Parser.y.pp 66.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
andy@galois.com's avatar
andy@galois.com committed
34
import StaticFlags	( opt_SccProfilingOn, opt_Hpc )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41
import HaddockParse
import {-# SOURCE #-} HaddockLex hiding ( Token )
import HaddockUtils
42 43 44 45

import FastString
import Maybes		( orElse )
import Outputable
46

Simon Marlow's avatar
Simon Marlow committed
47 48
import Control.Monad    ( when )
import GHC.Exts
49 50
import Data.Char
import Control.Monad    ( mplus )
51 52 53
}

{-
54 55 56 57 58 59 60 61 62 63 64
-----------------------------------------------------------------------------
6 December 2006

Conflicts: 32 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

65 66 67 68 69 70 71 72 73 74 75
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

76
-----------------------------------------------------------------------------
77
Conflicts: 38 shift/reduce (1.25)
78

79
10 for abiguity in 'if x then y else z + 1'		[State 178]
80 81 82
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

83
1 for ambiguity in 'if x then y else z :: T'		[State 178]
84 85
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

86
4 for ambiguity in 'if x then y else z -< e'		[State 178]
87
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
88 89 90 91 92 93 94 95 96 97
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
98

99
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
100 101
	(e::a) `b` c, or 
	(e :: (a `b` c))
102
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
103
    Same duplication between states 11 and 253 as the previous case
104

105
1 for ambiguity in 'let ?x ...'				[State 329]
106 107 108 109
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

110
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
111 112 113 114
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

115
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
116 117 118 119 120 121 122
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

123 124 125 126
1 for ambiguity when the source file starts with "-- | doc". We need another
  token of lookahead to determine if a top declaration or the 'module' keyword
  follows. Shift parses as if the 'module' keyword follows.   

127 128 129 130 131 132 133 134 135 136 137
-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
138
     -- This doesn't seem to work anymore -=chak
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
181
 'derive' 	{ L _ ITderive }
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

202
 'forall'	{ L _ ITforall }		-- GHC extension keywords
203 204 205 206 207 208 209 210
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
211
 'iso'		{ L _ ITiso }
212
 'family'	{ L _ ITfamily }
213 214 215 216 217 218
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

219 220 221
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
222 223 224 225
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
andy@galois.com's avatar
andy@galois.com committed
226
 '{-# GENERATED'   { L _ ITgenerated_prag }
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
292 293 294 295 296 297 298

 DOCNEXT	{ L _ (ITdocCommentNext _) }
 DOCPREV	{ L _ (ITdocCommentPrev _) }
 DOCNAMED	{ L _ (ITdocCommentNamed _) }
 DOCSECTION	{ L _ (ITdocSection _ _) }
 DOCOPTIONS	{ L _ (ITdocOptions _) }

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
315
%name parseType ctype
316
%partial parseHeader header
317
%tokentype { (Located Token) }
318 319
%%

320 321 322 323 324 325 326 327
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

328 329 330 331 332 333 334 335 336 337 338
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
339 340 341 342
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 (fst $7) (snd $7) $4 
                          opt info doc) )}}
343 344 345
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
346 347 348 349 350 351 352 353 354
                          (fst $2) (snd $2) Nothing Nothing emptyHaddockModInfo 
                          Nothing)) }

optdoc :: { (Maybe String, HaddockModInfo RdrName, Maybe (HsDoc RdrName)) }                             
        : moduleheader            { (Nothing, fst $1, snd $1) }
        | docoptions              { (Just $1, emptyHaddockModInfo, Nothing)} 
        | docoptions moduleheader { (Just $1, fst $2, snd $2) } 
        | moduleheader docoptions { (Just $2, fst $1, snd $1) } 
        | {- empty -}             { (Nothing, emptyHaddockModInfo, Nothing) }  
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

375 376 377 378
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
379 380 381 382
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 $7 [] $4 
                   opt info doc))}}
383 384
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
385 386
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing 
                   Nothing emptyHaddockModInfo Nothing)) }
387 388 389 390 391

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

392 393 394 395 396 397 398
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

