Env.hs 10.3 KB
Newer Older
Ian Lynagh's avatar
Ian Lynagh committed
1
{-# OPTIONS_GHC -XNoMonoLocalBinds #-}
2

3 4 5 6 7 8
-- Vectorise a modules type environment, the structure containing all type things defined in a
-- module.
--
-- This extends the type environment with vectorised variants of data types and produces value
-- bindings for worker functions and the like.

9
module Vectorise.Type.Env ( 
10
  vectTypeEnv,
11 12
) where
  
13
import Vectorise.Env
14
import Vectorise.Vect
15 16
import Vectorise.Monad
import Vectorise.Builtins
17
import Vectorise.Type.TyConDecl
18
import Vectorise.Type.Classify
19
import Vectorise.Type.PADict
20 21 22
import Vectorise.Type.PData
import Vectorise.Type.PRepr
import Vectorise.Type.Repr
23
import Vectorise.Utils
24

rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
25
import CoreSyn
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
26
import CoreUtils
27
import CoreUnfold
28
import DataCon
29 30
import TyCon
import Type
31
import FamInstEnv
32
import Id
33
import MkId
34
import NameEnv
35
import NameSet
36

37
import Util
38
import Outputable
39
import FastString
40 41
import MonadUtils
import Control.Monad
42 43
import Data.List

44

45 46 47 48 49 50 51 52 53
-- Note [Pragmas to vectorise tycons]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- VECTORISE pragmas for type constructors cover three different flavours of vectorising data type
-- constructors:
--
-- (1) Data type constructor 'T' that may be used in vectorised code, where 'T' represents itself,
--     but the representation of 'T' is opaque in vectorised code.  
--
54
--     An example is the treatment of 'Int'.  'Int's can be used in vectorised code and remain
55 56 57
--     unchanged by vectorisation.  However, the representation of 'Int' by the 'I#' data
--     constructor wrapping an 'Int#' is not exposed in vectorised code.  Instead, computations
--     involving the representation need to be confined to scalar code.
58
--
59 60 61 62 63 64
--     'PData' and 'PRepr' instances need to be explicitly supplied for 'T' (they are not generated
--     by the vectoriser).
--
--     Type constructors declared with {-# VECTORISE SCALAR type T #-} are treated in this manner.
--     (The vectoriser never treats a type constructor automatically in this manner.)
--
65 66
-- (2) [NOT FULLY IMPLEMENTED YET]
--     Data type constructor 'T' that together with its constructors 'Cn' may be used in vectorised
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
--     code, where 'T' and the 'Cn' represent themselves in vectorised code.
--
--     An example is the treatment of 'Bool'.  'Bool' together with 'False' and 'True' may appear in
--     vectorised code and they remain unchanged by vectorisation.  (There is no need for a special
--     representation as the values cannot embed any arrays.)

--     'PData' and 'PRepr' instances are automatically generated by the vectoriser.
--
--     Type constructors declared with {-# VECTORISE type T #-} are treated in this manner.
--     (This is the same treatment that type constructors receive that the vectoriser deems fit for
--     use in vectorised code, but for which no special vectorised variant needs to be generated.)
--
-- (3) [NOT IMPLEMENTED YET]
--     Data type constructor 'T' that together with its constructors 'Cn' may be used in vectorised
--     code, where 'T' is represented by 'Tv' and the workers of the 'Cn' are represented 'vCn' in
--     vectorised code.
--
--     ??Example??
--
--     'PData' and 'PRepr' instances are automatically generated by the vectoriser.
--
--     ??How declared??

