Stable.c 13.5 KB
Newer Older
1 2
/* -----------------------------------------------------------------------------
 *
3
 * (c) The GHC Team, 1998-2002
4 5 6 7 8
 *
 * Stable names and stable pointers.
 *
 * ---------------------------------------------------------------------------*/

9 10 11
// Make static versions of inline functions in Stable.h:
#define RTS_STABLE_C

12
#include "PosixSource.h"
13 14 15
#include "Rts.h"
#include "Hash.h"
#include "RtsUtils.h"
16
#include "OSThreads.h"
17 18 19
#include "Storage.h"
#include "RtsAPI.h"
#include "RtsFlags.h"
20
#include "OSThreads.h"
Simon Marlow's avatar
Simon Marlow committed
21
#include "Trace.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

/* Comment from ADR's implementation in old RTS:

  This files (together with @ghc/runtime/storage/PerformIO.lhc@ and a
  small change in @HpOverflow.lc@) consists of the changes in the
  runtime system required to implement "Stable Pointers". But we're
  getting a bit ahead of ourselves --- what is a stable pointer and what
  is it used for?

  When Haskell calls C, it normally just passes over primitive integers,
  floats, bools, strings, etc.  This doesn't cause any problems at all
  for garbage collection because the act of passing them makes a copy
  from the heap, stack or wherever they are onto the C-world stack.
  However, if we were to pass a heap object such as a (Haskell) @String@
  and a garbage collection occured before we finished using it, we'd run
  into problems since the heap object might have been moved or even
  deleted.

  So, if a C call is able to cause a garbage collection or we want to
  store a pointer to a heap object between C calls, we must be careful
  when passing heap objects. Our solution is to keep a table of all
  objects we've given to the C-world and to make sure that the garbage
  collector collects these objects --- updating the table as required to
  make sure we can still find the object.


  Of course, all this rather begs the question: why would we want to
  pass a boxed value?

  One very good reason is to preserve laziness across the language
  interface. Rather than evaluating an integer or a string because it
  {\em might\/} be required by the C function, we can wait until the C
  function actually wants the value and then force an evaluation.

  Another very good reason (the motivating reason!) is that the C code
  might want to execute an object of sort $IO ()$ for the side-effects
  it will produce. For example, this is used when interfacing to an X
  widgets library to allow a direct implementation of callbacks.


  The @makeStablePointer :: a -> IO (StablePtr a)@ function
  converts a value into a stable pointer.  It is part of the @PrimIO@
  monad, because we want to be sure we don't allocate one twice by
  accident, and then only free one of the copies.

  \begin{verbatim}
  makeStablePtr#  :: a -> State# RealWorld -> (# RealWorld, a #)
  freeStablePtr#  :: StablePtr# a -> State# RealWorld -> State# RealWorld
  deRefStablePtr# :: StablePtr# a -> State# RealWorld -> 
        (# State# RealWorld, a #)
  \end{verbatim}

  There may be additional functions on the C side to allow evaluation,
  application, etc of a stable pointer.

*/

79 80
snEntry *stable_ptr_table = NULL;
static snEntry *stable_ptr_free = NULL;
81

82
static unsigned int SPT_size = 0;
83

84
#ifdef THREADED_RTS
85
static Mutex stable_mutex;
86
#endif
87

88 89 90 91
/* This hash table maps Haskell objects to stable names, so that every
 * call to lookupStableName on a given object will return the same
 * stable name.
 *
92 93 94
 * OLD COMMENTS about reference counting follow.  The reference count
 * in a stable name entry is now just a counter.
 *
95 96 97 98 99 100 101 102 103 104
 * Reference counting
 * ------------------
 * A plain stable name entry has a zero reference count, which means
 * the entry will dissappear when the object it points to is
 * unreachable.  For stable pointers, we need an entry that sticks
 * around and keeps the object it points to alive, so each stable name
 * entry has an associated reference count.
 *
 * A stable pointer has a weighted reference count N attached to it
 * (actually in its upper 5 bits), which represents the weight
105
 * 2^(N-1).  The stable name entry keeps a 32-bit reference count, which
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 * represents any weight between 1 and 2^32 (represented as zero).
 * When the weight is 2^32, the stable name table owns "all" of the
 * stable pointers to this object, and the entry can be garbage
 * collected if the object isn't reachable.
 *
 * A new stable pointer is given the weight log2(W/2), where W is the
 * weight stored in the table entry.  The new weight in the table is W
 * - 2^log2(W/2).
 *
 * A stable pointer can be "split" into two stable pointers, by
 * dividing the weight by 2 and giving each pointer half.
 * When freeing a stable pointer, the weight of the pointer is added
 * to the weight stored in the table entry.
 * */

