Type.lhs 51.9 KB
Newer Older
1
%
2
% (c) The University of Glasgow 2006
3
4
5
% (c) The GRASP/AQUA Project, Glasgow University, 1998
%

6
Type - public interface
7

8
9
\begin{code}
module Type (
10
        -- re-exports from TypeRep
11
	TyThing(..), Type, PredType(..), ThetaType, 
12
	funTyCon,
13

14
15
	-- Kinds
        Kind, SimpleKind, KindVar,
16
        kindFunResult, splitKindFunTys, splitKindFunTysN,
17
18
19
20
21
22
23
24
25
26
27

        liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon,
        argTypeKindTyCon, ubxTupleKindTyCon,

        liftedTypeKind, unliftedTypeKind, openTypeKind,
        argTypeKind, ubxTupleKind,

        tySuperKind, coSuperKind, 

        isLiftedTypeKind, isUnliftedTypeKind, isOpenTypeKind,
        isUbxTupleKind, isArgTypeKind, isKind, isTySuperKind, 
28
        isCoSuperKind, isSuperKind, isCoercionKind, isEqPred,
29
30
31
32
	mkArrowKind, mkArrowKinds,

        isSubArgTypeKind, isSubOpenTypeKind, isSubKind, defaultKind, eqKind,
        isSubKindCon,
33

34
35
	-- Re-exports from TyCon
	PrimRep(..),
36

37
38
	mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, isTyVarTy,

39
40
	mkAppTy, mkAppTys, splitAppTy, splitAppTys, 
	splitAppTy_maybe, repSplitAppTy_maybe,
41

42
43
	mkFunTy, mkFunTys, splitFunTy, splitFunTy_maybe, 
	splitFunTys, splitFunTysN,
44
	funResultTy, funArgTy, zipFunTys, isFunTy,
45

46
	mkTyConApp, mkTyConTy, 
47
	tyConAppTyCon, tyConAppArgs, 
48
49
	splitTyConApp_maybe, splitTyConApp, 
        splitNewTyConApp_maybe, splitNewTyConApp,
50

mnislaih's avatar
mnislaih committed
51
	repType, repType', typePrimRep, coreView, tcView, kindView,
52

53
	mkForAllTy, mkForAllTys, splitForAllTy_maybe, splitForAllTys, 
54
	applyTy, applyTys, isForAllTy, dropForAlls,
55

56
	-- Source types
57
	predTypeRep, mkPredTy, mkPredTys,
58
	tyConOrigHead, pprSourceTyCon,
59

60
	-- Newtypes
61
	splitRecNewType_maybe, newTyConInstRhs,
62

63
	-- Lifting and boxity
64
65
	isUnLiftedType, isUnboxedTupleType, isAlgType, isPrimitiveType,
	isStrictType, isStrictPred, 
66

67
	-- Free variables
68
	tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta,
69
	typeKind, addFreeTyVars,
70

71
	-- Tidying up for printing
72
73
74
75
76
	tidyType,      tidyTypes,
	tidyOpenType,  tidyOpenTypes,
	tidyTyVarBndr, tidyFreeTyVars,
	tidyOpenTyVar, tidyOpenTyVars,
	tidyTopType,   tidyPred,
77
	tidyKind,
78

79
	-- Comparison
80
81
	coreEqType, tcEqType, tcEqTypes, tcCmpType, tcCmpTypes, 
	tcEqPred, tcCmpPred, tcEqTypeX, 
82

83
	-- Seq
84
	seqType, seqTypes,
85

86
	-- Type substitutions
87
88
	TvSubstEnv, emptyTvSubstEnv,	-- Representation widely visible
	TvSubst(..), emptyTvSubst,	-- Representation visible to a few friends
89
	mkTvSubst, mkOpenTvSubst, zipOpenTvSubst, zipTopTvSubst, mkTopTvSubst, notElemTvSubst,
90
	getTvSubstEnv, setTvSubstEnv, getTvInScope, extendTvInScope,
91
 	extendTvSubst, extendTvSubstList, isInScope, composeTvSubst, zipTyEnv,
92
93

	-- Performing substitution on types
94
	substTy, substTys, substTyWith, substTheta, 
95
	substPred, substTyVar, substTyVars, substTyVarBndr, deShadowTy, lookupTyVar,
96

97
	-- Pretty-printing
98
	pprType, pprParendType, pprTyThingCategory, pprForAll,
99
	pprPred, pprTheta, pprThetaArrow, pprClassPred, pprKind, pprParendKind
100
    ) where
101

102
103
#include "HsVersions.h"

104
105
106
107
108
-- We import the representation and primitive functions from TypeRep.
-- Many things are reexported, but not the representation!

import TypeRep

109
-- friends:
110
import Var
111
112
113
import VarEnv
import VarSet

114
115
116
117
import Name
import Class
import PrelNames
import TyCon
118

119
-- others
120
121
import StaticFlags
import Util
122
import Outputable
123
import UniqSet
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
124

125
import Data.Maybe	( isJust )
126
127
\end{code}

128

129
130
131
132
133
134
135
136
137
138
139
%************************************************************************
%*									*
		Type representation
%*									*
%************************************************************************

In Core, we "look through" non-recursive newtypes and PredTypes.

\begin{code}
{-# INLINE coreView #-}
coreView :: Type -> Maybe Type
140
-- Strips off the *top layer only* of a type to give 
141
142
143
-- its underlying representation type. 
-- Returns Nothing if there is nothing to look through.
--
144
-- In the case of newtypes, it returns
145
146
147
148
149
150
151
152
153
154
155
156
--	*either* a vanilla TyConApp (recursive newtype, or non-saturated)
--	*or*     the newtype representation (otherwise), meaning the
--			type written in the RHS of the newtype decl,
--			which may itself be a newtype
--
-- Example: newtype R = MkR S
--	    newtype S = MkS T
--	    newtype T = MkT (T -> T)
--   expandNewTcApp on R gives Just S
--	            on S gives Just T
--		    on T gives Nothing	 (no expansion)

157
158
159
-- By being non-recursive and inlined, this case analysis gets efficiently
-- joined onto the case analysis that the caller is already doing
coreView (NoteTy _ ty) 	   = Just ty
160
161
162
coreView (PredTy p)
  | isEqPred p             = Nothing
  | otherwise    	   = Just (predTypeRep p)
163
164
165
166
167
168
169
coreView (TyConApp tc tys) | Just (tenv, rhs, tys') <- coreExpandTyCon_maybe tc tys 
			   = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
				-- Its important to use mkAppTys, rather than (foldl AppTy),
				-- because the function part might well return a 
				-- partially-applied type constructor; indeed, usually will!
coreView ty		   = Nothing

