TcCanonical.hs 87.2 KB
Newer Older
1 2
{-# LANGUAGE CPP #-}

3
module TcCanonical(
4 5
     canonicalize,
     unifyDerived,
6
     makeSuperClasses, maybeSym,
7 8
     StopOrContinue(..), stopWith, continueWith,
     solveCallStack    -- For TcSimplify
9
  ) where
10 11 12

#include "HsVersions.h"

13 14
import GhcPrelude

15
import TcRnTypes
16
import TcUnify( swapOverTyVars, metaTyVarUpdateOK )
17
import TcType
18
import Type
19 20
import TcFlatten
import TcSMonad
21
import TcEvidence
22
import TcEvTerm
23 24
import Class
import TyCon
25
import TyCoRep   -- cleverly decomposes types, good for completeness checking
26 27 28
import Coercion
import FamInstEnv ( FamInstEnvs )
import FamInst ( tcTopNormaliseNewTypeTF_maybe )
29
import Var
30
import VarEnv( mkInScopeSet )
31
import Outputable
32
import DynFlags( DynFlags )
33
import NameSet
34
import RdrName
35
import HsTypes( HsIPName(..) )
36

37
import Pair
38
import Util
39
import Bag
40 41
import MonadUtils
import Control.Monad
42
import Data.Maybe ( isJust )
43
import Data.List  ( zip4, foldl' )
44
import BasicTypes
45

46 47
import Data.Bifunctor ( bimap )

Austin Seipp's avatar
Austin Seipp committed
48 49 50 51 52 53
{-
************************************************************************
*                                                                      *
*                      The Canonicaliser                               *
*                                                                      *
************************************************************************
54

55 56
Note [Canonicalization]
~~~~~~~~~~~~~~~~~~~~~~~
57

58
Canonicalization converts a simple constraint to a canonical form. It is
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
unary (i.e. treats individual constraints one at a time).

Constraints originating from user-written code come into being as
CNonCanonicals (except for CHoleCans, arising from holes). We know nothing
about these constraints. So, first:

     Classify CNonCanoncal constraints, depending on whether they
     are equalities, class predicates, or other.

Then proceed depending on the shape of the constraint. Generally speaking,
each constraint gets flattened and then decomposed into one of several forms
(see type Ct in TcRnTypes).

When an already-canonicalized constraint gets kicked out of the inert set,
it must be recanonicalized. But we know a bit about its shape from the
last time through, so we can skip the classification step.

Austin Seipp's avatar
Austin Seipp committed
76
-}
77

78 79 80
-- Top-level canonicalization
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

81
canonicalize :: Ct -> TcS (StopOrContinue Ct)
82 83 84 85 86 87 88 89
canonicalize (CNonCanonical { cc_ev = ev })
  = {-# SCC "canNC" #-}
    case classifyPredType (ctEvPred ev) of
      ClassPred cls tys     -> do traceTcS "canEvNC:cls" (ppr cls <+> ppr tys)
                                  canClassNC ev cls tys
      EqPred eq_rel ty1 ty2 -> do traceTcS "canEvNC:eq" (ppr ty1 $$ ppr ty2)
                                  canEqNC    ev eq_rel ty1 ty2
      IrredPred {}          -> do traceTcS "canEvNC:irred" (ppr (ctEvPred ev))
90
                                  canIrred ev
91 92 93

canonicalize (CIrredCan { cc_ev = ev })
  = canIrred ev
94

95 96
canonicalize (CDictCan { cc_ev = ev, cc_class  = cls
                       , cc_tyargs = xis, cc_pend_sc = pend_sc })
97
  = {-# SCC "canClass" #-}
98 99
    canClass ev cls xis pend_sc

100
canonicalize (CTyEqCan { cc_ev = ev
101
                       , cc_tyvar  = tv
102 103
                       , cc_rhs    = xi
                       , cc_eq_rel = eq_rel })
104
  = {-# SCC "canEqLeafTyVarEq" #-}
105 106 107
    canEqNC ev eq_rel (mkTyVarTy tv) xi
      -- NB: Don't use canEqTyVar because that expects flattened types,
      -- and tv and xi may not be flat w.r.t. an updated inert set
108

109
canonicalize (CFunEqCan { cc_ev = ev
110 111
                        , cc_fun    = fn
                        , cc_tyargs = xis1
112
                        , cc_fsk    = fsk })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
113
  = {-# SCC "canEqLeafFunEq" #-}
114
    canCFunEqCan ev fn xis1 fsk
115

116 117
