqs <- if not (isEmptyBag implic_eqs)
                        then return implic_eqs
                        else applyDefaultingRules unsolved_flats
768

769 770 771
       ; ecache_post <- getTcSEvVarCacheMap
       ; let po = ppr ((\k z m -> foldTM k m z) (:) [] ecache_post)
       ; traceTcS "ecache_po"  $ po
dimitris's avatar
dimitris committed
772

773 774 775 776
       ; traceTcS "solveWanteds: simpl_loop end" $
             vcat [ text "improve_eqs      =" <+> ppr improve_eqs
                  , text "unsolved_flats   =" <+> ppr unsolved_flats
                  , text "unsolved_implics =" <+> ppr unsolved_implics ]
777

778 779 780
       ; if isEmptyBag improve_eqs then return unsolved_implics 
         else do { solveInteractCts $ bagToList improve_eqs
                 ; simpl_loop (n+1) unsolved_implics } }
781

782 783 784 785 786 787 788 789 790 791
solveNestedImplications :: Bag Implication
                        -> TcS (Cts, Bag Implication)
-- Precondition: the TcS inerts may contain unsolved flats which have 
-- to be converted to givens before we go inside a nested implication.
solveNestedImplications implics
  | isEmptyBag implics
  = return (emptyBag, emptyBag)
  | otherwise 
  = do { inerts <- getTcSInerts
       ; let ((_insoluble_flats, unsolved_flats),thinner_inerts) = extractUnsolved inerts 
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
       ; (implic_eqs, unsolved_implics)
           <- doWithInert thinner_inerts $ 
              do { let pushed_givens = givens_from_wanteds unsolved_flats
                       tcs_untouchables = filterVarSet isFlexiTcsTv $ 
                                          tyVarsOfCts unsolved_flats
                 -- See Note [Preparing inert set for implications]
	         -- Push the unsolved wanteds inwards, but as givens
                 ; traceTcS "solveWanteds: preparing inerts for implications {" $ 
                   vcat [ppr tcs_untouchables, ppr pushed_givens]
                 ; solveInteractCts pushed_givens 
                 ; traceTcS "solveWanteds: } now doing nested implications {" empty
                 ; flatMapBagPairM (solveImplication tcs_untouchables) implics }

       -- ... and we are back in the original TcS inerts 
       -- Notice that the original includes the _insoluble_flats so it was safe to ignore
       -- them in the beginning of this function.
809 810 811 812 813 814
       ; traceTcS "solveWanteds: done nested implications }" $
                  vcat [ text "implic_eqs ="       <+> ppr implic_eqs
                       , text "unsolved_implics =" <+> ppr unsolved_implics ]

       ; return (implic_eqs, unsolved_implics) }

815 816 817 818 819 820 821 822 823 824
  where givens_from_wanteds = foldrBag get_wanted []
        get_wanted cc rest_givens
            | pushable_wanted cc
            = let this_given = cc { cc_flavor = mkGivenFlavor (cc_flavor cc) UnkSkol }
              in this_given : rest_givens
            | otherwise = rest_givens 

        pushable_wanted :: Ct -> Bool 
        pushable_wanted cc 
         | isWantedCt cc 
825
         = isEqPred (ctPred cc) -- see Note [Preparing inert set for implications]
826 827 828 829 830 831 832 833 834 835
         | otherwise = False 

solveImplication :: TcTyVarSet     -- Untouchable TcS unification variables
                 -> Implication    -- Wanted
                 -> TcS (Cts,      -- All wanted or derived floated equalities: var = type
                         Bag Implication) -- Unsolved rest (always empty or singleton)
-- Precondition: The TcS monad contains an empty worklist and given-only inerts 
-- which after trying to solve this implication we must restore to their original value
solveImplication tcs_untouchables
     imp@(Implic { ic_untch  = untch
836 837 838
                 , ic_binds  = ev_binds
                 , ic_skols  = skols 
                 , ic_given  = givens
839
                 , ic_wanted = wanteds
840
                 , ic_loc    = loc })
841
  = nestImplicTcS ev_binds (untch, tcs_untouchables) $
842 843
    recoverTcS (return (emptyBag, emptyBag)) $
       -- Recover from nested failures.  Even the top level is
844
       -- just a bunch of implications, so failing at the first one is bad
845 846 847
    do { traceTcS "solveImplication {" (ppr imp) 

         -- Solve flat givens
848
       ; solveInteractGiven loc givens 
849 850

         -- Simplify the wanteds
851 852 853
       ; WC { wc_flat = unsolved_flats
            , wc_impl = unsolved_implics
            , wc_insol = insols } <- solve_wanteds wanteds
854 855 856 857

       ; let (res_flat_free, res_flat_bound)
                 = floatEqualities skols givens unsolved_flats
             final_flat = keepWanted res_flat_bound
858

859 860
       ; let res_wanted = WC { wc_flat  = final_flat
                             , wc_impl  = unsolved_implics
861
                             , wc_insol = insols }
862