170
171


172
173
174
175
176
177
178
179
-----------------------------------------------
{-# INLINE tcView #-}
tcView :: Type -> Maybe Type
-- Same, but for the type checker, which just looks through synonyms
tcView (NoteTy _ ty) 	 = Just ty
tcView (TyConApp tc tys) | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys 
			 = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
tcView ty		 = Nothing
180
181
182
183
184
185
186
187

-----------------------------------------------
{-# INLINE kindView #-}
kindView :: Kind -> Maybe Kind
-- C.f. coreView, tcView
-- For the moment, we don't even handle synonyms in kinds
kindView (NoteTy _ k) = Just k
kindView other	      = Nothing
188
189
190
\end{code}


191
192
193
194
195
%************************************************************************
%*									*
\subsection{Constructor-specific functions}
%*									*
%************************************************************************
sof's avatar
sof committed
196
197


198
199
200
---------------------------------------------------------------------
				TyVarTy
				~~~~~~~
201
\begin{code}
202
mkTyVarTy  :: TyVar   -> Type
203
mkTyVarTy  = TyVarTy
204

205
mkTyVarTys :: [TyVar] -> [Type]
206
mkTyVarTys = map mkTyVarTy -- a common use of mkTyVarTy
207

208
getTyVar :: String -> Type -> TyVar
209
210
211
getTyVar msg ty = case getTyVar_maybe ty of
		    Just tv -> tv
		    Nothing -> panic ("getTyVar: " ++ msg)
212

213
isTyVarTy :: Type -> Bool
214
215
216
isTyVarTy ty = isJust (getTyVar_maybe ty)

getTyVar_maybe :: Type -> Maybe TyVar
217
218
219
getTyVar_maybe ty | Just ty' <- coreView ty = getTyVar_maybe ty'
getTyVar_maybe (TyVarTy tv) 	 	    = Just tv  
getTyVar_maybe other	         	    = Nothing
220

221
222
223
\end{code}


224
225
226
227
228
229
---------------------------------------------------------------------
				AppTy
				~~~~~
We need to be pretty careful with AppTy to make sure we obey the 
invariant that a TyConApp is always visibly so.  mkAppTy maintains the
invariant: use it.
230

231
\begin{code}
232
mkAppTy orig_ty1 orig_ty2
233
  = mk_app orig_ty1
234
  where
235
    mk_app (NoteTy _ ty1)    = mk_app ty1
236
    mk_app (TyConApp tc tys) = mkTyConApp tc (tys ++ [orig_ty2])
237
    mk_app ty1		     = AppTy orig_ty1 orig_ty2
238
	-- Note that the TyConApp could be an 
239
240
241
242
243
244
245
	-- under-saturated type synonym.  GHC allows that; e.g.
	--	type Foo k = k a -> k a
	--	type Id x = x
	--	foo :: Foo Id -> Foo Id
	--
	-- Here Id is partially applied in the type sig for Foo,
	-- but once the type synonyms are expanded all is well
246

247
mkAppTys :: Type -> [Type] -> Type
248
249
mkAppTys orig_ty1 []	    = orig_ty1
	-- This check for an empty list of type arguments
250
	-- avoids the needless loss of a type synonym constructor.
251
252
253
	-- For example: mkAppTys Rational []
	--   returns to (Ratio Integer), which has needlessly lost
	--   the Rational part.
254
mkAppTys orig_ty1 orig_tys2
255
  = mk_app orig_ty1
256
  where
257
    mk_app (NoteTy _ ty1)    = mk_app ty1
258
259
    mk_app (TyConApp tc tys) = mkTyConApp tc (tys ++ orig_tys2)
				-- mkTyConApp: see notes with mkAppTy
260
    mk_app ty1		     = foldl AppTy orig_ty1 orig_tys2
261

262
-------------
263
splitAppTy_maybe :: Type -> Maybe (Type, Type)
264
265
266
splitAppTy_maybe ty | Just ty' <- coreView ty
		    = splitAppTy_maybe ty'
splitAppTy_maybe ty = repSplitAppTy_maybe ty
267

268
269
270
271
272
273
274
275
276
277
-------------
repSplitAppTy_maybe :: Type -> Maybe (Type,Type)
-- Does the AppTy split, but assumes that any view stuff is already done
repSplitAppTy_maybe (FunTy ty1 ty2)   = Just (TyConApp funTyCon [ty1], ty2)
repSplitAppTy_maybe (AppTy ty1 ty2)   = Just (ty1, ty2)
repSplitAppTy_maybe (TyConApp tc tys) = case snocView tys of
						Just (tys', ty') -> Just (TyConApp tc tys', ty')
						Nothing		 -> Nothing
repSplitAppTy_maybe other = Nothing
-------------
278
splitAppTy :: Type -> (Type, Type)
279
280
281
splitAppTy ty = case splitAppTy_maybe ty of
			Just pr -> pr
			Nothing -> panic "splitAppTy"
282

283
-------------
284
splitAppTys :: Type -> (Type, [Type])
285
splitAppTys ty = split ty ty []
286
  where
287
    split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args
288
    split orig_ty (AppTy ty arg)        args = split ty ty (arg:args)
289
    split orig_ty (TyConApp tc tc_args) args = (TyConApp tc [], tc_args ++ args)
290
    split orig_ty (FunTy ty1 ty2)       args = ASSERT( null args )
291
					       (TyConApp funTyCon [], [ty1,ty2])
292
    split orig_ty ty		        args = (orig_ty, args)
293

294
295
\end{code}

296
297
298
299
300

---------------------------------------------------------------------
				FunTy
				~~~~~

301
\begin{code}
302
mkFunTy :: Type -> Type -> Type
303
mkFunTy (PredTy (EqPred ty1 ty2)) res = mkForAllTy (mkWildCoVar (PredTy (EqPred ty1 ty2))) res
304
mkFunTy arg res = FunTy arg res
305

306
mkFunTys :: [Type] -> Type -> Type
307
mkFunTys tys ty = foldr mkFunTy ty tys
308

309
310
311
isFunTy :: Type -> Bool 
isFunTy ty = isJust (splitFunTy_maybe ty)

312
splitFunTy :: Type -> (Type, Type)
313
splitFunTy ty | Just ty' <- coreView ty = splitFunTy ty'
314
splitFunTy (FunTy arg res)   = (arg, res)
315
splitFunTy other	     = pprPanic "splitFunTy" (ppr other)
316

317
splitFunTy_maybe :: Type -> Maybe (Type, Type)
318
splitFunTy_maybe ty | Just ty' <- coreView ty = splitFunTy_maybe ty'
319
320
splitFunTy_maybe (FunTy arg res)   = Just (arg, res)
splitFunTy_maybe other	           = Nothing
321