canonicalize (CHoleCan { cc_ev = ev, cc_hole = hole })
  = canHole ev hole
118

Austin Seipp's avatar
Austin Seipp committed
119 120 121 122 123 124 125
{-
************************************************************************
*                                                                      *
*                      Class Canonicalization
*                                                                      *
************************************************************************
-}
126

127
canClassNC :: CtEvidence -> Class -> [Type] -> TcS (StopOrContinue Ct)
128
-- "NC" means "non-canonical"; that is, we have got here
Gabor Greif's avatar
Gabor Greif committed
129
-- from a NonCanonical constraint, not from a CDictCan
Simon Peyton Jones's avatar
Simon Peyton Jones committed
130
-- Precondition: EvVar is class evidence
131 132 133 134 135
canClassNC ev cls tys
  | isGiven ev  -- See Note [Eagerly expand given superclasses]
  = do { sc_cts <- mkStrictSuperClasses ev cls tys
       ; emitWork sc_cts
       ; canClass ev cls tys False }
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

  | isWanted ev
  , Just ip_name <- isCallStackPred cls tys
  , OccurrenceOf func <- ctLocOrigin loc
  -- If we're given a CallStack constraint that arose from a function
  -- call, we need to push the current call-site onto the stack instead
  -- of solving it directly from a given.
  -- See Note [Overview of implicit CallStacks] in TcEvidence
  -- and Note [Solving CallStack constraints] in TcSMonad
  = do { -- First we emit a new constraint that will capture the
         -- given CallStack.
       ; let new_loc = setCtLocOrigin loc (IPOccOrigin (HsIPName ip_name))
                            -- We change the origin to IPOccOrigin so
                            -- this rule does not fire again.
                            -- See Note [Overview of implicit CallStacks]

       ; new_ev <- newWantedEvVarNC new_loc pred

         -- Then we solve the wanted by pushing the call-site
         -- onto the newly emitted CallStack
156
       ; let ev_cs = EvCsPushCall func (ctLocSpan loc) (ctEvExpr new_ev)
157 158 159 160
       ; solveCallStack ev ev_cs

       ; canClass new_ev cls tys False }

161 162
  | otherwise
  = canClass ev cls tys (has_scs cls)
163

164 165
  where
    has_scs cls = not (null (classSCTheta cls))
166 167 168 169 170 171 172 173 174
    loc  = ctEvLoc ev
    pred = ctEvPred ev

solveCallStack :: CtEvidence -> EvCallStack -> TcS ()
-- Also called from TcSimplify when defaulting call stacks
solveCallStack ev ev_cs = do
  -- We're given ev_cs :: CallStack, but the evidence term should be a
  -- dictionary, so we have to coerce ev_cs to a dictionary for
  -- `IP ip CallStack`. See Note [Overview of implicit CallStacks]
175 176 177
  cs_tm <- evCallStack ev_cs
  let ev_tm = mkEvCast cs_tm (wrapIP (ctEvPred ev))
  setWantedEvBind (ctEvEvId ev) (EvExpr ev_tm)
178

179 180 181 182
canClass :: CtEvidence
         -> Class -> [Type]
         -> Bool            -- True <=> un-explored superclasses
         -> TcS (StopOrContinue Ct)
183
-- Precondition: EvVar is class evidence
184

185
canClass ev cls tys pend_sc
186 187
  =   -- all classes do *nominal* matching
    ASSERT2( ctEvRole ev == Nominal, ppr ev $$ ppr cls $$ ppr tys )
188 189 190
    do { (xis, cos, _kind_co) <- flattenArgsNom ev cls_tc tys
       ; MASSERT( isTcReflCo _kind_co )
       ; let co = mkTcTyConAppCo Nominal cls_tc cos
191
             xi = mkClassPred cls xis
192
             mk_ct new_ev = CDictCan { cc_ev = new_ev
193 194 195
                                     , cc_tyargs = xis
                                     , cc_class = cls
                                     , cc_pend_sc = pend_sc }
196
       ; mb <- rewriteEvidence ev xi co
197
       ; traceTcS "canClass" (vcat [ ppr ev
Simon Peyton Jones's avatar
Simon Peyton Jones committed
198
                                   , ppr xi, ppr mb ])
199
       ; return (fmap mk_ct mb) }
200 201
  where
    cls_tc = classTyCon cls
dimitris's avatar
dimitris committed
202

203 204 205 206
{- Note [The superclass story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to add superclass constraints for two reasons:

207
* For givens [G], they give us a route to proof.  E.g.
