StgCmmHeap.hs 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
-----------------------------------------------------------------------------
--
-- Stg to C--: heap management functions
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------

module StgCmmHeap (
10 11
        getVirtHp, setVirtHp, setRealHp,
        getHpRelOffset, hpRel,
12

13
        entryHeapCheck, altHeapCheck,
14

15 16
        layOutDynConstr, layOutStaticConstr,
        mkVirtHeapOffsets, mkStaticClosureFields, mkStaticClosure,
17

18
        allocDynClosure, allocDynClosureCmm, emitSetDynHdr
19 20 21 22
    ) where

#include "HsVersions.h"

23
import CmmType
24 25 26 27 28 29 30 31 32 33 34
import StgSyn
import CLabel
import StgCmmLayout
import StgCmmUtils
import StgCmmMonad
import StgCmmProf
import StgCmmTicky
import StgCmmGran
import StgCmmClosure
import StgCmmEnv

35
import MkGraph
36 37 38 39 40 41 42 43

import SMRep
import CmmExpr
import CmmUtils
import DataCon
import TyCon
import CostCentre
import Outputable
44
import Module
45
import FastString( mkFastString, fsLit )
46 47 48
import Constants

-----------------------------------------------------------
49
--              Layout of heap objects
50 51 52
-----------------------------------------------------------

layOutDynConstr, layOutStaticConstr
53 54 55
        :: DataCon -> [(PrimRep, a)]
        -> (ClosureInfo, [(NonVoid a, VirtualHpOffset)])
        -- No Void arguments in result
56 57 58 59 60

layOutDynConstr    = layOutConstr False
layOutStaticConstr = layOutConstr True

layOutConstr :: Bool -> DataCon -> [(PrimRep, a)]
61
             -> (ClosureInfo, [(NonVoid a, VirtualHpOffset)])
62 63 64 65
layOutConstr is_static data_con args
   = (mkConInfo is_static data_con tot_wds ptr_wds,
      things_w_offsets)
  where
66 67
    (tot_wds, --  #ptr_wds + #nonptr_wds
     ptr_wds, --  #ptr_wds
68 69 70 71
     things_w_offsets) = mkVirtHeapOffsets False{-not a thunk-} args


-----------------------------------------------------------
72
--              Initialise dynamic heap objects
73 74 75
-----------------------------------------------------------

allocDynClosure
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        :: ClosureInfo
        -> CmmExpr              -- Cost Centre to stick in the object
        -> CmmExpr              -- Cost Centre to blame for this alloc
                                -- (usually the same; sometimes "OVERHEAD")

        -> [(NonVoid StgArg, VirtualHpOffset)]  -- Offsets from start of object
                                                -- ie Info ptr has offset zero.
                                                -- No void args in here
        -> FCode (LocalReg, CmmAGraph)

allocDynClosureCmm
        :: ClosureInfo -> CmmExpr -> CmmExpr
        -> [(CmmExpr, VirtualHpOffset)]
        -> FCode (LocalReg, CmmAGraph)

-- allocDynClosure allocates the thing in the heap,
92
-- and modifies the virtual Hp to account for this.
93 94 95
-- The second return value is the graph that sets the value of the
-- returned LocalReg, which should point to the closure after executing
-- the graph.
96 97 98 99 100

-- Note [Return a LocalReg]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- allocDynClosure returns a LocalReg, not a (Hp+8) CmmExpr.
-- Reason:
101 102 103 104 105
--      ...allocate object...
--      obj = Hp + 8
--      y = f(z)
--      ...here obj is still valid,
--         but Hp+8 means something quite different...
106 107 108


allocDynClosure cl_info use_cc _blame_cc args_w_offsets
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  = do  { let (args, offsets) = unzip args_w_offsets
        ; cmm_args <- mapM getArgAmode args     -- No void args
        ; allocDynClosureCmm cl_info use_cc _blame_cc (zip cmm_args offsets)
        }

allocDynClosureCmm cl_info use_cc _blame_cc amodes_w_offsets
  = do  { virt_hp <- getVirtHp

        -- SAY WHAT WE ARE ABOUT TO DO
        ; tickyDynAlloc cl_info
        ; profDynAlloc cl_info use_cc
                -- ToDo: This is almost certainly wrong
                -- We're ignoring blame_cc. But until we've
                -- fixed the boxing hack in chooseDynCostCentres etc,
                -- we're worried about making things worse by "fixing"
                -- this part to use blame_cc!

