Parser.y.pp 67.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
andy@galois.com's avatar
andy@galois.com committed
34
import StaticFlags	( opt_SccProfilingOn, opt_Hpc )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41
import HaddockParse
import {-# SOURCE #-} HaddockLex hiding ( Token )
import HaddockUtils
42 43 44 45

import FastString
import Maybes		( orElse )
import Outputable
46

47
import Control.Monad    ( unless )
Simon Marlow's avatar
Simon Marlow committed
48
import GHC.Exts
49 50
import Data.Char
import Control.Monad    ( mplus )
51 52 53
}

{-
54 55 56 57 58 59 60 61 62 63 64
-----------------------------------------------------------------------------
24 Februar 2006

Conflicts: 33 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

65 66 67 68 69 70 71 72 73 74 75
-----------------------------------------------------------------------------
31 December 2006

Conflicts: 34 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

76 77 78 79 80 81 82 83 84 85 86
-----------------------------------------------------------------------------
6 December 2006

Conflicts: 32 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

87 88 89 90 91 92 93 94 95 96 97
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

98
-----------------------------------------------------------------------------
99
Conflicts: 38 shift/reduce (1.25)
100

101
10 for abiguity in 'if x then y else z + 1'		[State 178]
102 103 104
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

105
1 for ambiguity in 'if x then y else z :: T'		[State 178]
106 107
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

108
4 for ambiguity in 'if x then y else z -< e'		[State 178]
109
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
110 111 112 113 114 115 116 117 118 119
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
120

121
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
122 123
	(e::a) `b` c, or 
	(e :: (a `b` c))
124
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
125
    Same duplication between states 11 and 253 as the previous case
126

127
1 for ambiguity in 'let ?x ...'				[State 329]
128 129 130 131
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

132
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
133 134 135 136
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

137
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
138 139 140 141 142 143 144
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

145 146 147 148
1 for ambiguity when the source file starts with "-- | doc". We need another
  token of lookahead to determine if a top declaration or the 'module' keyword
  follows. Shift parses as if the 'module' keyword follows.   

149 150 151 152 153 154 155 156 157 158 159
-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
160
     -- This doesn't seem to work anymore -=chak
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

223
 'forall'	{ L _ ITforall }		-- GHC extension keywords
224 225 226 227 228 229 230 231
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
232
 'family'	{ L _ ITfamily }
233 234 235 236 237 238
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

239 240 241
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
242 243 244 245
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
andy@galois.com's avatar
andy@galois.com committed
246
 '{-# GENERATED'   { L _ ITgenerated_prag }
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
312 313 314 315 316 317 318

 DOCNEXT	{ L _ (ITdocCommentNext _) }
 DOCPREV	{ L _ (ITdocCommentPrev _) }
 DOCNAMED	{ L _ (ITdocCommentNamed _) }
 DOCSECTION	{ L _ (ITdocSection _ _) }
 DOCOPTIONS	{ L _ (ITdocOptions _) }

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
335
%name parseType ctype
336
%partial parseHeader header
337
%tokentype { (Located Token) }
338 339
%%

340 341 342 343 344 345 346 347
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

348 349 350 351 352 353 354 355 356 357 358
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
359 360 361 362
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 (fst $7) (snd $7) $4 
                          opt info doc) )}}
363
        | body2
364 365
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
366
                          (fst $1) (snd $1) Nothing Nothing emptyHaddockModInfo 
367 368 369 370 371 372 373 374
                          Nothing)) }

optdoc :: { (Maybe String, HaddockModInfo RdrName, Maybe (HsDoc RdrName)) }                             
        : moduleheader            { (Nothing, fst $1, snd $1) }
        | docoptions              { (Just $1, emptyHaddockModInfo, Nothing)} 
        | docoptions moduleheader { (Just $1, fst $2, snd $2) } 
        | moduleheader docoptions { (Just $2, fst $1, snd $1) } 
        | {- empty -}             { (Nothing, emptyHaddockModInfo, Nothing) }  
375 376 377 378 379 380 381 382 383 384 385 386

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

387 388 389 390
body2 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{' top '}'          		{ $2 }
 	|  missing_module_keyword top close     { $2 }

