Parser.y.pp 66.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
andy@galois.com's avatar
andy@galois.com committed
34
import StaticFlags	( opt_SccProfilingOn, opt_Hpc )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41
import HaddockParse
import {-# SOURCE #-} HaddockLex hiding ( Token )
import HaddockUtils
42 43 44 45

import FastString
import Maybes		( orElse )
import Outputable
46

47
import Control.Monad    ( unless )
Simon Marlow's avatar
Simon Marlow committed
48
import GHC.Exts
49 50
import Data.Char
import Control.Monad    ( mplus )
51 52 53
}

{-
54 55 56 57 58 59 60 61 62 63 64
-----------------------------------------------------------------------------
31 December 2006

Conflicts: 34 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

65 66 67 68 69 70 71 72 73 74 75
-----------------------------------------------------------------------------
6 December 2006

Conflicts: 32 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

76 77 78 79 80 81 82 83 84 85 86
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

87
-----------------------------------------------------------------------------
88
Conflicts: 38 shift/reduce (1.25)
89

90
10 for abiguity in 'if x then y else z + 1'		[State 178]
91 92 93
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

94
1 for ambiguity in 'if x then y else z :: T'		[State 178]
95 96
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

97
4 for ambiguity in 'if x then y else z -< e'		[State 178]
98
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
99 100 101 102 103 104 105 106 107 108
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
109

110
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
111 112
	(e::a) `b` c, or 
	(e :: (a `b` c))
113
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
114
    Same duplication between states 11 and 253 as the previous case
115

116
1 for ambiguity in 'let ?x ...'				[State 329]
117 118 119 120
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

121
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
122 123 124 125
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

126
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
127 128 129 130 131 132 133
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

134 135 136 137
1 for ambiguity when the source file starts with "-- | doc". We need another
  token of lookahead to determine if a top declaration or the 'module' keyword
  follows. Shift parses as if the 'module' keyword follows.   

138 139 140 141 142 143 144 145 146 147 148
-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
149
     -- This doesn't seem to work anymore -=chak
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
192
 'derive' 	{ L _ ITderive }
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

213
 'forall'	{ L _ ITforall }		-- GHC extension keywords
214 215 216 217 218 219 220 221
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
222
 'family'	{ L _ ITfamily }
223 224 225 226 227 228
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

229 230 231
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
232 233 234 235
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
andy@galois.com's avatar
andy@galois.com committed
236
 '{-# GENERATED'   { L _ ITgenerated_prag }
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
302 303 304 305 306 307 308

 DOCNEXT	{ L _ (ITdocCommentNext _) }
 DOCPREV	{ L _ (ITdocCommentPrev _) }
 DOCNAMED	{ L _ (ITdocCommentNamed _) }
 DOCSECTION	{ L _ (ITdocSection _ _) }
 DOCOPTIONS	{ L _ (ITdocOptions _) }

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
325
%name parseType ctype
326
%partial parseHeader header
327
%tokentype { (Located Token) }
328 329
%%

330 331 332 333 334 335 336 337
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

338 339 340 341 342 343 344 345 346 347 348
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
349 350 351 352
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 (fst $7) (snd $7) $4 
                          opt info doc) )}}
353 354 355
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
356 357 358 359 360 361 362 363 364
                          (fst $2) (snd $2) Nothing Nothing emptyHaddockModInfo 
                          Nothing)) }

optdoc :: { (Maybe String, HaddockModInfo RdrName, Maybe (HsDoc RdrName)) }                             
        : moduleheader            { (Nothing, fst $1, snd $1) }
        | docoptions              { (Just $1, emptyHaddockModInfo, Nothing)} 
        | docoptions moduleheader { (Just $1, fst $2, snd $2) } 
        | moduleheader docoptions { (Just $2, fst $1, snd $1) } 
        | {- empty -}             { (Nothing, emptyHaddockModInfo, Nothing) }  
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

385 386 387 388
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
389 390 391 392
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 $7 [] $4 
                   opt info doc))}}
393 394
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
395 396
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing 
                   Nothing emptyHaddockModInfo Nothing)) }
397 398 399 400 401

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

402 403 404 405 406 407 408
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