        -- FIND THE OFFSET OF THE INFO-PTR WORD
        ; let   info_offset = virt_hp + 1
                -- info_offset is the VirtualHpOffset of the first
                -- word of the new object
                -- Remember, virtHp points to last allocated word,
                -- ie 1 *before* the info-ptr word of new object.

                info_ptr = CmmLit (CmmLabel (infoTableLabelFromCI cl_info))

        -- ALLOCATE THE OBJECT
        ; base <- getHpRelOffset info_offset
137
        ; emit (mkComment $ mkFastString "allocDynClosure")
138 139 140 141 142 143 144 145 146 147 148
        ; emitSetDynHdr base info_ptr  use_cc
        ; let (cmm_args, offsets) = unzip amodes_w_offsets
        ; hpStore base cmm_args offsets

        -- BUMP THE VIRTUAL HEAP POINTER
        ; setVirtHp (virt_hp + closureSize cl_info)

        -- Assign to a temporary and return
        -- Note [Return a LocalReg]
        ; hp_rel <- getHpRelOffset info_offset
        ; getCodeR $ assignTemp hp_rel }
149 150

emitSetDynHdr :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
151
emitSetDynHdr base info_ptr ccs
152 153 154 155
  = hpStore base header [0..]
  where
    header :: [CmmExpr]
    header = [info_ptr] ++ dynProfHdr ccs
156 157 158
        -- ToDo: Gransim stuff
        -- ToDo: Parallel stuff
        -- No ticky header
159 160 161 162 163 164

hpStore :: CmmExpr -> [CmmExpr] -> [VirtualHpOffset] -> FCode ()
-- Store the item (expr,off) in base[off]
hpStore base vals offs
  = emit (catAGraphs (zipWith mk_store vals offs))
  where
165
    mk_store val off = mkStore (cmmOffsetW base off) val
166 167 168


-----------------------------------------------------------
169
--              Layout of static closures
170 171 172 173 174
-----------------------------------------------------------

-- Make a static closure, adding on any extra padding needed for CAFs,
-- and adding a static link field if necessary.

175 176 177 178 179 180
mkStaticClosureFields
        :: ClosureInfo
        -> CostCentreStack
        -> Bool                 -- Has CAF refs
        -> [CmmLit]             -- Payload
        -> [CmmLit]             -- The full closure
181
mkStaticClosureFields cl_info ccs caf_refs payload
182 183
  = mkStaticClosure info_lbl ccs payload padding
        static_link_field saved_info_field
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  where
    info_lbl = infoTableLabelFromCI cl_info

    -- CAFs must have consistent layout, regardless of whether they
    -- are actually updatable or not.  The layout of a CAF is:
    --
    --        3 saved_info
    --        2 static_link
    --        1 indirectee
    --        0 info ptr
    --
    -- the static_link and saved_info fields must always be in the same
    -- place.  So we use closureNeedsUpdSpace rather than
    -- closureUpdReqd here:

    is_caf = closureNeedsUpdSpace cl_info

201 202 203
    padding
        | not is_caf = []
        | otherwise  = ASSERT(null payload) [mkIntCLit 0]
204 205

    static_link_field
206 207
        | is_caf || staticClosureNeedsLink cl_info = [static_link_value]
        | otherwise                                = []
208 209

    saved_info_field
210 211
        | is_caf     = [mkIntCLit 0]
        | otherwise  = []
212

213 214 215
        -- for a static constructor which has NoCafRefs, we set the
        -- static link field to a non-zero value so the garbage
        -- collector will ignore it.
216
    static_link_value
217 218
        | caf_refs      = mkIntCLit 0
        | otherwise     = mkIntCLit 1
219 220 221 222


mkStaticClosure :: CLabel -> CostCentreStack -> [CmmLit]
  -> [CmmLit] -> [CmmLit] -> [CmmLit] -> [CmmLit]
223
mkStaticClosure info_lbl ccs payload padding static_link_field saved_info_field
224 225
  =  [CmmLabel info_lbl]
  ++ variable_header_words
226
  ++ concatMap padLitToWord payload
227
  ++ padding
228 229 230 231
  ++ static_link_field
  ++ saved_info_field
  where
    variable_header_words
232 233 234 235
        =  staticGranHdr
        ++ staticParHdr
        ++ staticProfHdr ccs
        ++ staticTickyHdr
236