391 392 393 394 395 396 397 398
top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

399 400 401 402
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
403 404 405 406
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 $7 [] $4 
                   opt info doc))}}
407 408
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
409 410
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing 
                   Nothing emptyHaddockModInfo Nothing)) }
411 412 413 414 415

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

416 417 418 419 420 421 422
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

423 424
exportlist :: { [LIE RdrName] }
	: expdoclist ',' expdoclist		{ $1 ++ $3 }
425 426 427
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
428 429 430 431 432 433 434 435 436 437 438 439 440
        : expdoclist export expdoclist ',' exportlist  { $1 ++ ($2 : $3) ++ $5 }
 	| expdoclist export expdoclist	               { $1 ++ ($2 : $3) }
	| expdoclist				       { $1 }

expdoclist :: { [LIE RdrName] }
        : exp_doc expdoclist                           { $1 : $2 }
        | {- empty -}                                  { [] }

exp_doc :: { LIE RdrName }                                                   
        : docsection    { L1 (case (unLoc $1) of (n, doc) -> IEGroup n doc) }
        | docnamed      { L1 (IEDocNamed ((fst . unLoc) $1)) } 
        | docnext       { L1 (IEDoc (unLoc $1)) }       
                       
441 442 443 444 445 446 447 448 449 450 451
   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
452 453
	:  qcnames ',' qcname_ext	{ unLoc $3 : $1 }
	|  qcname_ext			{ [unLoc $1]  }
454

455 456 457 458 459 460 461 462
qcname_ext :: { Located RdrName }	-- Variable or data constructor
					-- or tagged type constructor
	:  qcname			{ $1 }
	|  'type' qcon			{ sL (comb2 $1 $2) 
					     (setRdrNameSpace (unLoc $2) 
							      tcClsName)  }

-- Cannot pull into qcname_ext, as qcname is also used in expression.
463
qcname 	:: { Located RdrName }	-- Variable or data constructor
464 465
	:  qvar				{ $1 }
	|  qcon				{ $1 }
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
491
maybeas :: { Located (Maybe ModuleName) }
492 493 494 495 496 497 498 499
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
500 501
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

522
topdecls :: { OrdList (LHsDecl RdrName) }
523 524 525
        : topdecls ';' topdecl		        { $1 `appOL` $3 }
        | topdecls ';'			        { $1 }
	| topdecl			        { $1 }
526

527
topdecl :: { OrdList (LHsDecl RdrName) }
528
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
529
  	| ty_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
530 531 532 533
	| 'instance' inst_type where_inst
	    { let (binds, sigs, ats, _) = cvBindsAndSigs (unLoc $3)
	      in 
	      unitOL (L (comb3 $1 $2 $3) (InstD (InstDecl $2 binds sigs ats)))}
534
        | stand_alone_deriving                  { unitOL (LL (DerivD (unLoc $1))) }
535 536 537 538
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
539 540
      	| decl					{ unLoc $1 }

541 542 543 544 545 546
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

547 548 549
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
550
	: 'class' tycl_hdr fds where_cls
551
		{% do { let { (binds, sigs, ats, docs)           = 
552
			        cvBindsAndSigs (unLoc $4)
553
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
554
                      ; checkTyVars tparms      -- only type vars allowed
555
		      ; checkKindSigs ats
556 557
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
558
					        (unLoc $3) sigs binds ats docs) } }
559

560
-- Type declarations (toplevel)
561 562
--
ty_decl :: { LTyClDecl RdrName }
563 564 565 566 567 568
           -- ordinary type synonyms
        : 'type' type '=' ctype
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
569 570
	        --
		-- Note the use of type for the head; this allows
571 572 573
		-- infix type constructors to be declared 
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb2 $1 $4) 
574
				  (TySynonym tc tvs Nothing $4))
575 576 577
                      } }

           -- type family declarations
578
        | 'type' 'family' type opt_kind_sig 
579 580
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
581
		--
582 583
 		{% do { (tc, tvs, _) <- checkSynHdr $3 False
		      ; return (L (comb3 $1 $3 $4) 
584
				  (TyFamily TypeFamily tc tvs (unLoc $4)))
585 586 587 588 589 590 591 592 593 594 595
		      } }