409 410
exportlist :: { [LIE RdrName] }
	: expdoclist ',' expdoclist		{ $1 ++ $3 }
411 412 413
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
414 415 416 417 418 419 420 421 422 423 424 425 426
        : expdoclist export expdoclist ',' exportlist  { $1 ++ ($2 : $3) ++ $5 }
 	| expdoclist export expdoclist	               { $1 ++ ($2 : $3) }
	| expdoclist				       { $1 }

expdoclist :: { [LIE RdrName] }
        : exp_doc expdoclist                           { $1 : $2 }
        | {- empty -}                                  { [] }

exp_doc :: { LIE RdrName }                                                   
        : docsection    { L1 (case (unLoc $1) of (n, doc) -> IEGroup n doc) }
        | docnamed      { L1 (IEDocNamed ((fst . unLoc) $1)) } 
        | docnext       { L1 (IEDoc (unLoc $1)) }       
                       
427 428 429 430 431 432 433 434 435 436 437
   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
438 439
	:  qcnames ',' qcname_ext	{ unLoc $3 : $1 }
	|  qcname_ext			{ [unLoc $1]  }
440

441 442 443 444 445 446 447 448
qcname_ext :: { Located RdrName }	-- Variable or data constructor
					-- or tagged type constructor
	:  qcname			{ $1 }
	|  'type' qcon			{ sL (comb2 $1 $2) 
					     (setRdrNameSpace (unLoc $2) 
							      tcClsName)  }

-- Cannot pull into qcname_ext, as qcname is also used in expression.
449
qcname 	:: { Located RdrName }	-- Variable or data constructor
450 451
	:  qvar				{ $1 }
	|  qcon				{ $1 }
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
477
maybeas :: { Located (Maybe ModuleName) }
478 479 480 481 482 483 484 485
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
486 487
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

508
topdecls :: { OrdList (LHsDecl RdrName) }
509 510 511
        : topdecls ';' topdecl		        { $1 `appOL` $3 }
        | topdecls ';'			        { $1 }
	| topdecl			        { $1 }
512

513
topdecl :: { OrdList (LHsDecl RdrName) }
514
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
515
  	| ty_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
516 517 518 519
	| 'instance' inst_type where_inst
	    { let (binds, sigs, ats, _) = cvBindsAndSigs (unLoc $3)
	      in 
	      unitOL (L (comb3 $1 $2 $3) (InstD (InstDecl $2 binds sigs ats)))}
520
        | stand_alone_deriving                  { unitOL (LL (DerivD (unLoc $1))) }
521 522 523 524
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
525 526
      	| decl					{ unLoc $1 }

527 528 529 530 531 532
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

533 534 535
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
536
	: 'class' tycl_hdr fds where_cls
537
		{% do { let { (binds, sigs, ats, docs)           = 
538
			        cvBindsAndSigs (unLoc $4)
539
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
540
                      ; checkTyVars tparms      -- only type vars allowed
541
		      ; checkKindSigs ats
542 543
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
544
					        (unLoc $3) sigs binds ats docs) } }
545

546
-- Type declarations (toplevel)
547 548
--
ty_decl :: { LTyClDecl RdrName }
549 550 551 552 553 554
           -- ordinary type synonyms
        : 'type' type '=' ctype
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
555 556
	        --
		-- Note the use of type for the head; this allows
557 558 559
		-- infix type constructors to be declared 
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb2 $1 $4) 
560
				  (TySynonym tc tvs Nothing $4))
561 562 563
                      } }

           -- type family declarations
564
        | 'type' 'family' type opt_kind_sig 
565 566
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
567
		--
568 569
 		{% do { (tc, tvs, _) <- checkSynHdr $3 False
		      ; return (L (comb3 $1 $3 $4) 
570
				  (TyFamily TypeFamily tc tvs (unLoc $4)))
571 572 573 574 575 576 577 578 579 580 581
		      } }

           -- type instance declarations
        | 'type' 'instance' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $3 True
		      ; return (L (comb2 $1 $5) 
				  (TySynonym tc tvs (Just typats) $5)) 
                      } }
582

583
          -- ordinary data type or newtype declaration
584
	| data_or_newtype tycl_hdr constrs deriving
585
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
586
                      ; checkTyVars tparms    -- no type pattern
587 588 589 590
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
591 592
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			       Nothing (reverse (unLoc $3)) (unLoc $4)) } }
593