399 400
exportlist :: { [LIE RdrName] }
	: expdoclist ',' expdoclist		{ $1 ++ $3 }
401 402 403
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
404 405 406 407 408 409 410 411 412 413 414 415 416
        : expdoclist export expdoclist ',' exportlist  { $1 ++ ($2 : $3) ++ $5 }
 	| expdoclist export expdoclist	               { $1 ++ ($2 : $3) }
	| expdoclist				       { $1 }

expdoclist :: { [LIE RdrName] }
        : exp_doc expdoclist                           { $1 : $2 }
        | {- empty -}                                  { [] }

exp_doc :: { LIE RdrName }                                                   
        : docsection    { L1 (case (unLoc $1) of (n, doc) -> IEGroup n doc) }
        | docnamed      { L1 (IEDocNamed ((fst . unLoc) $1)) } 
        | docnext       { L1 (IEDoc (unLoc $1)) }       
                       
417 418 419 420 421 422 423 424 425 426 427
   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
428 429
	:  qcnames ',' qcname_ext	{ unLoc $3 : $1 }
	|  qcname_ext			{ [unLoc $1]  }
430

431 432 433 434 435 436 437 438
qcname_ext :: { Located RdrName }	-- Variable or data constructor
					-- or tagged type constructor
	:  qcname			{ $1 }
	|  'type' qcon			{ sL (comb2 $1 $2) 
					     (setRdrNameSpace (unLoc $2) 
							      tcClsName)  }

-- Cannot pull into qcname_ext, as qcname is also used in expression.
439
qcname 	:: { Located RdrName }	-- Variable or data constructor
440 441
	:  qvar				{ $1 }
	|  qcon				{ $1 }
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
467
maybeas :: { Located (Maybe ModuleName) }
468 469 470 471 472 473 474 475
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
476 477
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

498
topdecls :: { OrdList (LHsDecl RdrName) }
499 500 501
        : topdecls ';' topdecl		        { $1 `appOL` $3 }
        | topdecls ';'			        { $1 }
	| topdecl			        { $1 }
502

503
topdecl :: { OrdList (LHsDecl RdrName) }
504
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
505
  	| ty_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
506 507 508 509
	| 'instance' inst_type where_inst
	    { let (binds, sigs, ats, _) = cvBindsAndSigs (unLoc $3)
	      in 
	      unitOL (L (comb3 $1 $2 $3) (InstD (InstDecl $2 binds sigs ats)))}
510
        | stand_alone_deriving                  { unitOL (LL (DerivD (unLoc $1))) }
511 512 513 514
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
515 516
      	| decl					{ unLoc $1 }

517 518 519 520 521 522
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

523 524 525
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
526
	: 'class' tycl_hdr fds where_cls
527
		{% do { let { (binds, sigs, ats, docs)           = 
528
			        cvBindsAndSigs (unLoc $4)
529
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
530
                      ; checkTyVars tparms      -- only type vars allowed
531
		      ; checkKindSigs ats
532 533
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
534
					        (unLoc $3) sigs binds ats docs) } }
535

536
-- Type declarations (toplevel)
537 538
--
ty_decl :: { LTyClDecl RdrName }
539 540 541 542 543 544
           -- ordinary type synonyms
        : 'type' type '=' ctype
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
545 546
	        --
		-- Note the use of type for the head; this allows
547 548 549 550 551 552 553
		-- infix type constructors to be declared 
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs Nothing $4)) 
                      } }

           -- type family declarations
554
        | 'type' 'family' type opt_kind_sig 
555 556
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
557
		--
558 559 560 561 562 563
 		{% do { (tc, tvs, _) <- checkSynHdr $3 False
		      ; let kind = case unLoc $4 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
		      ; return (L (comb3 $1 $3 $4) 
				  (TyFunction tc tvs False kind))
564 565 566 567 568 569 570 571 572 573 574
		      } }

           -- type instance declarations
        | 'type' 'instance' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $3 True
		      ; return (L (comb2 $1 $5) 
				  (TySynonym tc tvs (Just typats) $5)) 
                      } }
575

576
          -- ordinary data type or newtype declaration
577
	| data_or_newtype tycl_hdr constrs deriving
578
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
579
                      ; checkTyVars tparms    -- no type pattern
580 581 582 583
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
584 585
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			       Nothing (reverse (unLoc $3)) (unLoc $4)) } }
586

587
          -- ordinary GADT declaration
588
        | data_or_newtype tycl_hdr opt_kind_sig 
589
		 'where' gadt_constrlist
590
		 deriving
591
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
592
                      ; checkTyVars tparms    -- can have type pats
593 594
		      ; return $
			  L (comb4 $1 $2 $4 $5)
595 596
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
597

