MkId.hs 60.1 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1998

5 6 7 8

This module contains definitions for the IdInfo for things that
have a standard form, namely:

Thomas Schilling's avatar
Thomas Schilling committed
9 10 11 12
- data constructors
- record selectors
- method and superclass selectors
- primitive operations
Austin Seipp's avatar
Austin Seipp committed
13
-}
14

15
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
16

17
module MkId (
18
        mkDictFunId, mkDictFunTy, mkDictSelId, mkDictSelRhs,
19

20
        mkPrimOpId, mkFCallId,
21

22
        wrapNewTypeBody, unwrapNewTypeBody,
23
        wrapFamInstBody, unwrapFamInstScrut,
24
        wrapTypeUnbranchedFamInstBody, unwrapTypeUnbranchedFamInstScrut,
25 26

        DataConBoxer(..), mkDataConRep, mkDataConWorkId,
27

Ian Lynagh's avatar
Ian Lynagh committed
28 29
        -- And some particular Ids; see below for why they are wired in
        wiredInIds, ghcPrimIds,
30 31
        unsafeCoerceName, unsafeCoerceId, realWorldPrimId,
        voidPrimId, voidArgId,
32
        nullAddrId, seqId, lazyId, lazyIdKey, runRWId,
33
        coercionTokenId, magicDictId, coerceId,
34
        proxyHashId, noinlineIdName,
35

36 37
        -- Re-export error Ids
        module PrelRules
38 39 40 41
    ) where

#include "HsVersions.h"

Simon Marlow's avatar
Simon Marlow committed
42 43
import Rules
import TysPrim
44
import TysWiredIn
Simon Marlow's avatar
Simon Marlow committed
45 46
import PrelRules
import Type
47 48
import FamInstEnv
import Coercion
Simon Marlow's avatar
Simon Marlow committed
49
import TcType
50
import MkCore
51
import CoreUtils        ( exprType, mkCast )
Simon Marlow's avatar
Simon Marlow committed
52 53 54
import CoreUnfold
import Literal
import TyCon
55
import CoAxiom
Simon Marlow's avatar
Simon Marlow committed
56
import Class
57
import NameSet
Simon Marlow's avatar
Simon Marlow committed
58 59 60 61 62 63 64
import VarSet
import Name
import PrimOp
import ForeignCall
import DataCon
import Id
import IdInfo
65
import Demand
66
import CoreSyn
Simon Marlow's avatar
Simon Marlow committed
67
import Unique
68
import UniqSupply
69
import PrelNames
Simon Marlow's avatar
Simon Marlow committed
70 71
import BasicTypes       hiding ( SuccessFlag(..) )
import Util
72
import Pair
Ian Lynagh's avatar
Ian Lynagh committed
73
import DynFlags
74
import Outputable
75
import FastString
Simon Marlow's avatar
Simon Marlow committed
76
import ListSetOps
77
import qualified GHC.LanguageExtensions as LangExt
78 79