322
splitFunTys :: Type -> ([Type], Type)
323
splitFunTys ty = split [] ty ty
324
  where
325
    split args orig_ty ty | Just ty' <- coreView ty = split args orig_ty ty'
326
327
    split args orig_ty (FunTy arg res) 	 = split (arg:args) res res
    split args orig_ty ty                = (reverse args, orig_ty)
328

329
330
331
332
333
334
335
splitFunTysN :: Int -> Type -> ([Type], Type)
-- Split off exactly n arg tys
splitFunTysN 0 ty = ([], ty)
splitFunTysN n ty = case splitFunTy ty of { (arg, res) ->
		    case splitFunTysN (n-1) res of { (args, res) ->
		    (arg:args, res) }}

336
337
338
zipFunTys :: Outputable a => [a] -> Type -> ([(a,Type)], Type)
zipFunTys orig_xs orig_ty = split [] orig_xs orig_ty orig_ty
  where
339
    split acc []     nty ty  	           = (reverse acc, nty)
340
341
    split acc xs     nty ty 
	  | Just ty' <- coreView ty 	   = split acc xs nty ty'
342
    split acc (x:xs) nty (FunTy arg res)   = split ((x,arg):acc) xs res res
343
    split acc (x:xs) nty ty                = pprPanic "zipFunTys" (ppr orig_xs <+> ppr orig_ty)
344
345
    
funResultTy :: Type -> Type
346
funResultTy ty | Just ty' <- coreView ty = funResultTy ty'
347
funResultTy (FunTy arg res)   = res
348
funResultTy ty		      = pprPanic "funResultTy" (ppr ty)
349
350

funArgTy :: Type -> Type
351
funArgTy ty | Just ty' <- coreView ty = funArgTy ty'
352
funArgTy (FunTy arg res)   = arg
353
funArgTy ty		   = pprPanic "funArgTy" (ppr ty)
354
355
356
\end{code}


357
358
359
---------------------------------------------------------------------
				TyConApp
				~~~~~~~~
360
@mkTyConApp@ is a key function, because it builds a TyConApp, FunTy or PredTy,
361
as apppropriate.
362

363
\begin{code}
364
mkTyConApp :: TyCon -> [Type] -> Type
365
mkTyConApp tycon tys
366
  | isFunTyCon tycon, [ty1,ty2] <- tys
367
  = FunTy ty1 ty2
368

369
  | otherwise
370
  = TyConApp tycon tys
371

372
mkTyConTy :: TyCon -> Type
373
mkTyConTy tycon = mkTyConApp tycon []
374
375
376
377
378

-- splitTyConApp "looks through" synonyms, because they don't
-- mean a distinct type, but all other type-constructor applications
-- including functions are returned as Just ..

379
tyConAppTyCon :: Type -> TyCon
380
tyConAppTyCon ty = fst (splitTyConApp ty)
381
382

tyConAppArgs :: Type -> [Type]
383
tyConAppArgs ty = snd (splitTyConApp ty)
384
385
386
387

splitTyConApp :: Type -> (TyCon, [Type])
splitTyConApp ty = case splitTyConApp_maybe ty of
			Just stuff -> stuff
388
			Nothing	   -> pprPanic "splitTyConApp" (ppr ty)
389

390
splitTyConApp_maybe :: Type -> Maybe (TyCon, [Type])
391
splitTyConApp_maybe ty | Just ty' <- coreView ty = splitTyConApp_maybe ty'
392
splitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
393
splitTyConApp_maybe (FunTy arg res)   = Just (funTyCon, [arg,res])
394
splitTyConApp_maybe other	      = Nothing
395
396
397
398
399
400
401
402
403
404
405
406
407
408

-- Sometimes we do NOT want to look throught a newtype.  When case matching
-- on a newtype we want a convenient way to access the arguments of a newty
-- constructor so as to properly form a coercion.
splitNewTyConApp :: Type -> (TyCon, [Type])
splitNewTyConApp ty = case splitNewTyConApp_maybe ty of
			Just stuff -> stuff
			Nothing	   -> pprPanic "splitNewTyConApp" (ppr ty)
splitNewTyConApp_maybe :: Type -> Maybe (TyCon, [Type])
splitNewTyConApp_maybe ty | Just ty' <- tcView ty = splitNewTyConApp_maybe ty'
splitNewTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
splitNewTyConApp_maybe (FunTy arg res)   = Just (funTyCon, [arg,res])
splitNewTyConApp_maybe other	      = Nothing

409
410
411
412
413
-- get instantiated newtype rhs, the arguments had better saturate 
-- the constructor
newTyConInstRhs :: TyCon -> [Type] -> Type
newTyConInstRhs tycon tys =
    let (tvs, ty) = newTyConRhs tycon in substTyWith tvs tys ty
sof's avatar
sof committed
414
\end{code}
415

416

417
418
419
420
421
422
423
424
---------------------------------------------------------------------
				SynTy
				~~~~~

Notes on type synonyms
~~~~~~~~~~~~~~~~~~~~~~
The various "split" functions (splitFunTy, splitRhoTy, splitForAllTy) try
to return type synonyms whereever possible. Thus
425

426
427
428
429
430
431
432
433
	type Foo a = a -> a

we want 
	splitFunTys (a -> Foo a) = ([a], Foo a)
not			           ([a], a -> a)

The reason is that we then get better (shorter) type signatures in 
interfaces.  Notably this plays a role in tcTySigs in TcBinds.lhs.
434
435


436
437
		Representation types
		~~~~~~~~~~~~~~~~~~~~
438
439
repType looks through 
	(a) for-alls, and
440
441
442
	(b) synonyms
	(c) predicates
	(d) usage annotations
443
	(e) all newtypes, including recursive ones, but not newtype families
444
It's useful in the back end.
445
446
447

\begin{code}
repType :: Type -> Type
448
-- Only applied to types of kind *; hence tycons are saturated
449
repType ty | Just ty' <- coreView ty = repType ty'
450
451
repType (ForAllTy _ ty)  = repType ty
repType (TyConApp tc tys)
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
452
  | isClosedNewTyCon tc  = -- Recursive newtypes are opaque to coreView
453
454
455
			   -- but we must expand them here.  Sure to
			   -- be saturated because repType is only applied
			   -- to types of kind *
456
			   ASSERT( {- isRecursiveTyCon tc && -} tys `lengthIs` tyConArity tc )
457
458
459
			   repType (new_type_rep tc tys)
repType ty = ty

mnislaih's avatar
mnislaih committed
460
461
462
463
464
465
466
467
468
469
-- repType' aims to be a more thorough version of repType
-- For now it simply looks through the TyConApp args too
repType' ty -- | pprTrace "repType'" (ppr ty $$ ppr (go1 ty)) False = undefined
            | otherwise = go1 ty 
 where 
        go1 = go . repType
        go (TyConApp tc tys) = mkTyConApp tc (map repType' tys)
        go ty = ty