594
          -- ordinary GADT declaration
595
        | data_or_newtype tycl_hdr opt_kind_sig 
596
		 'where' gadt_constrlist
597
		 deriving
598
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
599
                      ; checkTyVars tparms    -- can have type pats
600 601
		      ; return $
			  L (comb4 $1 $2 $4 $5)
602 603
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
604

605
          -- data/newtype family
606
        | data_or_newtype 'family' tycl_hdr opt_kind_sig
607
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
608 609 610 611
                      ; checkTyVars tparms            -- no type pattern
		      ; unless (null (unLoc ctxt)) $  -- and no context
			  parseError (getLoc ctxt) 
			    "A family declaration cannot have a context"
612
		      ; return $
613
			  L (comb3 $1 $2 $4)
614 615
			    (TyFamily (DataFamily (unLoc $1)) tc tvs 
				      (unLoc $4)) } }
616

617
          -- data/newtype instance declaration
618 619 620 621 622 623 624 625 626 627
	| data_or_newtype 'instance' tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $4 $5)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $4)) (unLoc $5)) } }

628
          -- GADT instance declaration
629 630 631 632 633 634 635 636
        | data_or_newtype 'instance' tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $6 $7)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
637
			       (unLoc $4) (reverse (unLoc $6)) (unLoc $7)) } }
638

639 640 641 642 643 644 645 646
-- Associate type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
--   identifier).
--
-- * They also need to be separate from instances; otherwise, data family
--   declarations without a kind signature cause parsing conflicts with empty
--   data declarations. 
647
--
648
at_decl_cls :: { LTyClDecl RdrName }
649
           -- type family declarations
650
        : 'type' type opt_kind_sig
651 652 653
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
		--
654 655
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb3 $1 $2 $3) 
656
				  (TyFamily TypeFamily tc tvs (unLoc $3)))
657 658
		      } }

659
           -- default type instance
660
        | 'type' type '=' ctype
661 662 663
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
664 665 666
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
667 668
                      } }

669 670
          -- data/newtype family declaration
        | data_or_newtype tycl_hdr opt_kind_sig
671
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
672 673 674 675
                      ; checkTyVars tparms            -- no type pattern
		      ; unless (null (unLoc ctxt)) $  -- and no context
			  parseError (getLoc ctxt) 
			    "A family declaration cannot have a context"
676
		      ; return $
677
			  L (comb3 $1 $2 $3)
678 679 680
			    (TyFamily (DataFamily (unLoc $1)) tc tvs
				      (unLoc $3)) 
                      } }
681 682 683 684 685 686 687 688 689 690 691 692 693

-- Associate type instances
--
at_decl_inst :: { LTyClDecl RdrName }
           -- type instance declarations
        : 'type' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
                      } }
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

        -- data/newtype instance declaration
	| data_or_newtype tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $3)) (unLoc $4)) } }

        -- GADT instance declaration
        | data_or_newtype tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $5 $6)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
715
			     (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
716

717 718 719 720
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

721 722 723
opt_kind_sig :: { Located (Maybe Kind) }
	: 				{ noLoc Nothing }
	| '::' kind			{ LL (Just (unLoc $2)) }
724

725
-- tycl_hdr parses the header of a class or data type decl,
726 727 728 729
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
730
--      T Int [a]			-- for associated types
731
-- Rather a lot of inlining here, else we get reduce/reduce errors
732 733 734
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
735
		       [LHsType RdrName]) }
736
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
737 738
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

739 740 741 742 743
-----------------------------------------------------------------------------
-- Stand-alone deriving

-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
744
  	: 'derive' 'instance' inst_type {% checkDerivDecl (LL (DerivDecl $3)) }
745

746 747 748
-----------------------------------------------------------------------------
-- Nested declarations

749
-- Declaration in class bodies
750
--
751 752 753 754 755 756 757 758 759
decl_cls  :: { Located (OrdList (LHsDecl RdrName)) }
decl_cls  : at_decl_cls		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	  | decl                        { $1 }

decls_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	  : decls_cls ';' decl_cls	{ LL (unLoc $1 `appOL` unLoc $3) }
	  | decls_cls ';'		{ LL (unLoc $1) }
	  | decl_cls			{ $1 }
	  | {- empty -}			{ noLoc nilOL }
760 761


762
decllist_cls
763
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
764 765
	: '{'         decls_cls '}'	{ LL (unLoc $2) }
	|     vocurly decls_cls close	{ $2 }
766