import Data.Maybe       ( maybeToList )
80

Austin Seipp's avatar
Austin Seipp committed
81 82 83
{-
************************************************************************
*                                                                      *
84
\subsection{Wired in Ids}
Austin Seipp's avatar
Austin Seipp committed
85 86
*                                                                      *
************************************************************************
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Note [Wired-in Ids]
~~~~~~~~~~~~~~~~~~~
There are several reasons why an Id might appear in the wiredInIds:

(1) The ghcPrimIds are wired in because they can't be defined in
    Haskell at all, although the can be defined in Core.  They have
    compulsory unfoldings, so they are always inlined and they  have
    no definition site.  Their home module is GHC.Prim, so they
    also have a description in primops.txt.pp, where they are called
    'pseudoops'.

(2) The 'error' function, eRROR_ID, is wired in because we don't yet have
    a way to express in an interface file that the result type variable
    is 'open'; that is can be unified with an unboxed type

    [The interface file format now carry such information, but there's
104 105
    no way yet of expressing at the definition site for these
    error-reporting functions that they have an 'open'
106 107 108
    result type. -- sof 1/99]

(3) Other error functions (rUNTIME_ERROR_ID) are wired in (a) because
Ömer Sinan Ağacan's avatar
Ömer Sinan Ağacan committed
109
    the desugarer generates code that mentions them directly, and
110 111 112 113 114
    (b) for the same reason as eRROR_ID

(4) lazyId is wired in because the wired-in version overrides the
    strictness of the version defined in GHC.Base

115 116 117
(5) noinlineId is wired in because when we serialize to interfaces
    we may insert noinline statements.

118
In cases (2-4), the function has a definition in a library module, and
119
can be called; but the wired-in version means that the details are
120 121
never read from that module's interface file; instead, the full definition
is right here.
Austin Seipp's avatar
Austin Seipp committed
122
-}
123

124
wiredInIds :: [Id]
125
wiredInIds
126
  =  [lazyId, dollarId, oneShotId, runRWId, noinlineId]
127
  ++ errorIds           -- Defined in MkCore
128
  ++ ghcPrimIds
129 130

-- These Ids are exported from GHC.Prim
131
ghcPrimIds :: [Id]
132
ghcPrimIds
Ian Lynagh's avatar
Ian Lynagh committed
133 134
  = [   -- These can't be defined in Haskell, but they have
        -- perfectly reasonable unfoldings in Core
135
    realWorldPrimId,
136
    voidPrimId,
137 138
    unsafeCoerceId,
    nullAddrId,
139
    seqId,
140
    magicDictId,
141 142
    coerceId,
    proxyHashId
143 144
    ]

Austin Seipp's avatar
Austin Seipp committed
145 146 147
{-
************************************************************************
*                                                                      *
148
\subsection{Data constructors}
Austin Seipp's avatar
Austin Seipp committed
149 150
*                                                                      *
************************************************************************
151

152 153 154 155
The wrapper for a constructor is an ordinary top-level binding that evaluates
any strict args, unboxes any args that are going to be flattened, and calls
the worker.

156 157
We're going to build a constructor that looks like:

Ian Lynagh's avatar
Ian Lynagh committed
158
        data (Data a, C b) =>  T a b = T1 !a !Int b
159

160
        T1 = /\ a b ->
Ian Lynagh's avatar
Ian Lynagh committed
161 162 163 164
             \d1::Data a, d2::C b ->
             \p q r -> case p of { p ->
                       case q of { q ->
                       Con T1 [a,b] [p,q,r]}}
165 166 167 168 169 170 171 172 173 174

Notice that

* d2 is thrown away --- a context in a data decl is used to make sure
  one *could* construct dictionaries at the site the constructor
  is used, but the dictionary isn't actually used.

* We have to check that we can construct Data dictionaries for
  the types a and Int.  Once we've done that we can throw d1 away too.

175
* We use (case p of q -> ...) to evaluate p, rather than "seq" because
176
  all that matters is that the arguments are evaluated.  "seq" is
177 178 179
  very careful to preserve evaluation order, which we don't need
  to be here.

180 181 182 183 184 185 186 187 188
  You might think that we could simply give constructors some strictness
  info, like PrimOps, and let CoreToStg do the let-to-case transformation.
  But we don't do that because in the case of primops and functions strictness
  is a *property* not a *requirement*.  In the case of constructors we need to
  do something active to evaluate the argument.

  Making an explicit case expression allows the simplifier to eliminate
  it in the (common) case where the constructor arg is already evaluated.

189 190
Note [Wrappers for data instance tycons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
191 192
In the case of data instances, the wrapper also applies the coercion turning
the representation type into the family instance type to cast the result of
193 194 195 196 197
the wrapper.  For example, consider the declarations

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

198 199 200 201 202 203 204
The tycon to which the datacon MapPair belongs gets a unique internal
name of the form :R123Map, and we call it the representation tycon.
In contrast, Map is the family tycon (accessible via
tyConFamInst_maybe). A coercion allows you to move between
representation and family type.  It is accessible from :R123Map via
tyConFamilyCoercion_maybe and has kind

205
  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
206 207

The wrapper and worker of MapPair get the types
208

Ian Lynagh's avatar
Ian Lynagh committed
209
        -- Wrapper
210
  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
211
  $WMapPair a b v = MapPair a b v `cast` sym (Co123Map a b v)
212

Ian Lynagh's avatar
Ian Lynagh committed
213
        -- Worker
214
  MapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v
215

216
This coercion is conditionally applied by wrapFamInstBody.
217

218
It's a bit more complicated if the data instance is a GADT as well!
219

220
   data instance T [a] where
Ian Lynagh's avatar
Ian Lynagh committed
221
        T1 :: forall b. b -> T [Maybe b]
222

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
223
Hence we translate to
224

Ian Lynagh's avatar
Ian Lynagh committed
225
        -- Wrapper
226
  $WT1 :: forall b. b -> T [Maybe b]
227
  $WT1 b v = T1 (Maybe b) b (Maybe b) v
Ian Lynagh's avatar
Ian Lynagh committed
228
                        `cast` sym (Co7T (Maybe b))
229

Ian Lynagh's avatar
Ian Lynagh committed
230
        -- Worker
231
  T1 :: forall c b. (c ~ Maybe b) => b -> :R7T c
232

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
233 234 235
        -- Coercion from family type to representation type
  Co7T a :: T [a] ~ :R7T a

236 237 238 239 240 241 242 243 244 245 246
Note [Newtype datacons]
~~~~~~~~~~~~~~~~~~~~~~~
The "data constructor" for a newtype should always be vanilla.  At one
point this wasn't true, because the newtype arising from
     class C a => D a
looked like
       newtype T:D a = D:D (C a)
so the data constructor for T:C had a single argument, namely the
predicate (C a).  But now we treat that as an ordinary argument, not
part of the theta-type, so all is well.