           -- type instance declarations
        | 'type' 'instance' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $3 True
		      ; return (L (comb2 $1 $5) 
				  (TySynonym tc tvs (Just typats) $5)) 
                      } }
596

597
          -- ordinary data type or newtype declaration
598
	| data_or_newtype tycl_hdr constrs deriving
599
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
600
                      ; checkTyVars tparms    -- no type pattern
601 602 603 604
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
605 606
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			       Nothing (reverse (unLoc $3)) (unLoc $4)) } }
607

608
          -- ordinary GADT declaration
609
        | data_or_newtype tycl_hdr opt_kind_sig 
610
		 'where' gadt_constrlist
611
		 deriving
612
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
613
                      ; checkTyVars tparms    -- can have type pats
614 615
		      ; return $
			  L (comb4 $1 $2 $4 $5)
616 617
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
618

619
          -- data/newtype family
620
        | 'data' 'family' tycl_hdr opt_kind_sig
621
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
622 623 624 625
                      ; checkTyVars tparms            -- no type pattern
		      ; unless (null (unLoc ctxt)) $  -- and no context
			  parseError (getLoc ctxt) 
			    "A family declaration cannot have a context"
626
		      ; return $
627
			  L (comb3 $1 $2 $4)
628
			    (TyFamily DataFamily tc tvs (unLoc $4)) } }
629

630
          -- data/newtype instance declaration
631 632 633 634 635 636 637 638 639 640
	| data_or_newtype 'instance' tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $4 $5)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $4)) (unLoc $5)) } }

641
          -- GADT instance declaration
642 643 644 645 646 647 648 649
        | data_or_newtype 'instance' tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $6 $7)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
650
			       (unLoc $4) (reverse (unLoc $6)) (unLoc $7)) } }
651

652 653 654 655 656 657 658 659
-- Associate type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
--   identifier).
--
-- * They also need to be separate from instances; otherwise, data family
--   declarations without a kind signature cause parsing conflicts with empty
--   data declarations. 
660
--
661
at_decl_cls :: { LTyClDecl RdrName }
662
           -- type family declarations
663
        : 'type' type opt_kind_sig
664 665 666
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
		--
667 668
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb3 $1 $2 $3) 
669
				  (TyFamily TypeFamily tc tvs (unLoc $3)))
670 671
		      } }

672
           -- default type instance
673
        | 'type' type '=' ctype
674 675 676
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
677 678 679
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
680 681
                      } }

682
          -- data/newtype family declaration
683
        | 'data' tycl_hdr opt_kind_sig
684
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
685 686 687 688
                      ; checkTyVars tparms            -- no type pattern
		      ; unless (null (unLoc ctxt)) $  -- and no context
			  parseError (getLoc ctxt) 
			    "A family declaration cannot have a context"
689
		      ; return $
690
			  L (comb3 $1 $2 $3)
691
			    (TyFamily DataFamily tc tvs (unLoc $3)) 
692
                      } }
693 694 695 696 697 698 699 700 701 702 703 704 705

-- Associate type instances
--
at_decl_inst :: { LTyClDecl RdrName }
           -- type instance declarations
        : 'type' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
                      } }
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

        -- data/newtype instance declaration
	| data_or_newtype tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $3)) (unLoc $4)) } }

        -- GADT instance declaration
        | data_or_newtype tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $5 $6)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
727
			     (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
728

729 730 731 732
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

733 734 735
opt_kind_sig :: { Located (Maybe Kind) }
	: 				{ noLoc Nothing }
	| '::' kind			{ LL (Just (unLoc $2)) }
736

737
-- tycl_hdr parses the header of a class or data type decl,
738 739 740 741
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
742
--      T Int [a]			-- for associated types
743
-- Rather a lot of inlining here, else we get reduce/reduce errors
744 745 746
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
747
		       [LHsType RdrName]) }
748
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
749 750
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

751 752 753 754 755
-----------------------------------------------------------------------------
-- Stand-alone deriving

-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
756
  	: 'deriving' 'instance' inst_type {% checkDerivDecl (LL (DerivDecl $3)) }
757