598
          -- data/newtype family
599
        | data_or_newtype 'family' tycl_hdr opt_kind_sig
600 601
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                      ; checkTyVars tparms    -- no type pattern
602 603 604
		      ; let kind = case unLoc $4 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
605
		      ; return $
606
			  L (comb3 $1 $2 $4)
607
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
608
			      (Just kind) [] Nothing) } }
609

610
          -- data/newtype instance declaration
611 612 613 614 615 616 617 618 619 620
	| data_or_newtype 'instance' tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $4 $5)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $4)) (unLoc $5)) } }

621
          -- GADT instance declaration
622 623 624 625 626 627 628 629
        | data_or_newtype 'instance' tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $6 $7)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
630
			       (unLoc $4) (reverse (unLoc $6)) (unLoc $7)) } }
631

632 633 634 635 636 637 638 639
-- Associate type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
--   identifier).
--
-- * They also need to be separate from instances; otherwise, data family
--   declarations without a kind signature cause parsing conflicts with empty
--   data declarations. 
640
--
641
at_decl_cls :: { LTyClDecl RdrName }
642
           -- type family declarations
643
        : 'type' type opt_kind_sig
644 645 646
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
		--
647 648 649 650 651 652
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; let kind = case unLoc $3 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
		      ; return (L (comb3 $1 $2 $3) 
				  (TyFunction tc tvs False kind))
653 654
		      } }

655
           -- default type instance
656
        | 'type' type '=' ctype
657 658 659
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
660 661 662
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
663 664
                      } }

665 666
          -- data/newtype family declaration
        | data_or_newtype tycl_hdr opt_kind_sig
667 668
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                      ; checkTyVars tparms    -- no type pattern
669 670 671
		      ; let kind = case unLoc $3 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
672
		      ; return $
673
			  L (comb3 $1 $2 $3)
674
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
675 676 677 678 679 680 681 682 683 684 685 686 687 688
			      (Just kind) [] Nothing) } }

-- Associate type instances
--
at_decl_inst :: { LTyClDecl RdrName }
           -- type instance declarations
        : 'type' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
                      } }
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

        -- data/newtype instance declaration
	| data_or_newtype tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $3)) (unLoc $4)) } }

        -- GADT instance declaration
        | data_or_newtype tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $5 $6)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
710
			     (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
711

712 713 714 715
opt_iso :: { Bool }
	:       { False }
	| 'iso'	{ True  }

716 717 718 719
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

720 721 722
opt_kind_sig :: { Located (Maybe Kind) }
	: 				{ noLoc Nothing }
	| '::' kind			{ LL (Just (unLoc $2)) }
723

724
-- tycl_hdr parses the header of a class or data type decl,
725 726 727 728
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
729
--      T Int [a]			-- for associated types
730
-- Rather a lot of inlining here, else we get reduce/reduce errors
731 732 733
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
734
		       [LHsType RdrName]) }
735
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
736 737
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

738 739 740 741 742
-----------------------------------------------------------------------------
-- Stand-alone deriving

-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
743
  	: 'derive' 'instance' inst_type {% checkDerivDecl (LL (DerivDecl $3)) }
744

745 746 747
-----------------------------------------------------------------------------
-- Nested declarations

748
-- Declaration in class bodies
749
--
750 751 752 753 754 755 756 757 758
decl_cls  :: { Located (OrdList (LHsDecl RdrName)) }
decl_cls  : at_decl_cls		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	  | decl                        { $1 }

decls_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	  : decls_cls ';' decl_cls	{ LL (unLoc $1 `appOL` unLoc $3) }
	  | decls_cls ';'		{ LL (unLoc $1) }
	  | decl_cls			{ $1 }
	  | {- empty -}			{ noLoc nilOL }
759 760


761
decllist_cls
762
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
763 764
	: '{'         decls_cls '}'	{ LL (unLoc $2) }
	|     vocurly decls_cls close	{ $2 }
765

766
-- Class body
767
--
768
where_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
769 770
				-- No implicit parameters
				-- May have type declarations
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	: 'where' decllist_cls	        { LL (unLoc $2) }
	| {- empty -}		        { noLoc nilOL }