470
471
472
473
474
-- new_type_rep doesn't ask any questions: 
-- it just expands newtype, whether recursive or not
new_type_rep new_tycon tys = ASSERT( tys `lengthIs` tyConArity new_tycon )
			     case newTyConRep new_tycon of
				 (tvs, rep_ty) -> substTyWith tvs tys rep_ty
475

476
477
-- ToDo: this could be moved to the code generator, using splitTyConApp instead
-- of inspecting the type directly.
478
479
480
481
typePrimRep :: Type -> PrimRep
typePrimRep ty = case repType ty of
		   TyConApp tc _ -> tyConPrimRep tc
		   FunTy _ _	 -> PtrRep
482
		   AppTy _ _	 -> PtrRep	-- See note below
483
		   TyVarTy _	 -> PtrRep
484
		   other	 -> pprPanic "typePrimRep" (ppr ty)
485
486
487
488
489
	-- Types of the form 'f a' must be of kind *, not *#, so
	-- we are guaranteed that they are represented by pointers.
	-- The reason is that f must have kind *->*, not *->*#, because
	-- (we claim) there is no way to constrain f's kind any other
	-- way.
490

491
492
493
\end{code}


494
495
496
---------------------------------------------------------------------
				ForAllTy
				~~~~~~~~
497
498

\begin{code}
499
mkForAllTy :: TyVar -> Type -> Type
500
501
mkForAllTy tyvar ty
  = mkForAllTys [tyvar] ty
502

503
mkForAllTys :: [TyVar] -> Type -> Type
504
mkForAllTys tyvars ty = foldr ForAllTy ty tyvars
505
506
507
508
509

isForAllTy :: Type -> Bool
isForAllTy (NoteTy _ ty)  = isForAllTy ty
isForAllTy (ForAllTy _ _) = True
isForAllTy other_ty	  = False
510

511
splitForAllTy_maybe :: Type -> Maybe (TyVar, Type)
512
splitForAllTy_maybe ty = splitFAT_m ty
513
  where
514
515
516
    splitFAT_m ty | Just ty' <- coreView ty = splitFAT_m ty'
    splitFAT_m (ForAllTy tyvar ty)	    = Just(tyvar, ty)
    splitFAT_m _			    = Nothing
sof's avatar
sof committed
517

518
splitForAllTys :: Type -> ([TyVar], Type)
519
splitForAllTys ty = split ty ty []
520
   where
521
     split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs
522
523
     split orig_ty (ForAllTy tv ty)  tvs = split ty ty (tv:tvs)
     split orig_ty t		     tvs = (reverse tvs, orig_ty)
524
525
526

dropForAlls :: Type -> Type
dropForAlls ty = snd (splitForAllTys ty)
527
528
\end{code}

529
-- (mkPiType now in CoreUtils)
530

531
532
533
534
535
536
537
applyTy, applyTys
~~~~~~~~~~~~~~~~~
Instantiate a for-all type with one or more type arguments.
Used when we have a polymorphic function applied to type args:
	f t1 t2
Then we use (applyTys type-of-f [t1,t2]) to compute the type of
the expression. 
538

539
\begin{code}
540
applyTy :: Type -> Type -> Type
541
542
543
applyTy ty arg | Just ty' <- coreView ty = applyTy ty' arg
applyTy (ForAllTy tv ty) arg = substTyWith [tv] [arg] ty
applyTy other		 arg = panic "applyTy"
544

545
applyTys :: Type -> [Type] -> Type
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
-- This function is interesting because 
--	a) the function may have more for-alls than there are args
--	b) less obviously, it may have fewer for-alls
-- For case (b) think of 
--	applyTys (forall a.a) [forall b.b, Int]
-- This really can happen, via dressing up polymorphic types with newtype
-- clothing.  Here's an example:
--	newtype R = R (forall a. a->a)
--	foo = case undefined :: R of
--		R f -> f ()

applyTys orig_fun_ty []      = orig_fun_ty
applyTys orig_fun_ty arg_tys 
  | n_tvs == n_args 	-- The vastly common case
  = substTyWith tvs arg_tys rho_ty
  | n_tvs > n_args 	-- Too many for-alls
  = substTyWith (take n_args tvs) arg_tys 
		(mkForAllTys (drop n_args tvs) rho_ty)
  | otherwise		-- Too many type args
565
  = ASSERT2( n_tvs > 0, ppr orig_fun_ty )	-- Zero case gives infnite loop!
566
567
568
569
570
571
    applyTys (substTyWith tvs (take n_tvs arg_tys) rho_ty)
	     (drop n_tvs arg_tys)
  where
    (tvs, rho_ty) = splitForAllTys orig_fun_ty 
    n_tvs = length tvs
    n_args = length arg_tys     
572
\end{code}
573

574

575
576
%************************************************************************
%*									*
577
\subsection{Source types}
578
579
%*									*
%************************************************************************
580

581
582
A "source type" is a type that is a separate type as far as the type checker is
concerned, but which has low-level representation as far as the back end is concerned.
583

584
Source types are always lifted.
585

586
The key function is predTypeRep which gives the representation of a source type:
587
588

\begin{code}
589
mkPredTy :: PredType -> Type
590
mkPredTy pred = PredTy pred
591
592

mkPredTys :: ThetaType -> [Type]
593
594
595
596
597
mkPredTys preds = map PredTy preds

predTypeRep :: PredType -> Type
-- Convert a PredType to its "representation type";
-- the post-type-checking type used by all the Core passes of GHC.
598
-- Unwraps only the outermost level; for example, the result might
599
-- be a newtype application
600
601
predTypeRep (IParam _ ty)     = ty
predTypeRep (ClassP clas tys) = mkTyConApp (classTyCon clas) tys
602
	-- Result might be a newtype application, but the consumer will
603
	-- look through that too if necessary
604
predTypeRep (EqPred ty1 ty2) = pprPanic "predTypeRep" (ppr (EqPred ty1 ty2))
605
606
607
608
609
610
611

-- The original head is the tycon and its variables for a vanilla tycon and it
-- is the family tycon and its type indexes for a family instance.
tyConOrigHead :: TyCon -> (TyCon, [Type])
tyConOrigHead tycon = case tyConFamInst_maybe tycon of
		        Nothing      -> (tycon, mkTyVarTys (tyConTyVars tycon))
			Just famInst -> famInst
612
613
614
615
616
617
618

-- Pretty prints a tycon, using the family instance in case of a
-- representation tycon.
pprSourceTyCon tycon | Just (repTyCon, tys) <- tyConFamInst_maybe tycon =
  ppr $ repTyCon `TyConApp` tys	       -- can't be FunTyCon
                     | otherwise                                        =
  ppr tycon
619
\end{code}
620
621


622
623
624
625
626
%************************************************************************
%*									*
		NewTypes
%*									*
%************************************************************************
627

628
629
630
\begin{code}
splitRecNewType_maybe :: Type -> Maybe Type
-- Sometimes we want to look through a recursive newtype, and that's what happens here
631
-- It only strips *one layer* off, so the caller will usually call itself recursively
632
-- Only applied to types of kind *, hence the newtype is always saturated
633
634
splitRecNewType_maybe ty | Just ty' <- coreView ty = splitRecNewType_maybe ty'
splitRecNewType_maybe (TyConApp tc tys)
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
635
  | isClosedNewTyCon tc
636
637
638
639
  = ASSERT( tys `lengthIs` tyConArity tc )	-- splitRecNewType_maybe only be applied 
						-- 	to *types* (of kind *)
    ASSERT( isRecursiveTyCon tc ) 		-- Guaranteed by coreView
    case newTyConRhs tc of
640
641
642
	(tvs, rep_ty) -> ASSERT( length tvs == length tys )
			 Just (substTyWith tvs tys rep_ty)
	
643
splitRecNewType_maybe other = Nothing
644
645
646



647
648
\end{code}

649

650
651
652
653
654
655
656
657
658
%************************************************************************
%*									*
\subsection{Kinds and free variables}
%*									*
%************************************************************************

---------------------------------------------------------------------
		Finding the kind of a type
		~~~~~~~~~~~~~~~~~~~~~~~~~~
659
\begin{code}
660
typeKind :: Type -> Kind
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
typeKind (TyConApp tycon tys) = ASSERT( not (isCoercionTyCon tycon) )
				   -- We should be looking for the coercion kind,
				   -- not the type kind
				foldr (\_ k -> kindFunResult k) (tyConKind tycon) tys
typeKind (NoteTy _ ty)	      = typeKind ty
typeKind (PredTy pred)	      = predKind pred
typeKind (AppTy fun arg)      = kindFunResult (typeKind fun)
typeKind (ForAllTy tv ty)     = typeKind ty
typeKind (TyVarTy tyvar)      = tyVarKind tyvar
typeKind (FunTy arg res)
    -- Hack alert.  The kind of (Int -> Int#) is liftedTypeKind (*), 
    --              not unliftedTypKind (#)
    -- The only things that can be after a function arrow are
    --   (a) types (of kind openTypeKind or its sub-kinds)
    --   (b) kinds (of super-kind TY) (e.g. * -> (* -> *))
    | isTySuperKind k         = k
    | otherwise               = ASSERT( isSubOpenTypeKind k) liftedTypeKind 
    where
      k = typeKind res