237 238
-- JD: Simon had ellided this padding, but without it the C back end asserts
-- failure. Maybe it's a bad assertion, and this padding is indeed unnecessary?
239 240 241 242 243 244 245 246 247 248 249
padLitToWord :: CmmLit -> [CmmLit]
padLitToWord lit = lit : padding pad_length
  where width = typeWidth (cmmLitType lit)
        pad_length = wORD_SIZE - widthInBytes width :: Int

        padding n | n <= 0 = []
                  | n `rem` 2 /= 0 = CmmInt 0 W8  : padding (n-1)
                  | n `rem` 4 /= 0 = CmmInt 0 W16 : padding (n-2)
                  | n `rem` 8 /= 0 = CmmInt 0 W32 : padding (n-4)
                  | otherwise      = CmmInt 0 W64 : padding (n-8)

250
-----------------------------------------------------------
251
--              Heap overflow checking
252 253 254 255 256 257 258 259 260 261 262 263
-----------------------------------------------------------

{- Note [Heap checks]
   ~~~~~~~~~~~~~~~~~~
Heap checks come in various forms.  We provide the following entry
points to the runtime system, all of which use the native C-- entry
convention.

  * gc() performs garbage collection and returns
    nothing to its caller

  * A series of canned entry points like
264
        r = gc_1p( r )
265 266
    where r is a pointer.  This performs gc, and
    then returns its argument r to its caller.
267

268
  * A series of canned entry points like
269
        gcfun_2p( f, x, y )
270 271 272 273 274 275 276 277 278
    where f is a function closure of arity 2
    This performs garbage collection, keeping alive the
    three argument ptrs, and then tail-calls f(x,y)

These are used in the following circumstances

* entryHeapCheck: Function entry
    (a) With a canned GC entry sequence
        f( f_clo, x:ptr, y:ptr ) {
279 280 281
             Hp = Hp+8
             if Hp > HpLim goto L
             ...
282 283 284
          L: HpAlloc = 8
             jump gcfun_2p( f_clo, x, y ) }
     Note the tail call to the garbage collector;
285
     it should do no register shuffling
286 287 288

    (b) No canned sequence
        f( f_clo, x:ptr, y:ptr, ...etc... ) {
289 290 291
          T: Hp = Hp+8
             if Hp > HpLim goto L
             ...
292
          L: HpAlloc = 8
293 294
             call gc()  -- Needs an info table
             goto T }
295 296

* altHeapCheck: Immediately following an eval
297 298
  Started as
        case f x y of r { (p,q) -> rhs }
299 300 301
  (a) With a canned sequence for the results of f
       (which is the very common case since
       all boxed cases return just one pointer
302 303 304 305 306 307
           ...
           r = f( x, y )
        K:      -- K needs an info table
           Hp = Hp+8
           if Hp > HpLim goto L
           ...code for rhs...
308

309 310
        L: r = gc_1p( r )
           goto K }
311

312 313 314 315
        Here, the info table needed by the call
        to gc_1p should be the *same* as the
        one for the call to f; the C-- optimiser
        spots this sharing opportunity)
316 317 318

   (b) No canned sequence for results of f
       Note second info table
319 320 321 322 323 324
           ...
           (r1,r2,r3) = call f( x, y )
        K:
           Hp = Hp+8
           if Hp > HpLim goto L
           ...code for rhs...
325

326 327
        L: call gc()    -- Extra info table here
           goto K
328 329 330

* generalHeapCheck: Anywhere else
  e.g. entry to thunk
331
       case branch *not* following eval,
332 333 334
       or let-no-escape
  Exactly the same as the previous case:

335 336 337 338
        K:      -- K needs an info table
           Hp = Hp+8
           if Hp > HpLim goto L
           ...
339

340 341
        L: call gc()
           goto K
342 343 344 345 346
-}

--------------------------------------------------------------
-- A heap/stack check at a function or thunk entry point.

347 348 349 350 351 352 353