758 759 760
-----------------------------------------------------------------------------
-- Nested declarations

761
-- Declaration in class bodies
762
--
763 764 765 766 767 768 769 770 771
decl_cls  :: { Located (OrdList (LHsDecl RdrName)) }
decl_cls  : at_decl_cls		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	  | decl                        { $1 }

decls_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	  : decls_cls ';' decl_cls	{ LL (unLoc $1 `appOL` unLoc $3) }
	  | decls_cls ';'		{ LL (unLoc $1) }
	  | decl_cls			{ $1 }
	  | {- empty -}			{ noLoc nilOL }
772 773


774
decllist_cls
775
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
776 777
	: '{'         decls_cls '}'	{ LL (unLoc $2) }
	|     vocurly decls_cls close	{ $2 }
778

779
-- Class body
780
--
781
where_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
782 783
				-- No implicit parameters
				-- May have type declarations
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	: 'where' decllist_cls	        { LL (unLoc $2) }
	| {- empty -}		        { noLoc nilOL }

-- Declarations in instance bodies
--
decl_inst  :: { Located (OrdList (LHsDecl RdrName)) }
decl_inst  : at_decl_inst	        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	   | decl                       { $1 }

decls_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	   : decls_inst ';' decl_inst	{ LL (unLoc $1 `appOL` unLoc $3) }
	   | decls_inst ';'		{ LL (unLoc $1) }
	   | decl_inst			{ $1 }
	   | {- empty -}		{ noLoc nilOL }

decllist_inst 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'         decls_inst '}'	{ LL (unLoc $2) }
	|     vocurly decls_inst close	{ $2 }

-- Instance body
--
where_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' decllist_inst		{ LL (unLoc $2) }
810 811
	| {- empty -}			{ noLoc nilOL }

812 813
-- Declarations in binding groups other than classes and instances
--
814
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
815
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
816
	| decls ';'			{ LL (unLoc $1) }
817
	| decl				{ $1 }
818
	| {- empty -}			{ noLoc nilOL }
819

820
decllist :: { Located (OrdList (LHsDecl RdrName)) }
821 822 823
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

824 825
-- Binding groups other than those of class and instance declarations
--
826
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
827
						-- No type declarations
828 829 830
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
831

832
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
833
						-- No type declarations
834
	: 'where' binds			{ LL (unLoc $2) }
835
	| {- empty -}			{ noLoc emptyLocalBinds }
836 837 838 839 840


-----------------------------------------------------------------------------
-- Transformation Rules

841
rules	:: { OrdList (LHsDecl RdrName) }
842
	:  rules ';' rule			{ $1 `snocOL` $3 }
843
        |  rules ';'				{ $1 }
844 845
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
846

847
rule  	:: { LHsDecl RdrName }
848
	: STRING activation rule_forall infixexp '=' exp
849 850
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
851
				  $3 $4 placeHolderNames $6 placeHolderNames) }
852

853 854 855
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

876
deprecations :: { OrdList (LHsDecl RdrName) }
877
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
878
	| deprecations ';' 			{ $1 }
879 880
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
881 882

-- SUP: TEMPORARY HACK, not checking for `module Foo'
883
deprecation :: { OrdList (LHsDecl RdrName) }
884
	: depreclist STRING
885 886
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
887 888 889 890 891 892


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
893
fdecl : 'import' callconv safety fspec
894
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
895
      | 'import' callconv        fspec		
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
912 913
       : STRING var '::' sigtypedoc     { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtypedoc     { LL (noLoc nilFS, $1, $3) }
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

929
sigtypes1 :: { [LHsType RdrName] }
930
	: sigtype			{ [ $1 ] }
931
	| sigtype ',' sigtypes1		{ $1 : $3 }
932 933 934 935 936

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

937 938 939 940
sigtypedoc :: { LHsType RdrName }
	: ctypedoc			{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