-- Declarations in instance bodies
--
decl_inst  :: { Located (OrdList (LHsDecl RdrName)) }
decl_inst  : at_decl_inst	        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	   | decl                       { $1 }

decls_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	   : decls_inst ';' decl_inst	{ LL (unLoc $1 `appOL` unLoc $3) }
	   | decls_inst ';'		{ LL (unLoc $1) }
	   | decl_inst			{ $1 }
	   | {- empty -}		{ noLoc nilOL }

decllist_inst 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'         decls_inst '}'	{ LL (unLoc $2) }
	|     vocurly decls_inst close	{ $2 }

-- Instance body
--
where_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' decllist_inst		{ LL (unLoc $2) }
797 798
	| {- empty -}			{ noLoc nilOL }

799 800
-- Declarations in binding groups other than classes and instances
--
801
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
802
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
803
	| decls ';'			{ LL (unLoc $1) }
804
	| decl				{ $1 }
805
	| {- empty -}			{ noLoc nilOL }
806

807
decllist :: { Located (OrdList (LHsDecl RdrName)) }
808 809 810
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

811 812
-- Binding groups other than those of class and instance declarations
--
813
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
814
						-- No type declarations
815 816 817
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
818

819
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
820
						-- No type declarations
821
	: 'where' binds			{ LL (unLoc $2) }
822
	| {- empty -}			{ noLoc emptyLocalBinds }
823 824 825 826 827


-----------------------------------------------------------------------------
-- Transformation Rules

828
rules	:: { OrdList (LHsDecl RdrName) }
829
	:  rules ';' rule			{ $1 `snocOL` $3 }
830
        |  rules ';'				{ $1 }
831 832
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
833

834
rule  	:: { LHsDecl RdrName }
835
	: STRING activation rule_forall infixexp '=' exp
836 837
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
838
				  $3 $4 placeHolderNames $6 placeHolderNames) }
839

840 841 842
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

863
deprecations :: { OrdList (LHsDecl RdrName) }
864
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
865
	| deprecations ';' 			{ $1 }
866 867
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
868 869

-- SUP: TEMPORARY HACK, not checking for `module Foo'
870
deprecation :: { OrdList (LHsDecl RdrName) }
871
	: depreclist STRING
872 873
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
874 875 876 877 878 879


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
880
fdecl : 'import' callconv safety fspec
881
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
882
      | 'import' callconv        fspec		
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
899 900
       : STRING var '::' sigtypedoc     { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtypedoc     { LL (noLoc nilFS, $1, $3) }
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

916
sigtypes1 :: { [LHsType RdrName] }
917
	: sigtype			{ [ $1 ] }
918
	| sigtype ',' sigtypes1		{ $1 : $3 }
919 920 921 922 923

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

924 925 926 927
sigtypedoc :: { LHsType RdrName }
	: ctypedoc			{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

928 929 930 931 932 933 934
sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
infixtype :: { LHsType RdrName }
	: btype qtyconop gentype         { LL $ HsOpTy $1 $2 $3 }
        | btype tyvarop  gentype  	 { LL $ HsOpTy $1 $2 $3 }

infixtypedoc :: { LHsType RdrName }
        : infixtype                      { $1 }
	| infixtype docprev              { LL $ HsDocTy $1 $2 }

gentypedoc :: { LHsType RdrName }
        : btype                          { $1 }
        | btypedoc                       { $1 }
        | infixtypedoc                   { $1 }
        | btype '->' ctypedoc            { LL $ HsFunTy $1 $3 }
        | btypedoc '->' ctypedoc         { LL $ HsFunTy $1 $3 }

ctypedoc  :: { LHsType RdrName }
        : 'forall' tv_bndrs '.' ctypedoc { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
        | context '=>' gentypedoc        { LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| gentypedoc			 { $1 }
	
956 957 958 959
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

960 961 962 963 964 965 966 967 968 969 970
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
971 972 973
--
-- We have the t1 ~ t2 form here and in gentype, to permit an individual
-- equational constraint without parenthesis.
974
context :: { LHsContext RdrName }
975 976 977
        : btype '~'      btype  	{% checkContext
					     (LL $ HsPredTy (HsEqualP $1 $3)) }
	| btype 			{% checkContext $1 }
978 979

type :: { LHsType RdrName }
980
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
981 982 983 984 985
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
986
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
987
 	| btype '->'     ctype		{ LL $ HsFunTy $1 $3 }
988
        | btype '~'      btype  	{ LL $ HsPredTy (HsEqualP $1 $3) }
989 990 991 992 993