247

Austin Seipp's avatar
Austin Seipp committed
248 249
************************************************************************
*                                                                      *
250
\subsection{Dictionary selectors}
Austin Seipp's avatar
Austin Seipp committed
251 252
*                                                                      *
************************************************************************
253

254
Selecting a field for a dictionary.  If there is just one field, then
255
there's nothing to do.
256

257
Dictionary selectors may get nested forall-types.  Thus:
258

259 260
        class Foo a where
          op :: forall b. Ord b => a -> b -> b
261

262
Then the top-level type for op is
263

264 265
        op :: forall a. Foo a =>
              forall b. Ord b =>
266
              a -> b -> b
267

Austin Seipp's avatar
Austin Seipp committed
268
-}
269

270 271
mkDictSelId :: Name          -- Name of one of the *value* selectors
                             -- (dictionary superclass or method)
272
            -> Class -> Id
273
mkDictSelId name clas
274 275
  = mkGlobalId (ClassOpId clas) name sel_ty info
  where
276
    tycon          = classTyCon clas
277
    sel_names      = map idName (classAllSelIds clas)
278 279
    new_tycon      = isNewTyCon tycon
    [data_con]     = tyConDataCons tycon
Simon Peyton Jones's avatar
Simon Peyton Jones committed
280 281
    tyvars         = dataConUnivTyVarBinders data_con
    n_ty_args      = length tyvars
282
    arg_tys        = dataConRepArgTys data_con  -- Includes the dictionary superclasses
283 284
    val_index      = assoc "MkId.mkDictSelId" (sel_names `zip` [0..]) name

Simon Peyton Jones's avatar
Simon Peyton Jones committed
285
    sel_ty = mkForAllTys tyvars $
286
             mkFunTy (mkClassPred clas (mkTyVarTys (binderVars tyvars))) $
287 288
             getNth arg_tys val_index

289
    base_info = noCafIdInfo
290 291
                `setArityInfo`         1
                `setStrictnessInfo`    strict_sig
292 293 294 295

    info | new_tycon
         = base_info `setInlinePragInfo` alwaysInlinePragma
                     `setUnfoldingInfo`  mkInlineUnfolding (Just 1) (mkDictSelRhs clas val_index)
296 297
                   -- See Note [Single-method classes] in TcInstDcls
                   -- for why alwaysInlinePragma
298 299

         | otherwise
300
         = base_info `setRuleInfo` mkRuleInfo [rule]
301 302 303
                   -- Add a magic BuiltinRule, but no unfolding
                   -- so that the rule is always available to fire.
                   -- See Note [ClassOp/DFun selection] in TcInstDcls
304

305
    -- This is the built-in rule that goes
306 307 308
    --      op (dfT d1 d2) --->  opT d1 d2
    rule = BuiltinRule { ru_name = fsLit "Class op " `appendFS`
                                     occNameFS (getOccName name)
309
                       , ru_fn    = name
310
                       , ru_nargs = n_ty_args + 1
311
                       , ru_try   = dictSelRule val_index n_ty_args }
312

313 314 315 316
        -- The strictness signature is of the form U(AAAVAAAA) -> T
        -- where the V depends on which item we are selecting
        -- It's worth giving one, so that absence info etc is generated
        -- even if the selector isn't inlined
317

318
    strict_sig = mkClosedStrictSig [arg_dmd] topRes
319
    arg_dmd | new_tycon = evalDmd
320
            | otherwise = mkManyUsedDmd $
321 322 323 324 325 326 327 328 329
                          mkProdDmd [ if name == sel_name then evalDmd else absDmd
                                    | sel_name <- sel_names ]

mkDictSelRhs :: Class
             -> Int         -- 0-indexed selector among (superclasses ++ methods)
             -> CoreExpr
mkDictSelRhs clas val_index
  = mkLams tyvars (Lam dict_id rhs_body)
  where
330 331 332 333 334
    tycon          = classTyCon clas
    new_tycon      = isNewTyCon tycon
    [data_con]     = tyConDataCons tycon
    tyvars         = dataConUnivTyVars data_con
    arg_tys        = dataConRepArgTys data_con  -- Includes the dictionary superclasses
335

336
    the_arg_id     = getNth arg_ids val_index
337 338 339
    pred           = mkClassPred clas (mkTyVarTys tyvars)
    dict_id        = mkTemplateLocal 1 pred
    arg_ids        = mkTemplateLocalsNum 2 arg_tys
340

341
    rhs_body | new_tycon = unwrapNewTypeBody tycon (mkTyVarTys tyvars) (Var dict_id)
342
             | otherwise = Case (Var dict_id) dict_id (idType the_arg_id)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
343
                                [(DataAlt data_con, arg_ids, varToCoreExpr the_arg_id)]
344 345
                                -- varToCoreExpr needed for equality superclass selectors
                                --   sel a b d = case x of { MkC _ (g:a~b) _ -> CO g }
346

347
dictSelRule :: Int -> Arity -> RuleFun
348 349 350
-- Tries to persuade the argument to look like a constructor
-- application, using exprIsConApp_maybe, and then selects
-- from it
351
--       sel_i t1..tk (D t1..tk op1 ... opm) = opi
352
--
353
dictSelRule val_index n_ty_args _ id_unf _ args
354
  | (dict_arg : _) <- drop n_ty_args args
355
  , Just (_, _, con_args) <- exprIsConApp_maybe id_unf dict_arg
356
  = Just (getNth con_args val_index)
357 358
  | otherwise
  = Nothing
359