767
-- Class body
768
--
769
where_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
770 771
				-- No implicit parameters
				-- May have type declarations
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	: 'where' decllist_cls	        { LL (unLoc $2) }
	| {- empty -}		        { noLoc nilOL }

-- Declarations in instance bodies
--
decl_inst  :: { Located (OrdList (LHsDecl RdrName)) }
decl_inst  : at_decl_inst	        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	   | decl                       { $1 }

decls_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	   : decls_inst ';' decl_inst	{ LL (unLoc $1 `appOL` unLoc $3) }
	   | decls_inst ';'		{ LL (unLoc $1) }
	   | decl_inst			{ $1 }
	   | {- empty -}		{ noLoc nilOL }

decllist_inst 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'         decls_inst '}'	{ LL (unLoc $2) }
	|     vocurly decls_inst close	{ $2 }

-- Instance body
--
where_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' decllist_inst		{ LL (unLoc $2) }
798 799
	| {- empty -}			{ noLoc nilOL }

800 801
-- Declarations in binding groups other than classes and instances
--
802
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
803
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
804
	| decls ';'			{ LL (unLoc $1) }
805
	| decl				{ $1 }
806
	| {- empty -}			{ noLoc nilOL }
807

808
decllist :: { Located (OrdList (LHsDecl RdrName)) }
809 810 811
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

812 813
-- Binding groups other than those of class and instance declarations
--
814
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
815
						-- No type declarations
816 817 818
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
819

820
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
821
						-- No type declarations
822
	: 'where' binds			{ LL (unLoc $2) }
823
	| {- empty -}			{ noLoc emptyLocalBinds }
824 825 826 827 828


-----------------------------------------------------------------------------
-- Transformation Rules

829
rules	:: { OrdList (LHsDecl RdrName) }
830
	:  rules ';' rule			{ $1 `snocOL` $3 }
831
        |  rules ';'				{ $1 }
832 833
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
834

835
rule  	:: { LHsDecl RdrName }
836
	: STRING activation rule_forall infixexp '=' exp
837 838
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
839
				  $3 $4 placeHolderNames $6 placeHolderNames) }
840

841 842 843
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

864
deprecations :: { OrdList (LHsDecl RdrName) }
865
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
866
	| deprecations ';' 			{ $1 }
867 868
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
869 870

-- SUP: TEMPORARY HACK, not checking for `module Foo'
871
deprecation :: { OrdList (LHsDecl RdrName) }
872
	: depreclist STRING
873 874
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
875 876 877 878 879 880


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
881
fdecl : 'import' callconv safety fspec
882
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
883
      | 'import' callconv        fspec		
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
900 901
       : STRING var '::' sigtypedoc     { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtypedoc     { LL (noLoc nilFS, $1, $3) }
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

917
sigtypes1 :: { [LHsType RdrName] }
918
	: sigtype			{ [ $1 ] }
919
	| sigtype ',' sigtypes1		{ $1 : $3 }
920 921 922 923 924

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

925 926 927 928
sigtypedoc :: { LHsType RdrName }
	: ctypedoc			{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

929 930 931 932 933 934 935
sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
infixtype :: { LHsType RdrName }
	: btype qtyconop gentype         { LL $ HsOpTy $1 $2 $3 }
        | btype tyvarop  gentype  	 { LL $ HsOpTy $1 $2 $3 }

infixtypedoc :: { LHsType RdrName }
        : infixtype                      { $1 }
	| infixtype docprev              { LL $ HsDocTy $1 $2 }

gentypedoc :: { LHsType RdrName }
        : btype                          { $1 }
        | btypedoc                       { $1 }
        | infixtypedoc                   { $1 }
        | btype '->' ctypedoc            { LL $ HsFunTy $1 $3 }
        | btypedoc '->' ctypedoc         { LL $ HsFunTy $1 $3 }

ctypedoc  :: { LHsType RdrName }
        : 'forall' tv_bndrs '.' ctypedoc { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
        | context '=>' gentypedoc        { LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| gentypedoc			 { $1 }
	