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

994 995 996 997
btypedoc :: { LHsType RdrName }
	: btype atype docprev		{ LL $ HsDocTy (L (comb2 $1 $2) (HsAppTy $1 $2)) $3 }
        | atype docprev                 { LL $ HsDocTy $1 $2 }

998 999
atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
1000
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
1001
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
1002
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
1003
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
1004 1005
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
1006
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
1007
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
1008 1009 1010 1011 1012 1013 1014 1015
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
1016
	: sigtype			{% checkInstType $1 }
1017

1018 1019 1020 1021
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

1022 1023 1024 1025 1026
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
1027 1028
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
1029 1030 1031 1032 1033 1034 1035

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
1036 1037
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

1058
kind	:: { Located Kind }
1059
	: akind			{ $1 }
1060
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
1061

1062 1063 1064 1065
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
1066 1067 1068 1069 1070


-----------------------------------------------------------------------------
-- Datatype declarations

1071 1072 1073 1074 1075 1076
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
1077
        | gadt_constrs ';' 		{ $1 }
1078 1079
        | gadt_constr                   { L1 [$1] } 

1080 1081 1082 1083 1084 1085
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

1086
gadt_constr :: { LConDecl RdrName }
1087
        : con '::' sigtype
1088 1089 1090
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
1091
        -- XXX revisit audreyt
1092 1093
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
1094
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3) Nothing) }
1095 1096 1097
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
1098
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6) Nothing ) }
1099 1100
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
1101
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4) Nothing) }
1102 1103
-}

1104 1105 1106

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
1107
        | maybe_docnext '=' constrs1    { L (comb2 $2 $3) (addConDocs (unLoc $3) $1) }
1108 1109

constrs1 :: { Located [LConDecl RdrName] }
1110 1111
	: constrs1 maybe_docnext '|' maybe_docprev constr { LL (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4) }
	| constr			                  { L1 [$1] }
1112 1113

constr :: { LConDecl RdrName }
1114 1115 1116 1117 1118 1119
	: maybe_docnext forall context '=>' constr_stuff maybe_docprev	
		{ let (con,details) = unLoc $5 in 
		  L (comb4 $2 $3 $4 $5) (ConDecl con Explicit (unLoc $2) $3 details ResTyH98 ($1 `mplus` $6)) }
	| maybe_docnext forall constr_stuff maybe_docprev
		{ let (con,details) = unLoc $3 in 
		  L (comb2 $2 $3) (ConDecl con Explicit (unLoc $2) (noLoc []) details ResTyH98 ($1 `mplus` $4)) }
1120 1121 1122 1123 1124 1125

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
1126 1127 1128 1129 1130 1131 1132
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
1133 1134 1135
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
1136
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
1137

1138 1139 1140 1141
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

1142 1143 1144
fielddecls :: { [([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName))] }
	: fielddecl maybe_docnext ',' maybe_docprev fielddecls { addFieldDoc (unLoc $1) $4 : addFieldDocs $5 $2 }
	| fielddecl			                       { [unLoc $1] }
1145

1146 1147
fielddecl :: { Located ([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName)) }
	: maybe_docnext sig_vars '::' ctype maybe_docprev      { L (comb3 $2 $3 $4) (reverse (unLoc $2), $4, $1 `mplus` $5) }
1148

1149 1150 1151 1152
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
1153 1154
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
1155 1156 1157
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
1158 1159
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

1186 1187 1188 1189 1190 1191 1192 1193 1194
docdecl :: { LHsDecl RdrName }
        : docdecld { L1 (DocD (unLoc $1)) }

docdecld :: { LDocDecl RdrName }
        : docnext                               { L1 (DocCommentNext (unLoc $1)) }
        | docprev                               { L1 (DocCommentPrev (unLoc $1)) }
        | docnamed                              { L1 (case (unLoc $1) of (n, doc) -> DocCommentNamed n doc) }
        | docsection                            { L1 (case (unLoc $1) of (n, doc) -> DocGroup n doc) }