Austin Seipp's avatar
Austin Seipp committed
360 361 362
{-
************************************************************************
*                                                                      *
Simon Peyton Jones's avatar
Simon Peyton Jones committed
363
        Data constructors
Austin Seipp's avatar
Austin Seipp committed
364 365 366
*                                                                      *
************************************************************************
-}
367 368 369 370 371 372 373 374

mkDataConWorkId :: Name -> DataCon -> Id
mkDataConWorkId wkr_name data_con
  | isNewTyCon tycon
  = mkGlobalId (DataConWrapId data_con) wkr_name nt_wrap_ty nt_work_info
  | otherwise
  = mkGlobalId (DataConWorkId data_con) wkr_name alg_wkr_ty wkr_info

375
  where
376 377 378 379 380 381 382
    tycon = dataConTyCon data_con

        ----------- Workers for data types --------------
    alg_wkr_ty = dataConRepType data_con
    wkr_arity = dataConRepArity data_con
    wkr_info  = noCafIdInfo
                `setArityInfo`       wkr_arity
383
                `setStrictnessInfo`  wkr_sig
384 385 386
                `setUnfoldingInfo`   evaldUnfolding  -- Record that it's evaluated,
                                                     -- even if arity = 0

387
    wkr_sig = mkClosedStrictSig (replicate wkr_arity topDmd) (dataConCPR data_con)
388 389 390 391 392
        --      Note [Data-con worker strictness]
        -- Notice that we do *not* say the worker is strict
        -- even if the data constructor is declared strict
        --      e.g.    data T = MkT !(Int,Int)
        -- Why?  Because the *wrapper* is strict (and its unfolding has case
Ömer Sinan Ağacan's avatar
Ömer Sinan Ağacan committed
393
        -- expressions that do the evals) but the *worker* itself is not.
394 395 396 397 398
        -- If we pretend it is strict then when we see
        --      case x of y -> $wMkT y
        -- the simplifier thinks that y is "sure to be evaluated" (because
        --  $wMkT is strict) and drops the case.  No, $wMkT is not strict.
        --
Gabor Greif's avatar
Gabor Greif committed
399
        -- When the simplifier sees a pattern
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        --      case e of MkT x -> ...
        -- it uses the dataConRepStrictness of MkT to mark x as evaluated;
        -- but that's fine... dataConRepStrictness comes from the data con
        -- not from the worker Id.

        ----------- Workers for newtypes --------------
    (nt_tvs, _, nt_arg_tys, _) = dataConSig data_con
    res_ty_args  = mkTyVarTys nt_tvs
    nt_wrap_ty   = dataConUserType data_con
    nt_work_info = noCafIdInfo          -- The NoCaf-ness is set by noCafIdInfo
                  `setArityInfo` 1      -- Arity 1
                  `setInlinePragInfo`    alwaysInlinePragma
                  `setUnfoldingInfo`     newtype_unf
    id_arg1      = mkTemplateLocal 1 (head nt_arg_tys)
    newtype_unf  = ASSERT2( isVanillaDataCon data_con &&
                            isSingleton nt_arg_tys, ppr data_con  )
416 417 418
                              -- Note [Newtype datacons]
                   mkCompulsoryUnfolding $
                   mkLams nt_tvs $ Lam id_arg1 $
419
                   wrapNewTypeBody tycon res_ty_args (Var id_arg1)
420

421 422
dataConCPR :: DataCon -> DmdResult
dataConCPR con
423
  | isDataTyCon tycon     -- Real data types only; that is,
424
                          -- not unboxed tuples or newtypes
425
  , null (dataConExTyVars con)  -- No existentials
426 427
  , wkr_arity > 0
  , wkr_arity <= mAX_CPR_SIZE
428 429
  = if is_prod then vanillaCprProdRes (dataConRepArity con)
               else cprSumRes (dataConTag con)
430
  | otherwise
431
  = topRes
432
  where
433 434
    is_prod   = isProductTyCon tycon
    tycon     = dataConTyCon con
435 436 437 438 439
    wkr_arity = dataConRepArity con

    mAX_CPR_SIZE :: Arity
    mAX_CPR_SIZE = 10
    -- We do not treat very big tuples as CPR-ish:
440 441 442
    --      a) for a start we get into trouble because there aren't
    --         "enough" unboxed tuple types (a tiresome restriction,
    --         but hard to fix),
443 444 445 446
    --      b) more importantly, big unboxed tuples get returned mainly
    --         on the stack, and are often then allocated in the heap
    --         by the caller.  So doing CPR for them may in fact make
    --         things worse.
447

Austin Seipp's avatar
Austin Seipp committed
448
{-
449 450
-------------------------------------------------
--         Data constructor representation
451 452
--
-- This is where we decide how to wrap/unwrap the
453 454 455
-- constructor fields
--
--------------------------------------------------
Austin Seipp's avatar
Austin Seipp committed
456
-}
457 458 459 460

type Unboxer = Var -> UniqSM ([Var], CoreExpr -> CoreExpr)
  -- Unbox: bind rep vars by decomposing src var

461
data Boxer = UnitBox | Boxer (TCvSubst -> UniqSM ([Var], CoreExpr))
462 463
  -- Box:   build src arg using these rep vars