208 209 210 211 212
    f :: Ord a => a -> Bool
    f x = x == x
  We get a Wanted (Eq a), which can only be solved from the superclass
  of the Given (Ord a).

213 214
* For wanteds [W], and deriveds [WD], [D], they may give useful
  functional dependencies.  E.g.
215 216
     class C a b | a -> b where ...
     class C a b => D a b where ...
217
  Now a [W] constraint (D Int beta) has (C Int beta) as a superclass
218
  and that might tell us about beta, via C's fundeps.  We can get this
219
  by generating a [D] (C Int beta) constraint.  It's derived because
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  we don't actually have to cough up any evidence for it; it's only there
  to generate fundep equalities.

See Note [Why adding superclasses can help].

For these reasons we want to generate superclass constraints for both
Givens and Wanteds. But:

* (Minor) they are often not needed, so generating them aggressively
  is a waste of time.

* (Major) if we want recursive superclasses, there would be an infinite
  number of them.  Here is a real-life example (Trac #10318);

     class (Frac (Frac a) ~ Frac a,
            Fractional (Frac a),
            IntegralDomain (Frac a))
         => IntegralDomain a where
      type Frac a :: *

  Notice that IntegralDomain has an associated type Frac, and one
  of IntegralDomain's superclasses is another IntegralDomain constraint.

So here's the plan:

245 246
1. Eagerly generate superclasses for given (but not wanted)
   constraints; see Note [Eagerly expand given superclasses].
247 248
   This is done using mkStrictSuperClasses in canClassNC, when
   we take a non-canonical Given constraint and cannonicalise it.
249 250

   However stop if you encounter the same class twice.  That is,
251 252
   mkStrictSuperClasses expands eagerly, but has a conservative
   termination condition: see Note [Expanding superclasses] in TcType.
253

254 255 256 257
2. Solve the wanteds as usual, but do no further expansion of
   superclasses for canonical CDictCans in solveSimpleGivens or
   solveSimpleWanteds; Note [Danger of adding superclasses during solving]

258 259
   However, /do/ continue to eagerly expand superlasses for new /given/
   /non-canonical/ constraints (canClassNC does this).  As Trac #12175
260 261 262
   showed, a type-family application can expand to a class constraint,
   and we want to see its superclasses for just the same reason as
   Note [Eagerly expand given superclasses].
263

264 265 266
3. If we have any remaining unsolved wanteds
        (see Note [When superclasses help] in TcRnTypes)
   try harder: take both the Givens and Wanteds, and expand
267 268 269 270 271
   superclasses again.  See the calls to expandSuperClasses in
   TcSimplify.simpl_loop and solveWanteds.

   This may succeed in generating (a finite number of) extra Givens,
   and extra Deriveds. Both may help the proof.