1195
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
1196
	: sigdecl			{ $1 }
1197
	| '!' aexp rhs			{% do { pat <- checkPattern $2;
1198
					        return (LL $ unitOL $ LL $ ValD ( 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1199
							PatBind (LL $ BangPat pat) (unLoc $3)
1200
								placeHolderType placeHolderNames)) } }
1201
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
1202
						return (LL $ unitOL (LL $ ValD r)) } }
1203
        | docdecl                       { LL $ unitOL $1 }
1204 1205

rhs	:: { Located (GRHSs RdrName) }
1206 1207
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
1208 1209 1210 1211 1212 1213

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
1214
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1215

1216
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
1217
	: infixexp '::' sigtypedoc
1218
				{% do s <- checkValSig $1 $3; 
1219
				      return (LL $ unitOL (LL $ SigD s)) }
1220
		-- See the above notes for why we need infixexp here
1221
	| var ',' sig_vars '::' sigtypedoc
1222
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
1223
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
1224 1225
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
1226
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
1227
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
1228
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec) 
1229
					    | t <- $4] }
1230
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
1231
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
1232
					    | t <- $5] }
1233
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
1234
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
1235 1236 1237 1238 1239 1240

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
1241 1242 1243 1244
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
1245 1246 1247 1248 1249 1250 1251
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
1252 1253 1254 1255
	: '\\' apat apats opt_asig '->' exp	
			{ LL $ HsLam (mkMatchGroup [LL $ Match ($2:$3) $4
							   	(unguardedGRHSs $6)
							    ]) }
1256 1257
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
1258
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
1259 1260 1261
	| '-' fexp				{ LL $ mkHsNegApp $2 }

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
1262 1263
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
1264
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
1265 1266
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
1267 1268 1269
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }
andy@galois.com's avatar
andy@galois.com committed
1270 1271 1272
        | hpc_annot exp		    		{ LL $ if opt_Hpc
							then HsTickPragma (unLoc $1) $2
							else HsPar $2 }
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

andy@galois.com's avatar
andy@galois.com committed
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
hpc_annot :: { Located (FastString,(Int,Int),(Int,Int)) }
	: '{-# GENERATED' STRING INTEGER ':' INTEGER '-' INTEGER ':' INTEGER '#-}'
						{ LL $ (getSTRING $2
						       ,( fromInteger $ getINTEGER $3
 							, fromInteger $ getINTEGER $5
							)
                         			       ,( fromInteger $ getINTEGER $7
 							, fromInteger $ getINTEGER $9
							)
						       )
					         }

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) 
							(reverse $3);
				        return (LL r) }}
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
 	| qcname '{|' gentype '|}'      { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
						     (sL (getLoc $3) (HsType $3)) }

aexp2	:: { LHsExpr RdrName }
	: ipvar				{ L1 (HsIPVar $! unLoc $1) }
	| qcname			{ L1 (HsVar   $! unLoc $1) }
	| literal			{ L1 (HsLit   $! unLoc $1) }
	| INTEGER			{ L1 (HsOverLit $! mkHsIntegral (getINTEGER $1)) }
	| RATIONAL			{ L1 (HsOverLit $! mkHsFractional (getRATIONAL $1)) }
	| '(' exp ')'			{ LL (HsPar $2) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1330
	| '(' texp ',' texps ')'	{ LL $ ExplicitTuple ($2 : reverse $4) Boxed }
1331 1332 1333 1334 1335 1336 1337
	| '(#' texps '#)'		{ LL $ ExplicitTuple (reverse $2)      Unboxed }
	| '[' list ']'                  { LL (unLoc $2) }
	| '[:' parr ':]'                { LL (unLoc $2) }
	| '(' infixexp qop ')'		{ LL $ SectionL $2 $3 }
	| '(' qopm infixexp ')'		{ LL $ SectionR $2 $3 }
	| '_'				{ L1 EWildPat }
	
1338
	-- Template Haskell Extension
1339
	| TH_ID_SPLICE          { L1 $ HsSpliceE (mkHsSplice 
1340
					(L1 $ HsVar (mkUnqual varName 
1341 1342 1343
							(getTH_ID_SPLICE $1)))) } -- $x
	| '$(' exp ')'   	{ LL $ HsSpliceE (mkHsSplice $2) }               -- $( exp )

1344
	| TH_VAR_QUOTE qvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1345
	| TH_VAR_QUOTE qcon 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1346