464
-- | Data Constructor Boxer
465 466 467 468
newtype DataConBoxer = DCB ([Type] -> [Var] -> UniqSM ([Var], [CoreBind]))
                       -- Bind these src-level vars, returning the
                       -- rep-level vars to bind in the pattern

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{-
Note [Inline partially-applied constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We allow the wrapper to inline when partially applied to avoid
boxing values unnecessarily. For example, consider

   data Foo a = Foo !Int a

   instance Traversable Foo where
     traverse f (Foo i a) = Foo i <$> f a

This desugars to

   traverse f foo = case foo of
        Foo i# a -> let i = I# i#
                    in map ($WFoo i) (f a)

If the wrapper `$WFoo` is not inlined, we get a fruitless reboxing of `i`.
But if we inline the wrapper, we get

   map (\a. case i of I# i# a -> Foo i# a) (f a)

and now case-of-known-constructor eliminates the redundant allocation.
-}

495 496 497 498 499 500 501 502
mkDataConRep :: DynFlags
             -> FamInstEnvs
             -> Name
             -> Maybe [HsImplBang]
                -- See Note [Bangs on imported data constructors]
             -> DataCon
             -> UniqSM DataConRep
mkDataConRep dflags fam_envs wrap_name mb_bangs data_con
503 504
  | not wrapper_reqd
  = return NoDataConRep
505

506
  | otherwise
507
  = do { wrap_args <- mapM newLocal wrap_arg_tys
508
       ; wrap_body <- mk_rep_app (wrap_args `zip` dropList eq_spec unboxers)
509 510 511 512
                                 initial_wrap_app

       ; let wrap_id = mkGlobalId (DataConWrapId data_con) wrap_name wrap_ty wrap_info
             wrap_info = noCafIdInfo
513 514 515 516 517 518 519 520 521 522 523
                         `setArityInfo`         wrap_arity
                             -- It's important to specify the arity, so that partial
                             -- applications are treated as values
                         `setInlinePragInfo`    alwaysInlinePragma
                         `setUnfoldingInfo`     wrap_unf
                         `setStrictnessInfo`    wrap_sig
                             -- We need to get the CAF info right here because TidyPgm
                             -- does not tidy the IdInfo of implicit bindings (like the wrapper)
                             -- so it not make sure that the CAF info is sane

             wrap_sig = mkClosedStrictSig wrap_arg_dmds (dataConCPR data_con)
524
             wrap_arg_dmds = map mk_dmd arg_ibangs
525
             mk_dmd str | isBanged str = evalDmd
526
                        | otherwise           = topDmd
527 528 529 530 531 532 533 534 535 536

             -- The wrapper will usually be inlined (see wrap_unf), so its
             -- strictness and CPR info is usually irrelevant. But this is
             -- not always the case; GHC may choose not to inline it. In
             -- particular, the wrapper constructor is not inlined inside
             -- an INLINE rhs or when it is not applied to any arguments.
             -- See Note [Inline partially-applied constructor wrappers]
             -- Passing Nothing here allows the wrapper to inline when
             -- unsaturated.
             wrap_unf = mkInlineUnfolding Nothing wrap_rhs
537
             wrap_tvs = (univ_tvs `minusList` map eqSpecTyVar eq_spec) ++ ex_tvs
538 539 540
             wrap_rhs = mkLams wrap_tvs $
                        mkLams wrap_args $
                        wrapFamInstBody tycon res_ty_args $
541 542 543 544 545 546
                        wrap_body

       ; return (DCR { dcr_wrap_id = wrap_id
                     , dcr_boxer   = mk_boxer boxers
                     , dcr_arg_tys = rep_tys
                     , dcr_stricts = rep_strs
547
                     , dcr_bangs   = arg_ibangs }) }
548

549
  where
550 551
    (univ_tvs, ex_tvs, eq_spec, theta, orig_arg_tys, _orig_res_ty)
      = dataConFullSig data_con
niteria's avatar
niteria committed
552
    res_ty_args  = substTyVars (mkTvSubstPrs (map eqSpecPair eq_spec)) univ_tvs
553

554 555 556
    tycon        = dataConTyCon data_con       -- The representation TyCon (not family)
    wrap_ty      = dataConUserType data_con
    ev_tys       = eqSpecPreds eq_spec ++ theta
557
    all_arg_tys  = ev_tys ++ orig_arg_tys
558
    ev_ibangs    = map (const HsLazy) ev_tys
559
    orig_bangs   = dataConSrcBangs data_con
560 561 562

    wrap_arg_tys = theta ++ orig_arg_tys
    wrap_arity   = length wrap_arg_tys
563 564 565
             -- The wrap_args are the arguments *other than* the eq_spec
             -- Because we are going to apply the eq_spec args manually in the
             -- wrapper
566

567 568 569 570 571 572 573 574 575
    arg_ibangs =
      case mb_bangs of
        Nothing    -> zipWith (dataConSrcToImplBang dflags fam_envs)
                              orig_arg_tys orig_bangs
        Just bangs -> bangs

    (rep_tys_w_strs, wrappers)
      = unzip (zipWith dataConArgRep all_arg_tys (ev_ibangs ++ arg_ibangs))