863 864 865
             res_implic = unitImplication $
                          imp { ic_wanted = res_wanted
                              , ic_insol  = insolubleWC res_wanted }
866

867 868
       ; evbinds <- getTcEvBindsMap

869 870
       ; traceTcS "solveImplication end }" $ vcat
             [ text "res_flat_free =" <+> ppr res_flat_free
871
             , text "implication evbinds = " <+> ppr (evBindMapBinds evbinds)
872
             , text "res_implic =" <+> ppr res_implic ]
873

874
       ; return (res_flat_free, res_implic) }
875
    -- and we are back to the original inerts
876 877


878
floatEqualities :: TcTyVarSet -> [EvVar] -> Cts -> (Cts, Cts)
879 880 881 882
-- Post: The returned FlavoredEvVar's are only Wanted or Derived
-- and come from the input wanted ev vars or deriveds 
floatEqualities skols can_given wantders
  | hasEqualities can_given = (emptyBag, wantders)
883
          -- Note [Float Equalities out of Implications]
884 885
  | otherwise = partitionBag is_floatable wantders
  
886 887
  where is_floatable :: Ct -> Bool
        is_floatable ct
888
          | ct_predty <- ctPred ct
889 890 891
          , isEqPred ct_predty
          = skols `disjointVarSet` tvs_under_fsks ct_predty
        is_floatable _ct = False
892 893 894 895 896 897 898 899 900 901 902

        tvs_under_fsks :: Type -> TyVarSet
        -- ^ NB: for type synonyms tvs_under_fsks does /not/ expand the synonym
        tvs_under_fsks (TyVarTy tv)     
          | not (isTcTyVar tv)               = unitVarSet tv
          | FlatSkol ty <- tcTyVarDetails tv = tvs_under_fsks ty
          | otherwise                        = unitVarSet tv
        tvs_under_fsks (TyConApp _ tys) = unionVarSets (map tvs_under_fsks tys)
        tvs_under_fsks (FunTy arg res)  = tvs_under_fsks arg `unionVarSet` tvs_under_fsks res
        tvs_under_fsks (AppTy fun arg)  = tvs_under_fsks fun `unionVarSet` tvs_under_fsks arg
        tvs_under_fsks (ForAllTy tv ty) -- The kind of a coercion binder 
903
        	     	       	        -- can mention type variables!
904 905 906 907 908
          | isTyVar tv		      = inner_tvs `delVarSet` tv
          | otherwise  {- Coercion -} = -- ASSERT( not (tv `elemVarSet` inner_tvs) )
                                        inner_tvs `unionVarSet` tvs_under_fsks (tyVarKind tv)
          where
            inner_tvs = tvs_under_fsks ty
909
\end{code}
910

911 912 913 914
Note [Preparing inert set for implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before solving the nested implications, we convert any unsolved flat wanteds
to givens, and add them to the inert set.  Reasons:
915 916

  a) In checking mode, suppresses unnecessary errors.  We already have
917
     on unsolved-wanted error; adding it to the givens prevents any 
918
     consequential errors from showing up
919

920 921 922 923
  b) More importantly, in inference mode, we are going to quantify over this
     constraint, and we *don't* want to quantify over any constraints that
     are deducible from it.

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
  c) Flattened type-family equalities must be exposed to the nested
     constraints.  Consider
	F b ~ alpha, (forall c.  F b ~ alpha)
     Obviously this is soluble with [alpha := F b].  But the
     unification is only done by solveCTyFunEqs, right at the end of
     solveWanteds, and if we aren't careful we'll end up with an
     unsolved goal inside the implication.  We need to "push" the
     as-yes-unsolved (F b ~ alpha) inwards, as a *given*, so that it
     can be used to solve the inner (F b
     ~ alpha).  See Trac #4935.

  d) There are other cases where interactions between wanteds that can help
     to solve a constraint. For example

  	class C a b | a -> b

  	(C Int alpha), (forall d. C d blah => C Int a)

     If we push the (C Int alpha) inwards, as a given, it can produce
     a fundep (alpha~a) and this can float out again and be used to
     fix alpha.  (In general we can't float class constraints out just
     in case (C d blah) might help to solve (C Int a).)

947 948 949 950 951 952 953 954
The unsolved wanteds are *canonical* but they may not be *inert*,
because when made into a given they might interact with other givens.
Hence the call to solveInteract.  Example:

 Original inert set = (d :_g D a) /\ (co :_w  a ~ [beta]) 

We were not able to solve (a ~w [beta]) but we can't just assume it as
given because the resulting set is not inert. Hence we have to do a
955 956
'solveInteract' step first. 

dimitris's avatar
dimitris committed
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
Finally, note that we convert them to [Given] and NOT [Given/Solved].
The reason is that Given/Solved are weaker than Givens and may be discarded.
As an example consider the inference case, where we may have, the following 
original constraints: 
     [Wanted] F Int ~ Int
             (F Int ~ a => F Int ~ a)
If we convert F Int ~ Int to [Given/Solved] instead of Given, then the next 
given (F Int ~ a) is going to cause the Given/Solved to be ignored, casting 
the (F Int ~ a) insoluble. Hence we should really convert the residual 
wanteds to plain old Given. 