272 273 274 275

4. Go round to (2) again.  This loop (2,3,4) is implemented
   in TcSimplify.simpl_loop.

276 277 278
The cc_pend_sc flag in a CDictCan records whether the superclasses of
this constraint have been expanded.  Specifically, in Step 3 we only
expand superclasses for constraints with cc_pend_sc set to true (i.e.
279 280
isPendingScDict holds).

281 282 283 284 285 286 287 288 289
Why do we do this?  Two reasons:

* To avoid repeated work, by repeatedly expanding the superclasses of
  same constraint,

* To terminate the above loop, at least in the -XNoRecursiveSuperClasses
  case.  If there are recursive superclasses we could, in principle,
  expand forever, always encountering new constraints.

290 291 292
When we take a CNonCanonical or CIrredCan, but end up classifying it
as a CDictCan, we set the cc_pend_sc flag to False.

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
Note [Superclass loops]
~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
  class C a => D a
  class D a => C a

Then, when we expand superclasses, we'll get back to the self-same
predicate, so we have reached a fixpoint in expansion and there is no
point in fruitlessly expanding further.  This case just falls out from
our strategy.  Consider
  f :: C a => a -> Bool
  f x = x==x
Then canClassNC gets the [G] d1: C a constraint, and eager emits superclasses
G] d2: D a, [G] d3: C a (psc).  (The "psc" means it has its sc_pend flag set.)
When processing d3 we find a match with d1 in the inert set, and we always
keep the inert item (d1) if possible: see Note [Replacement vs keeping] in
TcInteract.  So d3 dies a quick, happy death.

311 312 313
Note [Eagerly expand given superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In step (1) of Note [The superclass story], why do we eagerly expand
314 315 316 317
Given superclasses by one layer?  (By "one layer" we mean expand transitively
until you meet the same class again -- the conservative criterion embodied
in expandSuperClasses.  So a "layer" might be a whole stack of superclasses.)
We do this eagerly for Givens mainly because of some very obscure
318
cases like this:
319 320 321 322 323 324 325 326 327 328 329

   instance Bad a => Eq (T a)

   f :: (Ord (T a)) => blah
   f x = ....needs Eq (T a), Ord (T a)....

Here if we can't satisfy (Eq (T a)) from the givens we'll use the
instance declaration; but then we are stuck with (Bad a).  Sigh.
This is really a case of non-confluent proofs, but to stop our users
complaining we expand one layer in advance.

330 331 332 333 334 335 336 337 338 339 340 341 342
Note [Instance and Given overlap] in TcInteract.

We also want to do this if we have

   f :: F (T a) => blah

where
   type instance F (T a) = Ord (T a)

So we may need to do a little work on the givens to expose the
class that has the superclasses.  That's why the superclass
expansion for Givens happens in canClassNC.

343 344 345
Note [Why adding superclasses can help]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Examples of how adding superclasses can help:
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

    --- Example 1
        class C a b | a -> b
    Suppose we want to solve
         [G] C a b
         [W] C a beta
    Then adding [D] beta~b will let us solve it.

    -- Example 2 (similar but using a type-equality superclass)
        class (F a ~ b) => C a b
    And try to sllve:
         [G] C a b
         [W] C a beta
    Follow the superclass rules to add
         [G] F a ~ b
         [D] F a ~ beta
362
    Now we get [D] beta ~ b, and can solve that.
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    -- Example (tcfail138)
      class L a b | a -> b
      class (G a, L a b) => C a b

      instance C a b' => G (Maybe a)
      instance C a b  => C (Maybe a) a
      instance L (Maybe a) a

    When solving the superclasses of the (C (Maybe a) a) instance, we get
      [G] C a b, and hance by superclasses, [G] G a, [G] L a b
      [W] G (Maybe a)
    Use the instance decl to get
      [W] C a beta
    Generate its derived superclass
      [D] L a beta.  Now using fundeps, combine with [G] L a b to get
      [D] beta ~ b
    which is what we want.