576
    (unboxers, boxers) = unzip wrappers
577 578 579
    (rep_tys, rep_strs) = unzip (concat rep_tys_w_strs)

    wrapper_reqd = not (isNewTyCon tycon)  -- Newtypes have only a worker
580 581
                && (any isBanged (ev_ibangs ++ arg_ibangs)
                      -- Some forcing/unboxing (includes eq_spec)
582 583
                    || isFamInstTyCon tycon  -- Cast result
                    || (not $ null eq_spec)) -- GADT
584 585

    initial_wrap_app = Var (dataConWorkId data_con)
586 587 588
                       `mkTyApps`  res_ty_args
                       `mkVarApps` ex_tvs
                       `mkCoApps`  map (mkReflCo Nominal . eqSpecType) eq_spec
589 590

    mk_boxer :: [Boxer] -> DataConBoxer
591
    mk_boxer boxers = DCB (\ ty_args src_vars ->
592
                      do { let (ex_vars, term_vars) = splitAtList ex_tvs src_vars
593
                               subst1 = zipTvSubst univ_tvs ty_args
594 595
                               subst2 = extendTvSubstList subst1 ex_tvs
                                                          (mkTyVarTys ex_vars)
596
                         ; (rep_ids, binds) <- go subst2 boxers term_vars
597 598 599 600 601 602 603 604 605 606 607 608 609
                         ; return (ex_vars ++ rep_ids, binds) } )

    go _ [] src_vars = ASSERT2( null src_vars, ppr data_con ) return ([], [])
    go subst (UnitBox : boxers) (src_var : src_vars)
      = do { (rep_ids2, binds) <- go subst boxers src_vars
           ; return (src_var : rep_ids2, binds) }
    go subst (Boxer boxer : boxers) (src_var : src_vars)
      = do { (rep_ids1, arg)  <- boxer subst
           ; (rep_ids2, binds) <- go subst boxers src_vars
           ; return (rep_ids1 ++ rep_ids2, NonRec src_var arg : binds) }
    go _ (_:_) [] = pprPanic "mk_boxer" (ppr data_con)

    mk_rep_app :: [(Id,Unboxer)] -> CoreExpr -> UniqSM CoreExpr
610
    mk_rep_app [] con_app
611
      = return con_app
612
    mk_rep_app ((wrap_arg, unboxer) : prs) con_app
613 614 615 616
      = do { (rep_ids, unbox_fn) <- unboxer wrap_arg
           ; expr <- mk_rep_app prs (mkVarApps con_app rep_ids)
           ; return (unbox_fn expr) }

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
{-
Note [Bangs on imported data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We pass Maybe [HsImplBang] to mkDataConRep to make use of HsImplBangs
from imported modules.

- Nothing <=> use HsSrcBangs
- Just bangs <=> use HsImplBangs

For imported types we can't work it all out from the HsSrcBangs,
because we want to be very sure to follow what the original module
(where the data type was declared) decided, and that depends on what
flags were enabled when it was compiled. So we record the decisions in
the interface file.

The HsImplBangs passed are in 1-1 correspondence with the
dataConOrigArgTys of the DataCon.

-}

638 639
-------------------------
newLocal :: Type -> UniqSM Var
640
newLocal ty = do { uniq <- getUniqueM
641
                 ; return (mkSysLocalOrCoVar (fsLit "dt") uniq ty) }
642

643 644
-- | Unpack/Strictness decisions from source module
dataConSrcToImplBang
645
   :: DynFlags
646
   -> FamInstEnvs
Simon Peyton Jones's avatar
Simon Peyton Jones committed
647
   -> Type
648 649
   -> HsSrcBang
   -> HsImplBang
650

651 652
dataConSrcToImplBang dflags fam_envs arg_ty
              (HsSrcBang ann unpk NoSrcStrict)
653
  | xopt LangExt.StrictData dflags -- StrictData => strict field
654 655 656 657
  = dataConSrcToImplBang dflags fam_envs arg_ty
                  (HsSrcBang ann unpk SrcStrict)
  | otherwise -- no StrictData => lazy field
  = HsLazy
658

659 660
dataConSrcToImplBang _ _ _ (HsSrcBang _ _ SrcLazy)
  = HsLazy
661

662
dataConSrcToImplBang dflags fam_envs arg_ty
663
    (HsSrcBang _ unpk_prag SrcStrict)
664
  | not (gopt Opt_OmitInterfacePragmas dflags) -- Don't unpack if -fomit-iface-pragmas
665
          -- Don't unpack if we aren't optimising; rather arbitrarily,
666
          -- we use -fomit-iface-pragmas as the indication
667
  , let mb_co   = topNormaliseType_maybe fam_envs arg_ty
668
                     -- Unwrap type families and newtypes
669
        arg_ty' = case mb_co of { Just (_,ty) -> ty; Nothing -> arg_ty }
670
  , isUnpackableType dflags fam_envs arg_ty'
671
  , (rep_tys, _) <- dataConArgUnpack arg_ty'
672
  , case unpk_prag of
673 674 675 676 677
      NoSrcUnpack ->
        gopt Opt_UnboxStrictFields dflags
            || (gopt Opt_UnboxSmallStrictFields dflags
                && length rep_tys <= 1) -- See Note [Unpack one-wide fields]
      srcUnpack -> isSrcUnpacked srcUnpack
678
  = case mb_co of
679 680
      Nothing     -> HsUnpack Nothing
      Just (co,_) -> HsUnpack (Just co)
681