entryHeapCheck :: ClosureInfo
               -> Int            -- Arg Offset
               -> Maybe LocalReg -- Function (closure environment)
               -> Int            -- Arity -- not same as len args b/c of voids
               -> [LocalReg]     -- Non-void args (empty for thunk)
               -> FCode ()
               -> FCode ()
354

355
entryHeapCheck cl_info offset nodeSet arity args code
356
  = do updfr_sz <- getUpdFrameOff
357 358
       heapCheck True (gc_call updfr_sz) code

359
  where
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    is_thunk = arity == 0
    is_fastf = case closureFunInfo cl_info of
                    Just (_, ArgGen _) -> False
                    _otherwise         -> True

    args' = map (CmmReg . CmmLocal) args
    setN = case nodeSet of
                   Just n  -> mkAssign nodeReg (CmmReg $ CmmLocal n)
                   Nothing -> mkAssign nodeReg $
                       CmmLit (CmmLabel $ closureLabelFromCI cl_info)

    {- Thunks:          Set R1 = node, jump GCEnter1
       Function (fast): Set R1 = node, jump GCFun
       Function (slow): Set R1 = node, call generic_gc -}
    gc_call upd = setN <*> gc_lbl upd
    gc_lbl upd
        | is_thunk  = mkDirectJump (CmmReg $ CmmGlobal GCEnter1) [] sp
        | is_fastf  = mkDirectJump (CmmReg $ CmmGlobal GCFun) [] sp
        | otherwise = mkForeignJump Slow (CmmReg $ CmmGlobal GCFun) args' upd
        where sp = max offset upd
    {- DT (12/08/10) This is a little fishy, mainly the sp fix up amount.
     - This is since the ncg inserts spills before the stack/heap check.
     - This should be fixed up and then we won't need to fix up the Sp on
     - GC calls, but until then this fishy code works -}

{-
    -- This code is slightly outdated now and we could easily keep the above
    -- GC methods. However, there may be some performance gains to be made by
    -- using more specialised GC entry points. Since the semi generic GCFun
    -- entry needs to check the node and figure out what registers to save...
    -- if we provided and used more specialised GC entry points then these
    -- runtime decisions could be turned into compile time decisions.

393 394
    args'     = case fun of Just f  -> f : args
                            Nothing -> args
395
    arg_exprs = map (CmmReg . CmmLocal) args'
396
    gc_call updfr_sz
397
        | arity == 0 = mkJumpGC (CmmReg (CmmGlobal GCEnter1)) arg_exprs updfr_sz
398 399 400 401 402 403
        | otherwise =
            case gc_lbl args' of
                Just _lbl -> panic "StgCmmHeap.entryHeapCheck: not finished"
                            -- mkJumpGC (CmmLit (CmmLabel (mkRtsCodeLabel lbl)))
                            --         arg_exprs updfr_sz
                Nothing  -> mkCall generic_gc (GC, GC) [] [] updfr_sz
404

405
    gc_lbl :: [LocalReg] -> Maybe FastString
406
    gc_lbl [reg]
407 408 409 410 411 412 413 414 415 416 417
        | isGcPtrType ty  = Just (sLit "stg_gc_unpt_r1") -- "stg_gc_fun_1p"
        | isFloatType ty  = case width of
                              W32 -> Just (sLit "stg_gc_f1")
                              W64 -> Just (sLit "stg_gc_d1")
                              _other -> Nothing
        | width == wordWidth = Just (mkGcLabel "stg_gc_unbx_r1")
        | width == W64       = Just (mkGcLabel "stg_gc_l1")
        | otherwise          = Nothing
        where
          ty = localRegType reg
          width = typeWidth ty
418 419 420

    gc_lbl regs = gc_lbl_ptrs (map (isGcPtrType . localRegType) regs)

421
    gc_lbl_ptrs :: [Bool] -> Maybe FastString
422
    -- JD: TEMPORARY -- UNTIL THESE FUNCTIONS EXIST...
423 424 425
    --gc_lbl_ptrs [True,True]      = Just (sLit "stg_gc_fun_2p")
    --gc_lbl_ptrs [True,True,True] = Just (sLit "stg_gc_fun_3p")
    gc_lbl_ptrs _ = Nothing
426 427 428 429 430
-}


--------------------------------------------------------------