382 383
Note [Danger of adding superclasses during solving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
384
Here's a serious, but now out-dated example, from Trac #4497:
Simon Peyton Jones's avatar
Simon Peyton Jones committed
385

386 387 388
   class Num (RealOf t) => Normed t
   type family RealOf x

Simon Peyton Jones's avatar
Simon Peyton Jones committed
389
Assume the generated wanted constraint is:
390 391 392
   [W] RealOf e ~ e
   [W] Normed e

Simon Peyton Jones's avatar
Simon Peyton Jones committed
393
If we were to be adding the superclasses during simplification we'd get:
394 395 396 397
   [W] RealOf e ~ e
   [W] Normed e
   [D] RealOf e ~ fuv
   [D] Num fuv
Simon Peyton Jones's avatar
Simon Peyton Jones committed
398
==>
399
   e := fuv, Num fuv, Normed fuv, RealOf fuv ~ fuv
Simon Peyton Jones's avatar
Simon Peyton Jones committed
400

401 402 403
While looks exactly like our original constraint. If we add the
superclass of (Normed fuv) again we'd loop.  By adding superclasses
definitely only once, during canonicalisation, this situation can't
404
happen.
405 406 407 408

Mind you, now that Wanteds cannot rewrite Derived, I think this particular
situation can't happen.
  -}
409

410 411 412 413
makeSuperClasses :: [Ct] -> TcS [Ct]
-- Returns strict superclasses, transitively, see Note [The superclasses story]
-- See Note [The superclass story]
-- The loop-breaking here follows Note [Expanding superclasses] in TcType
414 415 416 417 418 419 420 421 422 423
-- Specifically, for an incoming (C t) constraint, we return all of (C t)'s
--    superclasses, up to /and including/ the first repetition of C
--
-- Example:  class D a => C a
--           class C [a] => D a
-- makeSuperClasses (C x) will return (D x, C [x])
--
-- NB: the incoming constraints have had their cc_pend_sc flag already
--     flipped to False, by isPendingScDict, so we are /obliged/ to at
--     least produce the immediate superclasses
424 425 426
makeSuperClasses cts = concatMapM go cts
  where
    go (CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys })
427
          = mkStrictSuperClasses ev cls tys
428 429
    go ct = pprPanic "makeSuperClasses" (ppr ct)

430 431 432 433 434
mkStrictSuperClasses :: CtEvidence -> Class -> [Type] -> TcS [Ct]
-- Return constraints for the strict superclasses of (c tys)
mkStrictSuperClasses ev cls tys
  = mk_strict_superclasses (unitNameSet (className cls)) ev cls tys

435 436 437 438 439 440 441 442 443 444
mk_superclasses :: NameSet -> CtEvidence -> TcS [Ct]
-- Return this constraint, plus its superclasses, if any
mk_superclasses rec_clss ev
  | ClassPred cls tys <- classifyPredType (ctEvPred ev)
  = mk_superclasses_of rec_clss ev cls tys

  | otherwise   -- Superclass is not a class predicate
  = return [mkNonCanonical ev]

mk_superclasses_of :: NameSet -> CtEvidence -> Class -> [Type] -> TcS [Ct]
445 446
-- Always return this class constraint,
-- and expand its superclasses
447
mk_superclasses_of rec_clss ev cls tys
448 449 450 451 452 453 454
  | loop_found = do { traceTcS "mk_superclasses_of: loop" (ppr cls <+> ppr tys)
                    ; return [this_ct] }  -- cc_pend_sc of this_ct = True
  | otherwise  = do { traceTcS "mk_superclasses_of" (vcat [ ppr cls <+> ppr tys
                                                          , ppr (isCTupleClass cls)
                                                          , ppr rec_clss
                                                          ])
                    ; sc_cts <- mk_strict_superclasses rec_clss' ev cls tys
455 456
                    ; return (this_ct : sc_cts) }
                                   -- cc_pend_sc of this_ct = False
457 458
  where
    cls_nm     = className cls
459
    loop_found = not (isCTupleClass cls) && cls_nm `elemNameSet` rec_clss
460
                 -- Tuples never contribute to recursion, and can be nested
461
    rec_clss'  = rec_clss `extendNameSet` cls_nm
462 463
    this_ct    = CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys
                          , cc_pend_sc = loop_found }
464 465
                 -- NB: If there is a loop, we cut off, so we have not
                 --     added the superclasses, hence cc_pend_sc = True
466 467

mk_strict_superclasses :: NameSet -> CtEvidence -> Class -> [Type] -> TcS [Ct]
468 469 470
-- Always return the immediate superclasses of (cls tys);
-- and expand their superclasses, provided none of them are in rec_clss
-- nor are repeated
471 472 473