121
static HashTable *addrToStableHash = NULL;
122 123 124

#define INIT_SPT_SIZE 64

sof's avatar
sof committed
125
STATIC_INLINE void
126 127 128 129 130
initFreeList(snEntry *table, nat n, snEntry *free)
{
  snEntry *p;

  for (p = table + n - 1; p >= table; p--) {
sof's avatar
sof committed
131
    p->addr   = (P_)free;
132
    p->old    = NULL;
133
    p->ref    = 0;
sof's avatar
sof committed
134
    p->sn_obj = NULL;
135 136 137 138 139 140 141 142
    free = p;
  }
  stable_ptr_free = table;
}

void
initStablePtrTable(void)
{
143 144 145 146 147 148 149 150 151 152 153 154 155 156
	if (SPT_size > 0)
		return;

    SPT_size = INIT_SPT_SIZE;
    stable_ptr_table = stgMallocBytes(SPT_size * sizeof(snEntry),
				      "initStablePtrTable");

    /* we don't use index 0 in the stable name table, because that
     * would conflict with the hash table lookup operations which
     * return NULL if an entry isn't found in the hash table.
     */
    initFreeList(stable_ptr_table+1,INIT_SPT_SIZE-1,NULL);
    addrToStableHash = allocHashTable();

157
#ifdef THREADED_RTS
158
    initMutex(&stable_mutex);
159
#endif
160 161
}

sof's avatar
sof committed
162 163 164 165 166 167 168 169 170 171 172
/*
 * get at the real stuff...remove indirections.
 *
 * ToDo: move to a better home.
 */
static
StgClosure*
removeIndirections(StgClosure* p)
{
  StgClosure* q = p;

173 174 175 176 177
  while (get_itbl(q)->type == IND ||
         get_itbl(q)->type == IND_STATIC ||
         get_itbl(q)->type == IND_OLDGEN ||
         get_itbl(q)->type == IND_PERM ||
         get_itbl(q)->type == IND_OLDGEN_PERM ) {
sof's avatar
sof committed
178 179 180 181 182
      q = ((StgInd *)q)->indirectee;
  }
  return q;
}

183 184
static StgWord
lookupStableName_(StgPtr p)
185 186
{
  StgWord sn;
187
  void* sn_tmp;
188 189 190 191

  if (stable_ptr_free == NULL) {
    enlargeStablePtrTable();
  }
sof's avatar
sof committed
192 193

  /* removing indirections increases the likelihood
194
   * of finding a match in the stable name hash table.
sof's avatar
sof committed
195 196 197
   */
  p = (StgPtr)removeIndirections((StgClosure*)p);

198 199
  sn_tmp = lookupHashTable(addrToStableHash,(W_)p);
  sn = (StgWord)sn_tmp;
200 201 202
  
  if (sn != 0) {
    ASSERT(stable_ptr_table[sn].addr == p);
Simon Marlow's avatar
Simon Marlow committed
203
    debugTrace(DEBUG_stable, "cached stable name %ld at %p",sn,p);
204 205 206
    return sn;
  } else {
    sn = stable_ptr_free - stable_ptr_table;
207
    stable_ptr_free  = (snEntry*)(stable_ptr_free->addr);
208
    stable_ptr_table[sn].ref = 0;
209
    stable_ptr_table[sn].addr = p;
210
    stable_ptr_table[sn].sn_obj = NULL;
Simon Marlow's avatar
Simon Marlow committed
211
    /* debugTrace(DEBUG_stable, "new stable name %d at %p\n",sn,p); */
212 213 214 215 216 217 218 219
    