-- A heap/stack check at in a case alternative
431

432 433
altHeapCheck :: [LocalReg] -> FCode a -> FCode a
altHeapCheck regs code
434 435
  = do updfr_sz <- getUpdFrameOff
       heapCheck False (gc_call updfr_sz) code
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
  where
    reg_exprs = map (CmmReg . CmmLocal) regs

    gc_call sp =
        case rts_label regs of
             Just gc -> mkCall (CmmLit gc) (GC, GC) regs reg_exprs sp
             Nothing -> mkCall generic_gc (GC, GC) [] [] sp

    rts_label [reg]
        | isGcPtrType ty = Just (mkGcLabel "stg_gc_unpt_r1")
        | isFloatType ty = case width of
                                W32       -> Just (mkGcLabel "stg_gc_f1")
                                W64       -> Just (mkGcLabel "stg_gc_d1")
                                _         -> Nothing

        | width == wordWidth = Just (mkGcLabel "stg_gc_unbx_r1")
        | width == W64       = Just (mkGcLabel "stg_gc_l1")
        | otherwise          = Nothing
        where
            ty = localRegType reg
            width = typeWidth ty
458 459 460 461

    rts_label _ = Nothing


462 463 464 465 466 467 468
-- | The generic GC procedure; no params, no results
generic_gc :: CmmExpr
generic_gc = CmmLit $ mkGcLabel "stg_gc_noregs"

-- | Create a CLabel for calling a garbage collector entry point
mkGcLabel :: String -> CmmLit
mkGcLabel = (CmmLabel . (mkCmmCodeLabel rtsPackageId) . fsLit)
469 470

-------------------------------
471 472
heapCheck :: Bool -> CmmAGraph -> FCode a -> FCode a
heapCheck checkStack do_gc code
473
  = getHeapUsage $ \ hpHw ->
474 475 476 477 478 479 480
    -- Emit heap checks, but be sure to do it lazily so
    -- that the conditionals on hpHw don't cause a black hole
    do  { emit $ do_checks checkStack hpHw do_gc
        ; tickyAllocHeap hpHw
        ; doGranAllocate hpHw
        ; setRealHp hpHw
        ; code }
481

482
do_checks :: Bool       -- Should we check the stack?
483 484
          -> WordOff    -- Heap headroom
          -> CmmAGraph  -- What to do on failure
485 486 487 488
          -> CmmAGraph
do_checks checkStack alloc do_gc
  = withFreshLabel "gc" $ \ loop_id ->
    withFreshLabel "gc" $ \ gc_id   ->
489
      mkLabel loop_id
490 491
      <*> (let hpCheck = if alloc == 0 then mkNop
                         else mkAssign hpReg bump_hp <*>
492 493 494 495
                              mkCmmIfThen hp_oflo (alloc_n <*> mkBranch gc_id)
           in if checkStack
                 then mkCmmIfThenElse sp_oflo (mkBranch gc_id) hpCheck
                 else hpCheck)
496
      <*> mkComment (mkFastString "outOfLine should follow:")
497
      <*> outOfLine (mkLabel gc_id
498 499 500
                     <*> mkComment (mkFastString "outOfLine here")
                     <*> do_gc
                     <*> mkBranch loop_id)
501 502 503 504 505 506
                -- Test for stack pointer exhaustion, then
                -- bump heap pointer, and test for heap exhaustion
                -- Note that we don't move the heap pointer unless the
                -- stack check succeeds.  Otherwise we might end up
                -- with slop at the end of the current block, which can
                -- confuse the LDV profiler.
507
  where
508
    alloc_lit = CmmLit (mkIntCLit (alloc*wORD_SIZE)) -- Bytes
509 510
    bump_hp   = cmmOffsetExprB (CmmReg hpReg) alloc_lit

511 512 513
    -- Sp overflow if (Sp - CmmHighStack < SpLim)
    sp_oflo = CmmMachOp mo_wordULt
                  [CmmMachOp (MO_Sub (typeWidth (cmmRegType spReg)))
514 515
                             [CmmReg spReg, CmmLit CmmHighStackMark],
                   CmmReg spLimReg]
516

517 518 519 520 521 522 523
    -- Hp overflow if (Hp > HpLim)
    -- (Hp has been incremented by now)
    -- HpLim points to the LAST WORD of valid allocation space.
    hp_oflo = CmmMachOp mo_wordUGt
                  [CmmReg hpReg, CmmReg (CmmGlobal HpLim)]