mk_strict_superclasses rec_clss ev cls tys
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- ev
  = do { sc_evs <- newGivenEvVars (mk_given_loc loc)
474
                                  (mkEvScSelectors (evId evar) cls tys)
475
       ; concatMapM (mk_superclasses rec_clss) sc_evs }
dimitris's avatar
dimitris committed
476

477
  | all noFreeVarsOfType tys
478
  = return [] -- Wanteds with no variables yield no deriveds.
479
              -- See Note [Improvement from Ground Wanteds]
480

481 482
  | otherwise -- Wanted/Derived case, just add Derived superclasses
              -- that can lead to improvement.
483 484 485
  = do { let loc = ctEvLoc ev
       ; sc_evs <- mapM (newDerivedNC loc) (immSuperClasses cls tys)
       ; concatMapM (mk_superclasses rec_clss) sc_evs }
486
  where
487
    size = sizeTypes tys
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    mk_given_loc loc
       | isCTupleClass cls
       = loc   -- For tuple predicates, just take them apart, without
               -- adding their (large) size into the chain.  When we
               -- get down to a base predicate, we'll include its size.
               -- Trac #10335

       | GivenOrigin skol_info <- ctLocOrigin loc
         -- See Note [Solving superclass constraints] in TcInstDcls
         -- for explantation of this transformation for givens
       = case skol_info of
            InstSkol -> loc { ctl_origin = GivenOrigin (InstSC size) }
            InstSC n -> loc { ctl_origin = GivenOrigin (InstSC (n `max` size)) }
            _        -> loc

       | otherwise  -- Probably doesn't happen, since this function
       = loc        -- is only used for Givens, but does no harm
505

506

Austin Seipp's avatar
Austin Seipp committed
507 508 509 510 511 512 513
{-
************************************************************************
*                                                                      *
*                      Irreducibles canonicalization
*                                                                      *
************************************************************************
-}
514

515
canIrred :: CtEvidence -> TcS (StopOrContinue Ct)
516
-- Precondition: ty not a tuple and no other evidence form
517 518 519 520 521 522 523 524 525 526 527 528 529
canIrred ev
  | EqPred eq_rel ty1 ty2 <- classifyPredType pred
  = -- For insolubles (all of which are equalities, do /not/ flatten the arguments
    -- In Trac #14350 doing so led entire-unnecessary and ridiculously large
    -- type function expansion.  Instead, canEqNC just applies
    -- the substitution to the predicate, and may do decomposition;
    --    e.g. a ~ [a], where [G] a ~ [Int], can decompose
    canEqNC ev eq_rel ty1 ty2

  | otherwise
  = do { traceTcS "can_pred" (text "IrredPred = " <+> ppr pred)
       ; (xi,co) <- flatten FM_FlattenAll ev pred -- co :: xi ~ pred
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->
530 531
    do { -- Re-classify, in case flattening has improved its shape
       ; case classifyPredType (ctEvPred new_ev) of
532 533 534
           ClassPred cls tys     -> canClassNC new_ev cls tys
           EqPred eq_rel ty1 ty2 -> canEqNC new_ev eq_rel ty1 ty2
           _                     -> continueWith $
535
                                    mkIrredCt new_ev } }
536 537
  where
    pred = ctEvPred ev
538

539 540
canHole :: CtEvidence -> Hole -> TcS (StopOrContinue Ct)
canHole ev hole
541 542
  = do { let ty = ctEvPred ev
       ; (xi,co) <- flatten FM_SubstOnly ev ty -- co :: xi ~ ty
543
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->
544 545
    do { updInertIrreds (`snocCts` (CHoleCan { cc_ev = new_ev
                                             , cc_hole = hole }))
546
       ; stopWith new_ev "Emit insoluble hole" } }
547

Austin Seipp's avatar
Austin Seipp committed
548 549 550 551 552 553
{-
************************************************************************
*                                                                      *
*        Equalities
*                                                                      *
************************************************************************
554 555 556 557 558 559 560 561 562 563 564 565 566

Note [Canonicalising equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to canonicalise an equality, we look at the structure of the
two types at hand, looking for similarities. A difficulty is that the
types may look dissimilar before flattening but similar after flattening.