941 942 943 944 945 946 947
sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
infixtype :: { LHsType RdrName }
	: btype qtyconop gentype         { LL $ HsOpTy $1 $2 $3 }
        | btype tyvarop  gentype  	 { LL $ HsOpTy $1 $2 $3 }

infixtypedoc :: { LHsType RdrName }
        : infixtype                      { $1 }
	| infixtype docprev              { LL $ HsDocTy $1 $2 }

gentypedoc :: { LHsType RdrName }
        : btype                          { $1 }
        | btypedoc                       { $1 }
        | infixtypedoc                   { $1 }
        | btype '->' ctypedoc            { LL $ HsFunTy $1 $3 }
        | btypedoc '->' ctypedoc         { LL $ HsFunTy $1 $3 }

ctypedoc  :: { LHsType RdrName }
        : 'forall' tv_bndrs '.' ctypedoc { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
        | context '=>' gentypedoc        { LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| gentypedoc			 { $1 }
	
969 970 971 972
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

973 974 975 976 977 978 979 980 981 982 983
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
984 985 986
--
-- We have the t1 ~ t2 form here and in gentype, to permit an individual
-- equational constraint without parenthesis.
987
context :: { LHsContext RdrName }
988 989 990
        : btype '~'      btype  	{% checkContext
					     (LL $ HsPredTy (HsEqualP $1 $3)) }
	| btype 			{% checkContext $1 }
991 992

type :: { LHsType RdrName }
993
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
994 995 996 997 998
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
999
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
1000
 	| btype '->'     ctype		{ LL $ HsFunTy $1 $3 }
1001
        | btype '~'      btype  	{ LL $ HsPredTy (HsEqualP $1 $3) }
1002 1003 1004 1005 1006

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

1007 1008 1009 1010
btypedoc :: { LHsType RdrName }
	: btype atype docprev		{ LL $ HsDocTy (L (comb2 $1 $2) (HsAppTy $1 $2)) $3 }
        | atype docprev                 { LL $ HsDocTy $1 $2 }

1011 1012
atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
1013
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
1014
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
1015
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
1016
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
1017 1018
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
1019
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
1020
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
1021 1022 1023 1024 1025 1026 1027 1028
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
1029
	: sigtype			{% checkInstType $1 }
1030

1031 1032 1033 1034
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

1035 1036 1037 1038 1039
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
1040 1041
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
1042 1043 1044 1045 1046 1047 1048

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
1049 1050
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

1071
kind	:: { Located Kind }
1072
	: akind			{ $1 }
1073
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
1074

1075 1076 1077 1078
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
1079 1080 1081 1082 1083


-----------------------------------------------------------------------------
-- Datatype declarations

1084 1085 1086 1087 1088 1089
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
1090
        | gadt_constrs ';' 		{ $1 }
1091 1092
        | gadt_constr                   { L1 [$1] } 

1093 1094 1095 1096 1097 1098
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

1099
gadt_constr :: { LConDecl RdrName }
1100
        : con '::' sigtype
1101 1102 1103
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
1104
        -- XXX revisit audreyt
1105 1106
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
1107
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3) Nothing) }
1108 1109 1110
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
1111
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6) Nothing ) }
1112 1113
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
1114
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4) Nothing) }
1115 1116
-}

1117 1118 1119

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
1120
        | maybe_docnext '=' constrs1    { L (comb2 $2 $3) (addConDocs (unLoc $3) $1) }
1121 1122

constrs1 :: { Located [LConDecl RdrName] }
1123 1124
	: constrs1 maybe_docnext '|' maybe_docprev constr { LL (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4) }
	| constr			                  { L1 [$1] }
1125 1126

constr :: { LConDecl RdrName }
1127 1128 1129 1130 1131 1132
	: maybe_docnext forall context '=>' constr_stuff maybe_docprev	
		{ let (con,details) = unLoc $5 in 
		  L (comb4 $2 $3 $4 $5) (ConDecl con Explicit (unLoc $2) $3 details ResTyH98 ($1 `mplus` $6)) }
	| maybe_docnext forall constr_stuff maybe_docprev
		{ let (con,details) = unLoc $3 in 
		  L (comb2 $2 $3) (ConDecl con Explicit (unLoc $2) (noLoc []) details ResTyH98 ($1 `mplus` $4)) }
1133 1134 1135 1136 1137