-- |Vectorise a type environment.
--
92
vectTypeEnv :: [TyCon]                  -- TyCons defined in this module
93
            -> [CoreVect]               -- All 'VECTORISE [SCALAR] type' declarations in this module
94
            -> VM ( [TyCon]             -- old TyCons ++ new TyCons
95 96
                  , [FamInst]           -- New type family instances.
                  , [(Var, CoreExpr)])  -- New top level bindings.
97 98
vectTypeEnv tycons vectTypeDecls
  = do { traceVt "** vectTypeEnv" $ ppr tycons
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

         -- Build a map containing all vectorised type constructor.  If they are scalar, they are
         -- mapped to 'False' (vectorised type constructor == original type constructor).
       ; allScalarTyConNames <- globalScalarTyCons  -- covers both current and imported modules
       ; vectTyCons          <- globalVectTyCons
       ; let vectTyConBase    = mapNameEnv (const True) vectTyCons   -- by default fully vectorised
             vectTyConFlavour = foldNameSet (\n env -> extendNameEnv env n False) vectTyConBase
                                            allScalarTyConNames

           -- Split the list of 'TyCons' into the ones (1) that we must vectorise and those (2)
           -- that we could, but don't need to vectorise.  Type constructors that are not data
           -- type constructors or use non-Haskell98 features are being dropped.  They may not
           -- appear in vectorised code.  (We also drop the local type constructors appearing in a
           -- VECTORISE SCALAR pragma, as they are being handled separately.)
       ; let localScalarTyCons      = [tycon | VectType tycon Nothing <- vectTypeDecls]
             localScalarTyConNames  = mkNameSet (map tyConName localScalarTyCons)
             notLocalScalarTyCon tc = not $ (tyConName tc) `elemNameSet` localScalarTyConNames

117
             maybeVectoriseTyCons   = filter notLocalScalarTyCon tycons
118 119 120 121 122 123
             (conv_tcs, keep_tcs)   = classifyTyCons vectTyConFlavour maybeVectoriseTyCons
             orig_tcs               = keep_tcs ++ conv_tcs
             keep_dcs               = concatMap tyConDataCons keep_tcs
             
             keep_and_scalar_tcs    = keep_tcs ++ localScalarTyCons

124 125 126 127
       ; traceVt " declared SCALAR: " $ ppr localScalarTyCons
       ; traceVt " reuse          : " $ ppr keep_tcs
       ; traceVt " convert        : " $ ppr conv_tcs

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
           -- Of those type constructors that we don't need to vectorise, we use the original
           -- representation in both unvectorised and vectorised code.  For those declared VECTORISE
           -- SCALAR, we ignore their represention — see "Note [Pragmas to vectorise tycons]".
       ; zipWithM_ defTyCon   keep_and_scalar_tcs keep_and_scalar_tcs
       ; zipWithM_ defDataCon keep_dcs keep_dcs

           -- Vectorise all the data type declarations that we can and must vectorise.
       ; new_tcs <- vectTyConDecls conv_tcs

           -- We don't need new representation types for dictionary constructors. The constructors
           -- are always fully applied, and we don't need to lift them to arrays as a dictionary
           -- of a particular type always has the same value.
       ; let vect_tcs = filter (not . isClassTyCon) 
                      $ keep_tcs ++ new_tcs

           -- Build 'PRepr' and 'PData' instance type constructors and family instances for all
           -- type constructors with vectorised representations.
       ; reprs     <- mapM tyConRepr vect_tcs
       ; repr_tcs  <- zipWith3M buildPReprTyCon orig_tcs vect_tcs reprs
       ; pdata_tcs <- zipWith3M buildPDataTyCon orig_tcs vect_tcs reprs
       ; let inst_tcs  = repr_tcs ++ pdata_tcs
             fam_insts = map mkLocalFamInst inst_tcs
       ; updGEnv $ extendFamEnv fam_insts

           -- Generate dfuns for the 'PA' instances of the vectorised type constructors and
           -- associate the type constructors with their dfuns in the global environment.  We get
           -- back the dfun bindings (which we will subsequently inject into the modules toplevel).
       ; (_, binds) <- fixV $ \ ~(dfuns, _) ->
           do { defTyConPAs (zipLazy vect_tcs dfuns)
              ; dfuns <- sequence 
                      $  zipWith4 buildTyConBindings
                                  orig_tcs
                                  vect_tcs
                                  repr_tcs
                                  pdata_tcs