957 958 959 960
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

961 962 963 964 965 966 967 968 969 970 971
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
972 973 974
--
-- We have the t1 ~ t2 form here and in gentype, to permit an individual
-- equational constraint without parenthesis.
975
context :: { LHsContext RdrName }
976 977 978
        : btype '~'      btype  	{% checkContext
					     (LL $ HsPredTy (HsEqualP $1 $3)) }
	| btype 			{% checkContext $1 }
979 980

type :: { LHsType RdrName }
981
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
982 983 984 985 986
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
987
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
988
 	| btype '->'     ctype		{ LL $ HsFunTy $1 $3 }
989
        | btype '~'      btype  	{ LL $ HsPredTy (HsEqualP $1 $3) }
990 991 992 993 994

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

995 996 997 998
btypedoc :: { LHsType RdrName }
	: btype atype docprev		{ LL $ HsDocTy (L (comb2 $1 $2) (HsAppTy $1 $2)) $3 }
        | atype docprev                 { LL $ HsDocTy $1 $2 }

999 1000
atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
1001
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
1002
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
1003
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
1004
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
1005 1006
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
1007
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
1008
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
1009 1010 1011 1012 1013 1014 1015 1016
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
1017
	: sigtype			{% checkInstType $1 }
1018

1019 1020 1021 1022
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

1023 1024 1025 1026 1027
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
1028 1029
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
1030 1031 1032 1033 1034 1035 1036

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
1037 1038
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

1059
kind	:: { Located Kind }
1060
	: akind			{ $1 }
1061
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
1062

1063 1064 1065 1066
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
1067 1068 1069 1070 1071


-----------------------------------------------------------------------------
-- Datatype declarations

1072 1073 1074 1075 1076 1077
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
1078
        | gadt_constrs ';' 		{ $1 }
1079 1080
        | gadt_constr                   { L1 [$1] } 

1081 1082 1083 1084 1085 1086
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

1087
gadt_constr :: { LConDecl RdrName }
1088
        : con '::' sigtype
1089 1090 1091
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
1092
        -- XXX revisit audreyt
1093 1094
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
1095
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3) Nothing) }
1096 1097 1098
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
1099
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6) Nothing ) }
1100 1101
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
1102
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4) Nothing) }
1103 1104
-}

1105 1106 1107

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
1108
        | maybe_docnext '=' constrs1    { L (comb2 $2 $3) (addConDocs (unLoc $3) $1) }
1109 1110

constrs1 :: { Located [LConDecl RdrName] }
1111 1112
	: constrs1 maybe_docnext '|' maybe_docprev constr { LL (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4) }
	| constr			                  { L1 [$1] }
1113 1114

constr :: { LConDecl RdrName }
1115 1116 1117 1118 1119 1120
	: maybe_docnext forall context '=>' constr_stuff maybe_docprev	
		{ let (con,details) = unLoc $5 in 
		  L (comb4 $2 $3 $4 $5) (ConDecl con Explicit (unLoc $2) $3 details ResTyH98 ($1 `mplus` $6)) }
	| maybe_docnext forall constr_stuff maybe_docprev
		{ let (con,details) = unLoc $3 in 
		  L (comb2 $2 $3) (ConDecl con Explicit (unLoc $2) (noLoc []) details ResTyH98 ($1 `mplus` $4)) }
1121 1122 1123 1124 1125 1126

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
1127 1128 1129 1130 1131 1132 1133
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
1134 1135 1136
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
1137
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
1138

1139 1140 1141 1142
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

1143 1144 1145
fielddecls :: { [([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName))] }
	: fielddecl maybe_docnext ',' maybe_docprev fielddecls { addFieldDoc (unLoc $1) $4 : addFieldDocs $5 $2 }
	| fielddecl			                       { [unLoc $1] }
1146

1147 1148
fielddecl :: { Located ([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName)) }
	: maybe_docnext sig_vars '::' ctype maybe_docprev      { L (comb3 $2 $3 $4) (reverse (unLoc $2), $4, $1 `mplus` $5) }
1149

1150 1151 1152 1153
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
1154 1155
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
1156 1157 1158
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
1159 1160
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

1187 1188 1189 1190 1191 1192 1193 1194 1195
docdecl :: { LHsDecl RdrName }
        : docdecld { L1 (DocD (unLoc $1)) }

docdecld :: { LDocDecl RdrName }
        : docnext                               { L1 (DocCommentNext (unLoc $1)) }
        | docprev                               { L1 (DocCommentPrev (unLoc $1)) }
        | docnamed                              { L1 (case (unLoc $1) of (n, doc) -> DocCommentNamed n doc) }
        | docsection                            { L1 (case (unLoc $1) of (n, doc) -> DocGroup n doc) }