    /* add the new stable name to the hash table */
    insertHashTable(addrToStableHash, (W_)p, (void *)sn);

    return sn;
  }
}

220 221 222 223
StgWord
lookupStableName(StgPtr p)
{
    StgWord res;
224 225

    initStablePtrTable();
226 227 228 229 230 231
    ACQUIRE_LOCK(&stable_mutex);
    res = lookupStableName_(p);
    RELEASE_LOCK(&stable_mutex);
    return res;
}

sof's avatar
sof committed
232
STATIC_INLINE void
233 234
freeStableName(snEntry *sn)
{
235
  ASSERT(sn->sn_obj == NULL);
236
  if (sn->addr != NULL) {
237
      removeHashTable(addrToStableHash, (W_)sn->addr, NULL);
238
  }
239 240 241 242 243 244 245
  sn->addr = (P_)stable_ptr_free;
  stable_ptr_free = sn;
}

StgStablePtr
getStablePtr(StgPtr p)
{
246 247
  StgWord sn;

248
  initStablePtrTable();
249 250
  ACQUIRE_LOCK(&stable_mutex);
  sn = lookupStableName_(p);
251
  stable_ptr_table[sn].ref++;
252
  RELEASE_LOCK(&stable_mutex);
253
  return (StgStablePtr)(sn);
254 255
}

256 257 258
void
freeStablePtr(StgStablePtr sp)
{
259 260
    snEntry *sn;

261
	initStablePtrTable();
262 263 264
    ACQUIRE_LOCK(&stable_mutex);

    sn = &stable_ptr_table[(StgWord)sp];
265
    
266 267 268 269 270 271 272
    ASSERT((StgWord)sp < SPT_size  &&  sn->addr != NULL  &&  sn->ref > 0);

    sn->ref--;

    // If this entry has no StableName attached, then just free it
    // immediately.  This is important; it might be a while before the
    // next major GC which actually collects the entry.
273
    if (sn->sn_obj == NULL && sn->ref == 0) {
274 275
	freeStableName(sn);
    }
276 277

    RELEASE_LOCK(&stable_mutex);
278 279
}

280 281 282 283
void
enlargeStablePtrTable(void)
{
  nat old_SPT_size = SPT_size;
284

285
    // 2nd and subsequent times
286 287 288
  SPT_size *= 2;
  stable_ptr_table =
    stgReallocBytes(stable_ptr_table,
sof's avatar
sof committed
289
		      SPT_size * sizeof(snEntry),
290
		      "enlargeStablePtrTable");
sof's avatar
sof committed
291

292
  initFreeList(stable_ptr_table + old_SPT_size, old_SPT_size, NULL);
293 294 295 296 297
}

/* -----------------------------------------------------------------------------
 * Treat stable pointers as roots for the garbage collector.
 *
298
 * A stable pointer is any stable name entry with a ref > 0.  We'll
299 300 301 302
 * take the opportunity to zero the "keep" flags at the same time.
 * -------------------------------------------------------------------------- */

void
303
markStablePtrTable(evac_fn evac)
304
{
305 306 307 308 309 310 311 312 313 314
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // Mark all the stable *pointers* (not stable names).
    // _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
	q = p->addr;

315 316 317
	// Internal pointers are free slots.  If q == NULL, it's a
	// stable name where the object has been GC'd, but the
	// StableName object (sn_obj) is still alive.
318 319 320 321 322 323 324
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {

	    // save the current addr away: we need to be able to tell
	    // whether the objects moved in order to be able to update
	    // the hash table later.
	    p->old = p->addr;

325 326
	    // if the ref is non-zero, treat addr as a root
	    if (p->ref != 0) {
327 328 329 330 331
		evac((StgClosure **)&p->addr);
	    }
	}
    }
}
332