predKind :: PredType -> Kind
predKind (EqPred {}) = coSuperKind	-- A coercion kind!
predKind (ClassP {}) = liftedTypeKind	-- Class and implicitPredicates are
predKind (IParam {}) = liftedTypeKind 	-- always represented by lifted types
685
686
687
\end{code}


688
689
690
---------------------------------------------------------------------
		Free variables of a type
		~~~~~~~~~~~~~~~~~~~~~~~~
691
\begin{code}
692
tyVarsOfType :: Type -> TyVarSet
693
-- NB: for type synonyms tyVarsOfType does *not* expand the synonym
694
tyVarsOfType (TyVarTy tv)		= unitVarSet tv
695
tyVarsOfType (TyConApp tycon tys)	= tyVarsOfTypes tys
696
tyVarsOfType (NoteTy (FTVNote tvs) ty2) = tvs
697
tyVarsOfType (PredTy sty)		= tyVarsOfPred sty
698
699
tyVarsOfType (FunTy arg res)		= tyVarsOfType arg `unionVarSet` tyVarsOfType res
tyVarsOfType (AppTy fun arg)		= tyVarsOfType fun `unionVarSet` tyVarsOfType arg
700
tyVarsOfType (ForAllTy tyvar ty)	= delVarSet (tyVarsOfType ty) tyvar
701

702
tyVarsOfTypes :: [Type] -> TyVarSet
703
704
tyVarsOfTypes tys = foldr (unionVarSet.tyVarsOfType) emptyVarSet tys

705
tyVarsOfPred :: PredType -> TyVarSet
706
707
708
tyVarsOfPred (IParam _ ty)    = tyVarsOfType ty
tyVarsOfPred (ClassP _ tys)   = tyVarsOfTypes tys
tyVarsOfPred (EqPred ty1 ty2) = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2
709
710

tyVarsOfTheta :: ThetaType -> TyVarSet
711
tyVarsOfTheta = foldr (unionVarSet . tyVarsOfPred) emptyVarSet
712

713
-- Add a Note with the free tyvars to the top of the type
714
addFreeTyVars :: Type -> Type
715
716
addFreeTyVars ty@(NoteTy (FTVNote _) _)      = ty
addFreeTyVars ty			     = NoteTy (FTVNote (tyVarsOfType ty)) ty
717
\end{code}
718

719

720
721
722
723
724
%************************************************************************
%*									*
\subsection{TidyType}
%*									*
%************************************************************************
725

726
727
tidyTy tidies up a type for printing in an error message, or in
an interface file.
728

729
It doesn't change the uniques at all, just the print names.
730
731

\begin{code}
732
733
734
tidyTyVarBndr :: TidyEnv -> TyVar -> (TidyEnv, TyVar)
tidyTyVarBndr (tidy_env, subst) tyvar
  = case tidyOccName tidy_env (getOccName name) of
735
      (tidy', occ') -> 	((tidy', subst'), tyvar')
736
737
738
		    where
			subst' = extendVarEnv subst tyvar tyvar'
			tyvar' = setTyVarName tyvar name'
739
			name'  = tidyNameOcc name occ'
740
741
  where
    name = tyVarName tyvar
742

743
744
745
tidyFreeTyVars :: TidyEnv -> TyVarSet -> TidyEnv
-- Add the free tyvars to the env in tidy form,
-- so that we can tidy the type they are free in
746
747
748
749
750
751
752
753
754
755
756
tidyFreeTyVars env tyvars = fst (tidyOpenTyVars env (varSetElems tyvars))

tidyOpenTyVars :: TidyEnv -> [TyVar] -> (TidyEnv, [TyVar])
tidyOpenTyVars env tyvars = mapAccumL tidyOpenTyVar env tyvars

tidyOpenTyVar :: TidyEnv -> TyVar -> (TidyEnv, TyVar)
-- Treat a new tyvar as a binder, and give it a fresh tidy name
tidyOpenTyVar env@(tidy_env, subst) tyvar
  = case lookupVarEnv subst tyvar of
	Just tyvar' -> (env, tyvar')		-- Already substituted
	Nothing	    -> tidyTyVarBndr env tyvar	-- Treat it as a binder
757

758
759
760
tidyType :: TidyEnv -> Type -> Type
tidyType env@(tidy_env, subst) ty
  = go ty
761
  where
762
763
764
    go (TyVarTy tv)	    = case lookupVarEnv subst tv of
				Nothing  -> TyVarTy tv
				Just tv' -> TyVarTy tv'
765
766
    go (TyConApp tycon tys) = let args = map go tys
			      in args `seqList` TyConApp tycon args
sof's avatar
sof committed
767
    go (NoteTy note ty)     = (NoteTy $! (go_note note)) $! (go ty)
768
    go (PredTy sty)	    = PredTy (tidyPred env sty)
sof's avatar
sof committed
769
770
771
    go (AppTy fun arg)	    = (AppTy $! (go fun)) $! (go arg)
    go (FunTy fun arg)	    = (FunTy $! (go fun)) $! (go arg)
    go (ForAllTy tv ty)	    = ForAllTy tvp $! (tidyType envp ty)
772
			      where
773
			        (envp, tvp) = tidyTyVarBndr env tv
774
775
776

    go_note note@(FTVNote ftvs) = note	-- No need to tidy the free tyvars

777
tidyTypes env tys = map (tidyType env) tys
778

779
780
781
tidyPred :: TidyEnv -> PredType -> PredType
tidyPred env (IParam n ty)     = IParam n (tidyType env ty)
tidyPred env (ClassP clas tys) = ClassP clas (tidyTypes env tys)
782
tidyPred env (EqPred ty1 ty2)  = EqPred (tidyType env ty1) (tidyType env ty2)
783
784
785
\end{code}


786
@tidyOpenType@ grabs the free type variables, tidies them
787
788
789
790
791
792
793
and then uses @tidyType@ to work over the type itself

\begin{code}
tidyOpenType :: TidyEnv -> Type -> (TidyEnv, Type)
tidyOpenType env ty
  = (env', tidyType env' ty)
  where
794
    env' = tidyFreeTyVars env (tyVarsOfType ty)
795
796
797
798
799
800

tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type])
tidyOpenTypes env tys = mapAccumL tidyOpenType env tys

tidyTopType :: Type -> Type
tidyTopType ty = tidyType emptyTidyEnv ty
801
802
\end{code}

803
\begin{code}
804

805
tidyKind :: TidyEnv -> Kind -> (TidyEnv, Kind)
806
tidyKind env k = tidyOpenType env k
807
808
809

\end{code}

810

811
812
%************************************************************************
%*									*
813
\subsection{Liftedness}
814
815
816
%*									*
%************************************************************************

817
\begin{code}
818
isUnLiftedType :: Type -> Bool
819
820
821
822
823
824
	-- isUnLiftedType returns True for forall'd unlifted types:
	--	x :: forall a. Int#