682
  | otherwise -- Record the strict-but-no-unpack decision
683
  = HsStrict
684

685

Ömer Sinan Ağacan's avatar
Ömer Sinan Ağacan committed
686
-- | Wrappers/Workers and representation following Unpack/Strictness
687 688 689 690 691 692 693 694 695
-- decisions
dataConArgRep
  :: Type
  -> HsImplBang
  -> ([(Type,StrictnessMark)] -- Rep types
     ,(Unboxer,Boxer))

dataConArgRep arg_ty HsLazy
  = ([(arg_ty, NotMarkedStrict)], (unitUnboxer, unitBoxer))
696

697 698 699 700
dataConArgRep arg_ty HsStrict
  = ([(arg_ty, MarkedStrict)], (seqUnboxer, unitBoxer))

dataConArgRep arg_ty (HsUnpack Nothing)
701
  | (rep_tys, wrappers) <- dataConArgUnpack arg_ty
702
  = (rep_tys, wrappers)
703

704
dataConArgRep _ (HsUnpack (Just co))
705 706
  | let co_rep_ty = pSnd (coercionKind co)
  , (rep_tys, wrappers) <- dataConArgUnpack co_rep_ty
707
  = (rep_tys, wrapCo co co_rep_ty wrappers)
708 709 710


-------------------------
711 712 713 714 715 716 717 718
wrapCo :: Coercion -> Type -> (Unboxer, Boxer) -> (Unboxer, Boxer)
wrapCo co rep_ty (unbox_rep, box_rep)  -- co :: arg_ty ~ rep_ty
  = (unboxer, boxer)
  where
    unboxer arg_id = do { rep_id <- newLocal rep_ty
                        ; (rep_ids, rep_fn) <- unbox_rep rep_id
                        ; let co_bind = NonRec rep_id (Var arg_id `Cast` co)
                        ; return (rep_ids, Let co_bind . rep_fn) }
719 720
    boxer = Boxer $ \ subst ->
            do { (rep_ids, rep_expr)
721 722 723 724
                    <- case box_rep of
                         UnitBox -> do { rep_id <- newLocal (TcType.substTy subst rep_ty)
                                       ; return ([rep_id], Var rep_id) }
                         Boxer boxer -> boxer subst
725
               ; let sco = substCoUnchecked subst co
726 727 728
               ; return (rep_ids, rep_expr `Cast` mkSymCo sco) }

------------------------
729 730 731 732 733 734 735 736 737 738 739 740
seqUnboxer :: Unboxer
seqUnboxer v = return ([v], \e -> Case (Var v) v (exprType e) [(DEFAULT, [], e)])

unitUnboxer :: Unboxer
unitUnboxer v = return ([v], \e -> e)

unitBoxer :: Boxer
unitBoxer = UnitBox

-------------------------
dataConArgUnpack
   :: Type
741 742
   ->  ( [(Type, StrictnessMark)]   -- Rep types
       , (Unboxer, Boxer) )
743 744

dataConArgUnpack arg_ty
745
  | Just (tc, tc_args) <- splitTyConApp_maybe arg_ty
746 747
  , Just con <- tyConSingleAlgDataCon_maybe tc
      -- NB: check for an *algebraic* data type
748
      -- A recursive newtype might mean that
749
      -- 'arg_ty' is a newtype
750 751 752 753 754 755 756 757 758 759
  , let rep_tys = dataConInstArgTys con tc_args
  = ASSERT( isVanillaDataCon con )
    ( rep_tys `zip` dataConRepStrictness con
    ,( \ arg_id ->
       do { rep_ids <- mapM newLocal rep_tys
          ; let unbox_fn body
                  = Case (Var arg_id) arg_id (exprType body)
                         [(DataAlt con, rep_ids, body)]
          ; return (rep_ids, unbox_fn) }
     , Boxer $ \ subst ->
760
       do { rep_ids <- mapM (newLocal . TcType.substTyUnchecked subst) rep_tys
761
          ; return (rep_ids, Var (dataConWorkId con)
762
                             `mkTyApps` (substTysUnchecked subst tc_args)
763 764 765 766 767
                             `mkVarApps` rep_ids ) } ) )
  | otherwise
  = pprPanic "dataConArgUnpack" (ppr arg_ty)
    -- An interface file specified Unpacked, but we couldn't unpack it