1196
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
1197
	: sigdecl			{ $1 }
1198
	| '!' aexp rhs			{% do { pat <- checkPattern $2;
1199
					        return (LL $ unitOL $ LL $ ValD ( 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1200
							PatBind (LL $ BangPat pat) (unLoc $3)
1201
								placeHolderType placeHolderNames)) } }
1202
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
1203
						return (LL $ unitOL (LL $ ValD r)) } }
1204
        | docdecl                       { LL $ unitOL $1 }
1205 1206

rhs	:: { Located (GRHSs RdrName) }
1207 1208
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
1209 1210 1211 1212 1213 1214

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
1215
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1216

1217
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
1218
	: infixexp '::' sigtypedoc
1219
				{% do s <- checkValSig $1 $3; 
1220
				      return (LL $ unitOL (LL $ SigD s)) }
1221
		-- See the above notes for why we need infixexp here
1222
	| var ',' sig_vars '::' sigtypedoc
1223
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
1224
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
1225 1226
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
1227
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
1228
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
1229
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec) 
1230
					    | t <- $4] }
1231
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
1232
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
1233
					    | t <- $5] }
1234
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
1235
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
1236 1237 1238 1239 1240 1241

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
1242 1243 1244 1245
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
1246 1247 1248 1249 1250 1251 1252
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
1253 1254 1255 1256
	: '\\' apat apats opt_asig '->' exp	
			{ LL $ HsLam (mkMatchGroup [LL $ Match ($2:$3) $4
							   	(unguardedGRHSs $6)
							    ]) }
1257 1258
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
1259
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
1260 1261 1262
	| '-' fexp				{ LL $ mkHsNegApp $2 }

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
1263 1264
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
1265
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
1266 1267
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
1268 1269 1270
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }
andy@galois.com's avatar
andy@galois.com committed
1271 1272 1273
        | hpc_annot exp		    		{ LL $ if opt_Hpc
							then HsTickPragma (unLoc $1) $2
							else HsPar $2 }
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

andy@galois.com's avatar
andy@galois.com committed
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
hpc_annot :: { Located (FastString,(Int,Int),(Int,Int)) }
	: '{-# GENERATED' STRING INTEGER ':' INTEGER '-' INTEGER ':' INTEGER '#-}'
						{ LL $ (getSTRING $2
						       ,( fromInteger $ getINTEGER $3
 							, fromInteger $ getINTEGER $5
							)
                         			       ,( fromInteger $ getINTEGER $7
 							, fromInteger $ getINTEGER $9
							)
						       )
					         }

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) 
1312
							$3;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
				        return (LL r) }}
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
 	| qcname '{|' gentype '|}'      { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
						     (sL (getLoc $3) (HsType $3)) }

aexp2	:: { LHsExpr RdrName }
	: ipvar				{ L1 (HsIPVar $! unLoc $1) }
	| qcname			{ L1 (HsVar   $! unLoc $1) }
	| literal			{ L1 (HsLit   $! unLoc $1) }
1328 1329 1330
-- This will enable overloaded strings permanently.  Normally the renamer turns HsString
-- into HsOverLit when -foverloaded-strings is on.
--	| STRING			{ L1 (HsOverLit $! mkHsIsString (getSTRING $1)) }
1331 1332 1333
	| INTEGER			{ L1 (HsOverLit $! mkHsIntegral (getINTEGER $1)) }
	| RATIONAL			{ L1 (HsOverLit $! mkHsFractional (getRATIONAL $1)) }
	| '(' exp ')'			{ LL (HsPar $2) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1334
	| '(' texp ',' texps ')'	{ LL $ ExplicitTuple ($2 : reverse $4) Boxed }
1335 1336 1337 1338 1339 1340 1341
	| '(#' texps '#)'		{ LL $ ExplicitTuple (reverse $2)      Unboxed }
	| '[' list ']'                  { LL (unLoc $2) }
	| '[:' parr ':]'                { LL (unLoc $2) }
	| '(' infixexp qop ')'		{ LL $ SectionL $2 $3 }
	| '(' qopm infixexp ')'		{ LL $ SectionR $2 $3 }
	| '_'				{ L1 EWildPat }
	
1342
	-- Template Haskell Extension
1343
	| TH_ID_SPLICE          { L1 $ HsSpliceE (mkHsSplice