	-- I found bindings like these were getting floated to the top level.
	-- They are pretty bogus types, mind you.  It would be better never to
	-- construct them

825
isUnLiftedType ty | Just ty' <- coreView ty = isUnLiftedType ty'
826
827
828
isUnLiftedType (ForAllTy tv ty)  = isUnLiftedType ty
isUnLiftedType (TyConApp tc _)   = isUnLiftedTyCon tc
isUnLiftedType other		 = False	
829

830
isUnboxedTupleType :: Type -> Bool
831
832
833
isUnboxedTupleType ty = case splitTyConApp_maybe ty of
			   Just (tc, ty_args) -> isUnboxedTupleTyCon tc
			   other	      -> False
834

835
-- Should only be applied to *types*; hence the assert
836
isAlgType :: Type -> Bool
837
isAlgType ty = case splitTyConApp_maybe ty of
sof's avatar
sof committed
838
			Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc )
839
840
					      isAlgTyCon tc
			other		   -> False
841
842
\end{code}

843
844
845
846
847
848
849
850
@isStrictType@ computes whether an argument (or let RHS) should
be computed strictly or lazily, based only on its type.
Works just like isUnLiftedType, except that it has a special case 
for dictionaries.  Since it takes account of ClassP, you might think
this function should be in TcType, but isStrictType is used by DataCon,
which is below TcType in the hierarchy, so it's convenient to put it here.

\begin{code}
851
852
isStrictType (PredTy pred)     = isStrictPred pred
isStrictType ty | Just ty' <- coreView ty = isStrictType ty'
853
854
855
856
857
858
isStrictType (ForAllTy tv ty)  = isStrictType ty
isStrictType (TyConApp tc _)   = isUnLiftedTyCon tc
isStrictType other	       = False	

isStrictPred (ClassP clas _) = opt_DictsStrict && not (isNewTyCon (classTyCon clas))
isStrictPred other	     = False
859
860
861
862
863
864
865
866
867
868
869
870
	-- We may be strict in dictionary types, but only if it 
	-- has more than one component.
	-- [Being strict in a single-component dictionary risks
	--  poking the dictionary component, which is wrong.]
\end{code}

\begin{code}
isPrimitiveType :: Type -> Bool
-- Returns types that are opaque to Haskell.
-- Most of these are unlifted, but now that we interact with .NET, we
-- may have primtive (foreign-imported) types that are lifted
isPrimitiveType ty = case splitTyConApp_maybe ty of
sof's avatar
sof committed
871
			Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc )
872
873
874
875
					      isPrimTyCon tc
			other		   -> False
\end{code}

876

877
878
879
880
881
882
883
884
885
886
887
888
%************************************************************************
%*									*
\subsection{Sequencing on types
%*									*
%************************************************************************

\begin{code}
seqType :: Type -> ()
seqType (TyVarTy tv) 	  = tv `seq` ()
seqType (AppTy t1 t2) 	  = seqType t1 `seq` seqType t2
seqType (FunTy t1 t2) 	  = seqType t1 `seq` seqType t2
seqType (NoteTy note t2)  = seqNote note `seq` seqType t2
889
seqType (PredTy p) 	  = seqPred p
890
891
892
893
894
895
896
897
898
seqType (TyConApp tc tys) = tc `seq` seqTypes tys
seqType (ForAllTy tv ty)  = tv `seq` seqType ty

seqTypes :: [Type] -> ()
seqTypes []       = ()
seqTypes (ty:tys) = seqType ty `seq` seqTypes tys

seqNote :: TyNote -> ()
seqNote (FTVNote set) = sizeUniqSet set `seq` ()
899

900
seqPred :: PredType -> ()
901
902
903
seqPred (ClassP c tys)   = c `seq` seqTypes tys
seqPred (IParam n ty)    = n `seq` seqType ty
seqPred (EqPred ty1 ty2) = seqType ty1 `seq` seqType ty2
904
905
906
907
908
\end{code}


%************************************************************************
%*									*
909
		Equality for Core types 
910
	(We don't use instances so that we know where it happens)
911
912
913
%*									*
%************************************************************************

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
Note that eqType works right even for partial applications of newtypes.
See Note [Newtype eta] in TyCon.lhs

\begin{code}
coreEqType :: Type -> Type -> Bool
coreEqType t1 t2
  = eq rn_env t1 t2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2))

    eq env (TyVarTy tv1)       (TyVarTy tv2)     = rnOccL env tv1 == rnOccR env tv2
    eq env (ForAllTy tv1 t1)   (ForAllTy tv2 t2) = eq (rnBndr2 env tv1 tv2) t1 t2
    eq env (AppTy s1 t1)       (AppTy s2 t2)     = eq env s1 s2 && eq env t1 t2
    eq env (FunTy s1 t1)       (FunTy s2 t2)     = eq env s1 s2 && eq env t1 t2
    eq env (TyConApp tc1 tys1) (TyConApp tc2 tys2) 
	| tc1 == tc2, all2 (eq env) tys1 tys2 = True
			-- The lengths should be equal because
			-- the two types have the same kind
	-- NB: if the type constructors differ that does not 
	--     necessarily mean that the types aren't equal
	--     (synonyms, newtypes)
	-- Even if the type constructors are the same, but the arguments
	-- differ, the two types could be the same (e.g. if the arg is just
	-- ignored in the RHS).  In both these cases we fall through to an 
	-- attempt to expand one side or the other.

	-- Now deal with newtypes, synonyms, pred-tys
941
942
    eq env t1 t2 | Just t1' <- coreView t1 = eq env t1' t2 
		 | Just t2' <- coreView t2 = eq env t1 t2' 
943
944
945
946

	-- Fall through case; not equal!
    eq env t1 t2 = False
\end{code}
947

948

949
950
951
952
953
954
%************************************************************************
%*									*
		Comparision for source types 
	(We don't use instances so that we know where it happens)
%*									*
%************************************************************************