333 334 335 336 337 338 339
/* -----------------------------------------------------------------------------
 * Thread the stable pointer table for compacting GC.
 * 
 * Here we must call the supplied evac function for each pointer into
 * the heap from the stable pointer table, because the compacting
 * collector may move the object it points to.
 * -------------------------------------------------------------------------- */
340

341 342 343 344 345 346 347 348 349 350
void
threadStablePtrTable( evac_fn evac )
{
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
	
351 352 353 354 355
	if (p->sn_obj != NULL) {
	    evac((StgClosure **)&p->sn_obj);
	}

	q = p->addr;
356
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
357
	    evac((StgClosure **)&p->addr);
358 359 360 361 362 363 364 365 366
	}
    }
}

/* -----------------------------------------------------------------------------
 * Garbage collect any dead entries in the stable pointer table.
 *
 * A dead entry has:
 *
367
 *          - a zero reference count
368
 *          - a dead sn_obj
369
 *
370 371 372 373
 * Both of these conditions must be true in order to re-use the stable
 * name table entry.  We can re-use stable name table entries for live
 * heap objects, as long as the program has no StableName objects that
 * refer to the entry.
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
 * -------------------------------------------------------------------------- */

void
gcStablePtrTable( void )
{
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // NOTE: _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
	
	// Update the pointer to the StableName object, if there is one
	if (p->sn_obj != NULL) {
	    p->sn_obj = isAlive(p->sn_obj);
	}
	
392 393 394
	// Internal pointers are free slots.  If q == NULL, it's a
	// stable name where the object has been GC'd, but the
	// StableName object (sn_obj) is still alive.
395 396 397 398
	q = p->addr;
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {

	    // StableNames only:
399
	    if (p->ref == 0) {
400 401 402
		if (p->sn_obj == NULL) {
		    // StableName object is dead
		    freeStableName(p);
Simon Marlow's avatar
Simon Marlow committed
403 404
		    debugTrace(DEBUG_stable, "GC'd Stable name %ld", 
			       p - stable_ptr_table);
405 406 407
		    continue;
		    
		} else {
408
		  p->addr = (StgPtr)isAlive((StgClosure *)p->addr);
Simon Marlow's avatar
Simon Marlow committed
409 410 411
		  debugTrace(DEBUG_stable, 
			     "stable name %ld still alive at %p, ref %ld\n",
			     p - stable_ptr_table, p->addr, p->ref);
412 413 414 415 416 417 418 419
		}
	    }
	}
    }
}

/* -----------------------------------------------------------------------------
 * Update the StablePtr/StableName hash table
420 421 422 423 424 425 426 427
 *
 * The boolean argument 'full' indicates that a major collection is
 * being done, so we might as well throw away the hash table and build
 * a new one.  For a minor collection, we just re-hash the elements
 * that changed.
 * -------------------------------------------------------------------------- */

void
428
updateStablePtrTable(rtsBool full)
429
{
430 431 432 433 434
    snEntry *p, *end_stable_ptr_table;
    
    if (full && addrToStableHash != NULL) {
	freeHashTable(addrToStableHash,NULL);
	addrToStableHash = allocHashTable();
435
    }
436 437 438 439 440
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // NOTE: _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
441
	
442 443 444 445 446 447 448 449 450 451 452
	if (p->addr == NULL) {
	    if (p->old != NULL) {
		// The target has been garbage collected.  Remove its
		// entry from the hash table.
		removeHashTable(addrToStableHash, (W_)p->old, NULL);
		p->old = NULL;
	    }
	}
	else if (p->addr < (P_)stable_ptr_table 
		 || p->addr >= (P_)end_stable_ptr_table) {
	    // Target still alive, Re-hash this stable name 
453
	    if (full) {
454 455 456 457 458 459
		insertHashTable(addrToStableHash, (W_)p->addr, 
				(void *)(p - stable_ptr_table));
	    } else if (p->addr != p->old) {
		removeHashTable(addrToStableHash, (W_)p->old, NULL);
		insertHashTable(addrToStableHash, (W_)p->addr, 
				(void *)(p - stable_ptr_table));
460
	    }
461 462 463
	}
    }
}