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

1138
constr_stuff :: { Located (Located RdrName, HsConDeclDetails RdrName) }
1139 1140 1141 1142 1143 1144 1145
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
1146 1147 1148
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
1149
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
1150

1151
constr_stuff_record :: { Located (Located RdrName, HsConDeclDetails RdrName) }
1152 1153 1154
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

1155 1156 1157
fielddecls :: { [([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName))] }
	: fielddecl maybe_docnext ',' maybe_docprev fielddecls { addFieldDoc (unLoc $1) $4 : addFieldDocs $5 $2 }
	| fielddecl			                       { [unLoc $1] }
1158

1159 1160
fielddecl :: { Located ([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName)) }
	: maybe_docnext sig_vars '::' ctype maybe_docprev      { L (comb3 $2 $3 $4) (reverse (unLoc $2), $4, $1 `mplus` $5) }
1161

1162 1163 1164 1165
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
1166 1167
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
1168 1169 1170
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
1171 1172
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

1199 1200 1201 1202 1203 1204 1205 1206 1207
docdecl :: { LHsDecl RdrName }
        : docdecld { L1 (DocD (unLoc $1)) }

docdecld :: { LDocDecl RdrName }
        : docnext                               { L1 (DocCommentNext (unLoc $1)) }
        | docprev                               { L1 (DocCommentPrev (unLoc $1)) }
        | docnamed                              { L1 (case (unLoc $1) of (n, doc) -> DocCommentNamed n doc) }
        | docsection                            { L1 (case (unLoc $1) of (n, doc) -> DocGroup n doc) }

1208
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
1209
	: sigdecl			{ $1 }
1210
	| '!' aexp rhs			{% do { pat <- checkPattern $2;
1211
					        return (LL $ unitOL $ LL $ ValD ( 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1212
							PatBind (LL $ BangPat pat) (unLoc $3)
1213
								placeHolderType placeHolderNames)) } }
1214
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
1215
						return (LL $ unitOL (LL $ ValD r)) } }
1216
        | docdecl                       { LL $ unitOL $1 }
1217 1218

rhs	:: { Located (GRHSs RdrName) }
1219 1220
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
1221 1222 1223 1224 1225 1226

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
1227
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1228

1229
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
1230
	: infixexp '::' sigtypedoc
1231
				{% do s <- checkValSig $1 $3; 
1232
				      return (LL $ unitOL (LL $ SigD s)) }
1233
		-- See the above notes for why we need infixexp here
1234
	| var ',' sig_vars '::' sigtypedoc
1235
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
1236
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
1237 1238
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
1239
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
1240
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
1241
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec) 
1242
					    | t <- $4] }
1243
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
1244
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
1245
					    | t <- $5] }
1246
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
1247
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
1248 1249 1250 1251 1252 1253

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
1254 1255 1256 1257
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
1258 1259 1260 1261 1262 1263 1264
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
1265 1266 1267 1268
	: '\\' apat apats opt_asig '->' exp	
			{ LL $ HsLam (mkMatchGroup [LL $ Match ($2:$3) $4
							   	(unguardedGRHSs $6)
							    ]) }
1269 1270
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
1271
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
1272
	| '-' fexp				{ LL $ NegApp $2 noSyntaxExpr }
1273 1274

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
1275 1276
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
1277
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
1278 1279
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
1280 1281 1282
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }
andy@galois.com's avatar
andy@galois.com committed
1283 1284 1285
        | hpc_annot exp		    		{ LL $ if opt_Hpc
							then HsTickPragma (unLoc $1) $2
							else HsPar $2 }
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

andy@galois.com's avatar
andy@galois.com committed
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
hpc_annot :: { Located (FastString,(Int,Int),(Int,Int)) }
	: '{-# GENERATED' STRING INTEGER ':' INTEGER '-' INTEGER ':' INTEGER '#-}'
						{ LL $ (getSTRING $2
						       ,( fromInteger $ getINTEGER $3
 							, fromInteger $ getINTEGER $5
							)
                         			       ,( fromInteger $ getINTEGER $7
 							, fromInteger $ getINTEGER $9
							)
						       )
					         }

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
1323 1324
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) $3
				      ; return (LL r) }}
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but