    alloc_n = mkAssign (CmmGlobal HpAlloc) alloc_lit
524 525 526 527 528 529 530 531 532 533

{-

{- Unboxed tuple alternatives and let-no-escapes (the two most annoying
constructs to generate code for!)  For unboxed tuple returns, there
are an arbitrary number of possibly unboxed return values, some of
which will be in registers, and the others will be on the stack.  We
always organise the stack-resident fields into pointers &
non-pointers, and pass the number of each to the heap check code. -}

534 535 536 537 538 539 540
unbxTupleHeapCheck
        :: [(Id, GlobalReg)]    -- Live registers
        -> WordOff      -- no. of stack slots containing ptrs
        -> WordOff      -- no. of stack slots containing nonptrs
        -> CmmAGraph    -- code to insert in the failure path
        -> FCode ()
        -> FCode ()
541 542

unbxTupleHeapCheck regs ptrs nptrs fail_code code
543
  -- We can't manage more than 255 pointers/non-pointers
544 545
  -- in a generic heap check.
  | ptrs > 255 || nptrs > 255 = panic "altHeapCheck"
546
  | otherwise
547
  = initHeapUsage $ \ hpHw -> do
548 549 550 551 552
        { codeOnly $ do { do_checks 0 {- no stack check -} hpHw
                                    full_fail_code rts_label
                        ; tickyAllocHeap hpHw }
        ; setRealHp hpHw
        ; code }
553 554
  where
    full_fail_code  = fail_code `plusStmts` oneStmt assign_liveness
555 556 557 558
    assign_liveness = CmmAssign (CmmGlobal (VanillaReg 9))      -- Ho ho ho!
                                (CmmLit (mkWordCLit liveness))
    liveness        = mkRegLiveness regs ptrs nptrs
    rts_label       = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_ut")))
559 560


561
{- Old Gransim com -- I have no idea whether it still makes sense (SLPJ Sep07)
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
For GrAnSim the code for doing a heap check and doing a context switch
has been separated. Especially, the HEAP_CHK macro only performs a
heap check. THREAD_CONTEXT_SWITCH should be used for doing a context
switch. GRAN_FETCH_AND_RESCHEDULE must be put at the beginning of
every slow entry code in order to simulate the fetching of
closures. If fetching is necessary (i.e. current closure is not local)
then an automatic context switch is done. -}


When failing a check, we save a return address on the stack and
jump to a pre-compiled code fragment that saves the live registers
and returns to the scheduler.

The return address in most cases will be the beginning of the basic
block in which the check resides, since we need to perform the check
again on re-entry because someone else might have stolen the resource
in the meantime.

%************************************************************************
581
%*                                                                      *
582
     Generic Heap/Stack Checks - used in the RTS
583
%*                                                                      *
584 585 586 587 588 589 590 591
%************************************************************************

\begin{code}
hpChkGen :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
hpChkGen bytes liveness reentry
  = do_checks' bytes True assigns stg_gc_gen
  where
    assigns = mkStmts [
592 593 594
                CmmAssign (CmmGlobal (VanillaReg 9))  liveness,
                CmmAssign (CmmGlobal (VanillaReg 10)) reentry
                ]
595 596 597 598 599 600 601 602 603 604 605 606

-- a heap check where R1 points to the closure to enter on return, and
-- we want to assign to Sp[0] on failure (used in AutoApply.cmm:BUILD_PAP).
hpChkNodePointsAssignSp0 :: CmmExpr -> CmmExpr -> FCode ()
hpChkNodePointsAssignSp0 bytes sp0
  = do_checks' bytes True assign stg_gc_enter1
  where assign = oneStmt (CmmStore (CmmReg spReg) sp0)

stg_gc_gen    = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_gen")))
\end{code}

-}