955

956
957
958
Note that 
	tcEqType, tcCmpType 
do *not* look through newtypes, PredTypes
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984

\begin{code}
tcEqType :: Type -> Type -> Bool
tcEqType t1 t2 = isEqual $ cmpType t1 t2

tcEqTypes :: [Type] -> [Type] -> Bool
tcEqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2

tcCmpType :: Type -> Type -> Ordering
tcCmpType t1 t2 = cmpType t1 t2

tcCmpTypes :: [Type] -> [Type] -> Ordering
tcCmpTypes tys1 tys2 = cmpTypes tys1 tys2

tcEqPred :: PredType -> PredType -> Bool
tcEqPred p1 p2 = isEqual $ cmpPred p1 p2

tcCmpPred :: PredType -> PredType -> Ordering
tcCmpPred p1 p2 = cmpPred p1 p2

tcEqTypeX :: RnEnv2 -> Type -> Type -> Bool
tcEqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2
\end{code}

Now here comes the real worker

985
\begin{code}
986
987
988
989
990
991
992
993
994
995
996
997
998
999
cmpType :: Type -> Type -> Ordering
cmpType t1 t2 = cmpTypeX rn_env t1 t2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2))

cmpTypes :: [Type] -> [Type] -> Ordering
cmpTypes ts1 ts2 = cmpTypesX rn_env ts1 ts2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfTypes ts1 `unionVarSet` tyVarsOfTypes ts2))

cmpPred :: PredType -> PredType -> Ordering
cmpPred p1 p2 = cmpPredX rn_env p1 p2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfPred p1 `unionVarSet` tyVarsOfPred p2))
1000

1001
cmpTypeX :: RnEnv2 -> Type -> Type -> Ordering	-- Main workhorse
1002
1003
cmpTypeX env t1 t2 | Just t1' <- tcView t1 = cmpTypeX env t1' t2
		   | Just t2' <- tcView t2 = cmpTypeX env t1 t2'
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
cmpTypeX env (TyVarTy tv1)       (TyVarTy tv2)       = rnOccL env tv1 `compare` rnOccR env tv2
cmpTypeX env (ForAllTy tv1 t1)   (ForAllTy tv2 t2)   = cmpTypeX (rnBndr2 env tv1 tv2) t1 t2
cmpTypeX env (AppTy s1 t1)       (AppTy s2 t2)       = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2
cmpTypeX env (FunTy s1 t1)       (FunTy s2 t2)       = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2
cmpTypeX env (PredTy p1)         (PredTy p2)         = cmpPredX env p1 p2
cmpTypeX env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` cmpTypesX env tys1 tys2
cmpTypeX env t1			(NoteTy _ t2)	     = cmpTypeX env t1 t2

    -- Deal with the rest: TyVarTy < AppTy < FunTy < TyConApp < ForAllTy < PredTy
cmpTypeX env (AppTy _ _) (TyVarTy _) = GT
    
cmpTypeX env (FunTy _ _) (TyVarTy _) = GT
cmpTypeX env (FunTy _ _) (AppTy _ _) = GT
    
cmpTypeX env (TyConApp _ _) (TyVarTy _) = GT
cmpTypeX env (TyConApp _ _) (AppTy _ _) = GT
cmpTypeX env (TyConApp _ _) (FunTy _ _) = GT
    
cmpTypeX env (ForAllTy _ _) (TyVarTy _)    = GT
cmpTypeX env (ForAllTy _ _) (AppTy _ _)    = GT
cmpTypeX env (ForAllTy _ _) (FunTy _ _)    = GT
cmpTypeX env (ForAllTy _ _) (TyConApp _ _) = GT

cmpTypeX env (PredTy _)   t2		= GT

cmpTypeX env _ _ = LT

-------------
cmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering
cmpTypesX env []        []        = EQ
1035
cmpTypesX env (t1:tys1) (t2:tys2) = cmpTypeX env t1 t2 `thenCmp` cmpTypesX env tys1 tys2
1036
1037
1038
1039
1040
1041
cmpTypesX env []        tys       = LT
cmpTypesX env ty        []        = GT

-------------
cmpPredX :: RnEnv2 -> PredType -> PredType -> Ordering
cmpPredX env (IParam n1 ty1) (IParam n2 ty2) = (n1 `compare` n2) `thenCmp` cmpTypeX env ty1 ty2
1042
1043
1044
1045
1046
1047
	-- Compare names only for implicit parameters
	-- This comparison is used exclusively (I believe) 
	-- for the Avails finite map built in TcSimplify
	-- If the types differ we keep them distinct so that we see 
	-- a distinct pair to run improvement on 
cmpPredX env (ClassP c1 tys1) (ClassP c2 tys2) = (c1 `compare` c2) `thenCmp` (cmpTypesX env tys1 tys2)
1048
cmpPredX env (EqPred ty1 ty2) (EqPred ty1' ty2') = (cmpTypeX env ty1 ty1') `thenCmp` (cmpTypeX env ty2 ty2')
1049
1050
1051
1052
1053
1054

-- Constructor order: IParam < ClassP < EqPred
cmpPredX env (IParam {})     _		    = LT
cmpPredX env (ClassP {})    (IParam {})     = GT
cmpPredX env (ClassP {})    (EqPred {})     = LT
cmpPredX env (EqPred {})    _		    = GT
1055
1056
1057
1058
1059
1060
1061
1062
\end{code}

PredTypes are used as a FM key in TcSimplify, 
so we take the easy path and make them an instance of Ord

\begin{code}
instance Eq  PredType where { (==)    = tcEqPred }
instance Ord PredType where { compare = tcCmpPred }
1063
1064
\end{code}

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

%************************************************************************
%*									*
		Type substitutions
%*									*
%************************************************************************

\begin{code}
data TvSubst 		
  = TvSubst InScopeSet 	-- The in-scope type variables
1075
	    TvSubstEnv	-- The substitution itself
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1076
1077
	-- See Note [Apply Once]
	-- and Note [Extending the TvSubstEnv]
1078
1079
1080

{- ----------------------------------------------------------

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1081
1082
Note [Apply Once]
~~~~~~~~~~~~~~~~~
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
We use TvSubsts to instantiate things, and we might instantiate
	forall a b. ty
\with the types
	[a, b], or [b, a].
So the substition might go [a->b, b->a].  A similar situation arises in Core
when we find a beta redex like
	(/\ a /\ b -> e) b a
Then we also end up with a substition that permutes type variables. Other
variations happen to; for example [a -> (a, b)].  