768
isUnpackableType :: DynFlags -> FamInstEnvs -> Type -> Bool
769
-- True if we can unpack the UNPACK the argument type
770 771 772 773
-- See Note [Recursive unboxing]
-- We look "deeply" inside rather than relying on the DataCons
-- we encounter on the way, because otherwise we might well
-- end up relying on ourselves!
774
isUnpackableType dflags fam_envs ty
775
  | Just (tc, _) <- splitTyConApp_maybe ty
776
  , Just con <- tyConSingleAlgDataCon_maybe tc
777 778 779 780
  , isVanillaDataCon con
  = ok_con_args (unitNameSet (getName tc)) con
  | otherwise
  = False
781
  where
782
    ok_arg tcs (ty, bang) = not (attempt_unpack bang) || ok_ty tcs norm_ty
783
        where
784
          norm_ty = topNormaliseType fam_envs ty
785 786 787 788
    ok_ty tcs ty
      | Just (tc, _) <- splitTyConApp_maybe ty
      , let tc_name = getName tc
      =  not (tc_name `elemNameSet` tcs)
789
      && case tyConSingleAlgDataCon_maybe tc of
790
            Just con | isVanillaDataCon con
791
                    -> ok_con_args (tcs `extendNameSet` getName tc) con
792
            _ -> True
793
      | otherwise
794 795 796
      = True

    ok_con_args tcs con
Simon Peyton Jones's avatar
Simon Peyton Jones committed
797 798 799
       = all (ok_arg tcs) (dataConOrigArgTys con `zip` dataConSrcBangs con)
         -- NB: dataConSrcBangs gives the *user* request;
         -- We'd get a black hole if we used dataConImplBangs
800

801
    attempt_unpack (HsSrcBang _ SrcUnpack NoSrcStrict)
802
      = xopt LangExt.StrictData dflags
803 804 805 806
    attempt_unpack (HsSrcBang _ SrcUnpack SrcStrict)
      = True
    attempt_unpack (HsSrcBang _  NoSrcUnpack SrcStrict)
      = True  -- Be conservative
807
    attempt_unpack (HsSrcBang _  NoSrcUnpack NoSrcStrict)
808
      = xopt LangExt.StrictData dflags -- Be conservative
809
    attempt_unpack _ = False
810

Austin Seipp's avatar
Austin Seipp committed
811
{-
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
Note [Unpack one-wide fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The flag UnboxSmallStrictFields ensures that any field that can
(safely) be unboxed to a word-sized unboxed field, should be so unboxed.
For example:

    data A = A Int#
    newtype B = B A
    data C = C !B
    data D = D !C
    data E = E !()
    data F = F !D
    data G = G !F !F

All of these should have an Int# as their representation, except
827
G which should have two Int#s.
828

829
However
830 831 832 833 834 835 836 837

    data T = T !(S Int)
    data S = S !a

Here we can represent T with an Int#.

Note [Recursive unboxing]
~~~~~~~~~~~~~~~~~~~~~~~~~
838
Consider
839 840 841
  data R = MkR {-# UNPACK #-} !S Int
  data S = MkS {-# UNPACK #-} !Int
The representation arguments of MkR are the *representation* arguments
842 843 844
of S (plus Int); the rep args of MkS are Int#.  This is all fine.

But be careful not to try to unbox this!
845
        data T = MkT {-# UNPACK #-} !T Int
846 847 848
Because then we'd get an infinite number of arguments.

Here is a more complicated case:
849 850
        data S = MkS {-# UNPACK #-} !T Int
        data T = MkT {-# UNPACK #-} !S Int
Ömer Sinan Ağacan's avatar
Ömer Sinan Ağacan committed
851
Each of S and T must decide independently whether to unpack
852 853 854
and they had better not both say yes. So they must both say no.

Also behave conservatively when there is no UNPACK pragma
855
        data T = MkS !T Int
856 857
with -funbox-strict-fields or -funbox-small-strict-fields
we need to behave as if there was an UNPACK pragma there.
858 859

But it's the *argument* type that matters. This is fine:
860
        data S = MkS S !Int
861 862
because Int is non-recursive.

Austin Seipp's avatar
Austin Seipp committed
863 864
************************************************************************
*                                                                      *
Ian Lynagh's avatar
Ian Lynagh committed
865
        Wrapping and unwrapping newtypes and type families
Austin Seipp's avatar
Austin Seipp committed
866 867 868
*                                                                      *
************************************************************************
-}
869

870 871
wrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
-- The wrapper for the data constructor for a newtype looks like this:
Ian Lynagh's avatar
Ian Lynagh committed
872 873 874
--      newtype T a = MkT (a,Int)
--      MkT :: forall a. (a,Int) -> T a
--      MkT = /\a. \(x:(a,Int)). x `cast` sym (CoT a)
Gabor Greif's avatar
Gabor Greif committed
875
-- where CoT is the coercion TyCon associated with the newtype
876 877 878
--
-- The call (wrapNewTypeBody T [a] e) returns the
-- body of the wrapper, namely
Ian Lynagh's avatar
Ian Lynagh committed
879
--      e `cast` (CoT [a])
880
--
881
-- If a coercion constructor is provided in the newtype, then we use
882
-- it, otherwise the wrap/unwrap are both no-ops
883
--
884
-- If the we are dealing with a newtype *instance*, we have a second coercion
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
885 886 887
-- identifying the family instance with the constructor of the newtype
-- instance.  This coercion is applied in any case (ie, composed with the
-- coercion constructor of the newtype or applied by itself).
888

889
wrapNewTypeBody tycon args result_expr
890 891
  = ASSERT( isNewTyCon