However, we don't just want to jump in and flatten right away, because
this might be wasted effort. So, after looking for similarities and failing,
we flatten and then try again. Of course, we don't want to loop, so we
track whether or not we've already flattened.

It is conceivable to do a better job at tracking whether or not a type
is flattened, but this is left as future work. (Mar '15)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585


Note [FunTy and decomposing tycon applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When can_eq_nc' attempts to decompose a tycon application we haven't yet zonked.
This means that we may very well have a FunTy containing a type of some unknown
kind. For instance, we may have,

    FunTy (a :: k) Int

Where k is a unification variable. tcRepSplitTyConApp_maybe panics in the event
that it sees such a type as it cannot determine the RuntimeReps which the (->)
is applied to. Consequently, it is vital that we instead use
tcRepSplitTyConApp_maybe', which simply returns Nothing in such a case.

When this happens can_eq_nc' will fail to decompose, zonk, and try again.
Zonking should fill the variable k, meaning that decomposition will succeed the
second time around.
Austin Seipp's avatar
Austin Seipp committed
586
-}
587

588 589
canEqNC :: CtEvidence -> EqRel -> Type -> Type -> TcS (StopOrContinue Ct)
canEqNC ev eq_rel ty1 ty2
590 591 592 593
  = do { result <- zonk_eq_types ty1 ty2
       ; case result of
           Left (Pair ty1' ty2') -> can_eq_nc False ev eq_rel ty1' ty1 ty2' ty2
           Right ty              -> canEqReflexive ev eq_rel ty }
594

595
can_eq_nc
596 597
   :: Bool            -- True => both types are flat
   -> CtEvidence
598
   -> EqRel
Austin Seipp's avatar
Austin Seipp committed
599 600
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
601
   -> TcS (StopOrContinue Ct)
602
can_eq_nc flat ev eq_rel ty1 ps_ty1 ty2 ps_ty2
Austin Seipp's avatar
Austin Seipp committed
603
  = do { traceTcS "can_eq_nc" $
604
         vcat [ ppr flat, ppr ev, ppr eq_rel, ppr ty1, ppr ps_ty1, ppr ty2, ppr ps_ty2 ]
605 606
       ; rdr_env <- getGlobalRdrEnvTcS
       ; fam_insts <- getFamInstEnvs
607
       ; can_eq_nc' flat rdr_env fam_insts ev eq_rel ty1 ps_ty1 ty2 ps_ty2 }
608 609

can_eq_nc'
610 611
   :: Bool           -- True => both input types are flattened
   -> GlobalRdrEnv   -- needed to see which newtypes are in scope
612 613 614 615 616 617
   -> FamInstEnvs    -- needed to unwrap data instances
   -> CtEvidence
   -> EqRel
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
   -> TcS (StopOrContinue Ct)
618 619

-- Expand synonyms first; see Note [Type synonyms and canonicalization]
620
can_eq_nc' flat _rdr_env _envs ev eq_rel ty1 ps_ty1 ty2 ps_ty2
Ben Gamari's avatar
Ben Gamari committed
621 622
  | Just ty1' <- tcView ty1 = can_eq_nc flat ev eq_rel ty1' ps_ty1 ty2  ps_ty2
  | Just ty2' <- tcView ty2 = can_eq_nc flat ev eq_rel ty1  ps_ty1 ty2' ps_ty2
623 624

-- need to check for reflexivity in the ReprEq case.