              ; binds <- takeHoisted
              ; return (dfuns, binds)
              }

168 169 170
           -- We return: (1) the vectorised type constructors, (2)
           -- their 'PRepr' & 'PData' instance constructors two.
       ; let new_tycons = tycons ++ new_tcs ++ inst_tcs
171

172
       ; return (new_tycons, fam_insts, binds)
173 174 175 176 177 178 179 180 181 182 183
       }


-- Helpers -------------------

buildTyConBindings :: TyCon -> TyCon -> TyCon -> TyCon -> VM Var
buildTyConBindings orig_tc vect_tc prepr_tc pdata_tc
 = do { vectDataConWorkers orig_tc vect_tc pdata_tc
      ; repr <- tyConRepr vect_tc
      ; buildPADict vect_tc prepr_tc pdata_tc repr
      }
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
184

185 186
vectDataConWorkers :: TyCon -> TyCon -> TyCon -> VM ()
vectDataConWorkers orig_tc vect_tc arr_tc
187
 = do bs <- sequence
188 189 190
          . zipWith3 def_worker  (tyConDataCons orig_tc) rep_tys
          $ zipWith4 mk_data_con (tyConDataCons vect_tc)
                                 rep_tys
191 192
                                 (inits rep_tys)
                                 (tail $ tails rep_tys)
193
      mapM_ (uncurry hoistBinding) bs
194
 where
195 196 197 198 199
    tyvars   = tyConTyVars vect_tc
    var_tys  = mkTyVarTys tyvars
    ty_args  = map Type var_tys
    res_ty   = mkTyConApp vect_tc var_tys

200 201 202 203
    cons     = tyConDataCons vect_tc
    arity    = length cons
    [arr_dc] = tyConDataCons arr_tc

204 205 206 207 208
    rep_tys  = map dataConRepArgTys $ tyConDataCons vect_tc


    mk_data_con con tys pre post
      = liftM2 (,) (vect_data_con con)
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
209
                   (lift_data_con tys pre post (mkDataConTag con))
210

211 212 213 214 215 216 217
    sel_replicate len tag
      | arity > 1 = do
                      rep <- builtin (selReplicate arity)
                      return [rep `mkApps` [len, tag]]

      | otherwise = return []

218
    vect_data_con con = return $ mkConApp con ty_args
219
    lift_data_con tys pre_tys post_tys tag
220 221
      = do
          len  <- builtin liftingContext
Ian Lynagh's avatar
Ian Lynagh committed
222
          args <- mapM (newLocalVar (fsLit "xs"))
223
                  =<< mapM mkPDataType tys
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
224

225
          sel  <- sel_replicate (Var len) tag
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
226

227 228
          pre   <- mapM emptyPD (concat pre_tys)
          post  <- mapM emptyPD (concat post_tys)
229 230 231 232

          return . mkLams (len : args)
                 . wrapFamInstBody arr_tc var_tys
                 . mkConApp arr_dc
233
                 $ ty_args ++ sel ++ pre ++ map Var args ++ post
234 235 236

    def_worker data_con arg_tys mk_body
      = do
237
          arity <- polyArity tyvars
238 239
          body <- closedV
                . inBind orig_worker
240 241
                . polyAbstract tyvars $ \args ->
                  liftM (mkLams (tyvars ++ args) . vectorised)
242 243
                $ buildClosures tyvars [] arg_tys res_ty mk_body

244
          raw_worker <- mkVectId orig_worker (exprType body)
245
          let vect_worker = raw_worker `setIdUnfolding`
246
                              mkInlineUnfolding (Just arity) body
247 248 249 250
          defGlobalVar orig_worker vect_worker
          return (vect_worker, body)
      where
        orig_worker = dataConWorkId data_con