We need only push in unsolved equalities both in checking mode and inference mode: 

  (1) In checking mode we should not push given dictionaries in because of
example LongWayOverlapping.hs, where we might get strange overlap
errors between far-away constraints in the program.  But even in
checking mode, we must still push type family equations. Consider:

   type instance F True a b = a 
   type instance F False a b = b

   [w] F c a b ~ gamma 
   (c ~ True) => a ~ gamma 
   (c ~ False) => b ~ gamma

Since solveCTyFunEqs happens at the very end of solving, the only way to solve
the two implications is temporarily consider (F c a b ~ gamma) as Given (NB: not 
merely Given/Solved because it has to interact with the top-level instance 
environment) and push it inside the implications. Now, when we come out again at
the end, having solved the implications solveCTyFunEqs will solve this equality.

  (2) In inference mode, we recheck the final constraint in checking mode and
hence we will be able to solve inner implications from top-level quantified
constraints nonetheless.


993 994
Note [Extra TcsTv untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
995 996 997 998 999
Furthemore, we record the inert set simplifier-generated unification
variables of the TcsTv kind (such as variables from instance that have
been applied, or unification flattens). These variables must be passed
to the implications as extra untouchable variables. Otherwise we have
the danger of double unifications. Example (from trac ticket #4494):
1000 1001 1002

   (F Int ~ uf)  /\  (forall a. C a => F Int ~ beta) 

1003 1004 1005
In this example, beta is touchable inside the implication. The first
solveInteract step leaves 'uf' ununified. Then we move inside the
implication where a new constraint
1006
       uf  ~  beta  
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
emerges. We may spontaneously solve it to get uf := beta, so the whole
implication disappears but when we pop out again we are left with (F
Int ~ uf) which will be unified by our final solveCTyFunEqs stage and
uf will get unified *once more* to (F Int).

The solution is to record the TcsTvs (i.e. the simplifier-generated
unification variables) that are generated when solving the flats, and
make them untouchables for the nested implication. In the example
above uf would become untouchable, so beta would be forced to be
unified as beta := uf.

NB: A consequence is that every simplifier-generated TcsTv variable
    that gets floated out of an implication becomes now untouchable
    next time we go inside that implication to solve any residual
    constraints. In effect, by floating an equality out of the
    implication we are committing to have it solved in the outside.
1023

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1024 1025 1026 1027
Note [Float Equalities out of Implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
We want to float equalities out of vanilla existentials, but *not* out 
of GADT pattern matches. 
1028

1029

1030 1031
\begin{code}

1032
solveCTyFunEqs :: Cts -> TcS (TvSubst, Cts)
1033 1034
-- Default equalities (F xi ~ alpha) by setting (alpha := F xi), whenever possible
-- See Note [Solving Family Equations]
1035
-- Returns: a bunch of unsolved constraints from the original Cts and implications
1036
--          where the newly generated equalities (alpha := F xi) have been substituted through.
1037
solveCTyFunEqs cts
1038
 = do { untch   <- getUntouchables 
1039 1040
      ; let (unsolved_can_cts, (ni_subst, cv_binds))
                = getSolvableCTyFunEqs untch cts
1041
      ; traceTcS "defaultCTyFunEqs" (vcat [text "Trying to default family equations:"
1042
                                          , ppr ni_subst, ppr cv_binds
1043
                                          ])
1044 1045 1046 1047
      ; mapM_ solve_one cv_binds

      ; return (niFixTvSubst ni_subst, unsolved_can_cts) }
  where
1048
    solve_one (cv,tv,ty) = do { setWantedTyBind tv ty
1049 1050 1051 1052 1053
                              ; _ <- setEqBind cv (mkReflCo ty) $
                                       (Wanted $ panic "Met an already solved function equality!")
                              ; return () -- Don't care about flavors etc this is
                                          -- the last thing happening
                              }
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
------------
type FunEqBinds = (TvSubstEnv, [(CoVar, TcTyVar, TcType)])
  -- The TvSubstEnv is not idempotent, but is loop-free
  -- See Note [Non-idempotent substitution] in Unify
emptyFunEqBinds :: FunEqBinds
emptyFunEqBinds = (emptyVarEnv, [])

extendFunEqBinds :: FunEqBinds -> CoVar -> TcTyVar -> TcType -> FunEqBinds
extendFunEqBinds (tv_subst, cv_binds) cv tv ty
  = (extendVarEnv tv_subst tv ty, (cv, tv, ty):cv_binds)

------------
1067
getSolvableCTyFunEqs :: TcsUntouchables
1068 1069
                     -> Cts                -- Precondition: all Wanteds or Derived!
                     -> (Cts, FunEqBinds)  -- Postcondition: returns the unsolvables
1070
getSolvableCTyFunEqs untch cts
1071
  = Bag.foldlBag dflt_funeq (emptyCts, emptyFunEqBinds) cts