	***************************************************
	*** So a TvSubst must be applied precisely once ***
	***************************************************

A TvSubst is not idempotent, but, unlike the non-idempotent substitution
we use during unifications, it must not be repeatedly applied.
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

Note [Extending the TvSubst]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following invariant should hold of a TvSubst

	The in-scope set is needed *only* to
	guide the generation of fresh uniques

	In particular, the *kind* of the type variables in 
	the in-scope set is not relevant

This invariant allows a short-cut when the TvSubstEnv is empty:
if the TvSubstEnv is empty --- i.e. (isEmptyTvSubt subst) holds ---
then (substTy subst ty) does nothing.

For example, consider:
	(/\a. /\b:(a~Int). ...b..) Int
We substitute Int for 'a'.  The Unique of 'b' does not change, but
nevertheless we add 'b' to the TvSubstEnv, because b's type does change

This invariant has several crucial consequences:

* In substTyVarBndr, we need extend the TvSubstEnv 
	- if the unique has changed
	- or if the kind has changed

* In substTyVar, we do not need to consult the in-scope set;
  the TvSubstEnv is enough

* In substTy, substTheta, we can short-circuit when the TvSubstEnv is empty
  

1131
1132
1133
1134
1135
1136
1137
1138
1139
-------------------------------------------------------------- -}


type TvSubstEnv = TyVarEnv Type
	-- A TvSubstEnv is used both inside a TvSubst (with the apply-once
	-- invariant discussed in Note [Apply Once]), and also independently
	-- in the middle of matching, and unification (see Types.Unify)
	-- So you have to look at the context to know if it's idempotent or
	-- apply-once or whatever
1140
1141
emptyTvSubstEnv :: TvSubstEnv
emptyTvSubstEnv = emptyVarEnv
1142

1143
1144
1145
composeTvSubst :: InScopeSet -> TvSubstEnv -> TvSubstEnv -> TvSubstEnv
-- (compose env1 env2)(x) is env1(env2(x)); i.e. apply env2 then env1
-- It assumes that both are idempotent
1146
-- Typically, env1 is the refinement to a base substitution env2
1147
1148
1149
1150
1151
composeTvSubst in_scope env1 env2
  = env1 `plusVarEnv` mapVarEnv (substTy subst1) env2
	-- First apply env1 to the range of env2
	-- Then combine the two, making sure that env1 loses if
	-- both bind the same variable; that's why env1 is the
1152
	--  *left* argument to plusVarEnv, because the right arg wins
1153
1154
1155
  where
    subst1 = TvSubst in_scope env1

1156
emptyTvSubst = TvSubst emptyInScopeSet emptyVarEnv
1157

1158
isEmptyTvSubst :: TvSubst -> Bool
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1159
	 -- See Note [Extending the TvSubstEnv]
1160
1161
isEmptyTvSubst (TvSubst _ env) = isEmptyVarEnv env

1162
1163
1164
mkTvSubst :: InScopeSet -> TvSubstEnv -> TvSubst
mkTvSubst = TvSubst

1165
1166
1167
1168
1169
1170
1171
1172
1173
getTvSubstEnv :: TvSubst -> TvSubstEnv
getTvSubstEnv (TvSubst _ env) = env

getTvInScope :: TvSubst -> InScopeSet
getTvInScope (TvSubst in_scope _) = in_scope

isInScope :: Var -> TvSubst -> Bool
isInScope v (TvSubst in_scope _) = v `elemInScopeSet` in_scope

1174
1175
1176
notElemTvSubst :: TyVar -> TvSubst -> Bool
notElemTvSubst tv (TvSubst _ env) = not (tv `elemVarEnv` env)

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
setTvSubstEnv :: TvSubst -> TvSubstEnv -> TvSubst
setTvSubstEnv (TvSubst in_scope _) env = TvSubst in_scope env

extendTvInScope :: TvSubst -> [Var] -> TvSubst
extendTvInScope (TvSubst in_scope env) vars = TvSubst (extendInScopeSetList in_scope vars) env

extendTvSubst :: TvSubst -> TyVar -> Type -> TvSubst
extendTvSubst (TvSubst in_scope env) tv ty = TvSubst in_scope (extendVarEnv env tv ty)

extendTvSubstList :: TvSubst -> [TyVar] -> [Type] -> TvSubst
extendTvSubstList (TvSubst in_scope env) tvs tys 
  = TvSubst in_scope (extendVarEnvList env (tvs `zip` tys))

1190
-- mkOpenTvSubst and zipOpenTvSubst generate the in-scope set from
1191
1192
1193
-- the types given; but it's just a thunk so with a bit of luck
-- it'll never be evaluated

1194
1195
mkOpenTvSubst :: TvSubstEnv -> TvSubst
mkOpenTvSubst env = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts env))) env
1196