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
625
-- See Note [Eager reflexivity check]
626 627 628
-- Check only when flat because the zonk_eq_types check in canEqNC takes
-- care of the non-flat case.
can_eq_nc' True _rdr_env _envs ev ReprEq ty1 _ ty2 _
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
629
  | ty1 `tcEqType` ty2
630 631 632 633
  = canEqReflexive ev ReprEq ty1

-- When working with ReprEq, unwrap newtypes.
can_eq_nc' _flat rdr_env envs ev ReprEq ty1 _ ty2 ps_ty2
634 635
  | Just stuff1 <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty1
  = can_eq_newtype_nc ev NotSwapped ty1 stuff1 ty2 ps_ty2
636
can_eq_nc' _flat rdr_env envs ev ReprEq ty1 ps_ty1 ty2 _
637 638
  | Just stuff2 <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty2
  = can_eq_newtype_nc ev IsSwapped  ty2 stuff2 ty1 ps_ty1
639

640 641 642 643 644 645
-- Then, get rid of casts
can_eq_nc' flat _rdr_env _envs ev eq_rel (CastTy ty1 co1) _ ty2 ps_ty2
  = canEqCast flat ev eq_rel NotSwapped ty1 co1 ty2 ps_ty2
can_eq_nc' flat _rdr_env _envs ev eq_rel ty1 ps_ty1 (CastTy ty2 co2) _
  = canEqCast flat ev eq_rel IsSwapped ty2 co2 ty1 ps_ty1

646 647 648 649 650 651 652
-- NB: pattern match on True: we want only flat types sent to canEqTyVar.
-- See also Note [No top-level newtypes on RHS of representational equalities]
can_eq_nc' True _rdr_env _envs ev eq_rel (TyVarTy tv1) ps_ty1 ty2 ps_ty2
  = canEqTyVar ev eq_rel NotSwapped tv1 ps_ty1 ty2 ps_ty2
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 ps_ty1 (TyVarTy tv2) ps_ty2
  = canEqTyVar ev eq_rel IsSwapped tv2 ps_ty2 ty1 ps_ty1

653 654 655 656 657
----------------------
-- Otherwise try to decompose
----------------------

-- Literals
658
can_eq_nc' _flat _rdr_env _envs ev eq_rel ty1@(LitTy l1) _ (LitTy l2) _
659
 | l1 == l2
660
  = do { setEqIfWanted ev (mkReflCo (eqRelRole eq_rel) ty1)
661
       ; stopWith ev "Equal LitTy" }
662

Simon Peyton Jones's avatar
Simon Peyton Jones committed
663 664
-- Try to decompose type constructor applications
-- Including FunTy (s -> t)
665
can_eq_nc' _flat _rdr_env _envs ev eq_rel ty1 _ ty2 _
666 667 668
    --- See Note [FunTy and decomposing type constructor applications].
  | Just (tc1, tys1) <- tcRepSplitTyConApp_maybe' ty1
  , Just (tc2, tys2) <- tcRepSplitTyConApp_maybe' ty2
669 670
  , not (isTypeFamilyTyCon tc1)
  , not (isTypeFamilyTyCon tc2)
671
  = canTyConApp ev eq_rel tc1 tys1 tc2 tys2
672

673
can_eq_nc' _flat _rdr_env _envs ev eq_rel
674
           s1@(ForAllTy {}) _ s2@(ForAllTy {}) _
675
  = can_eq_nc_forall ev eq_rel s1 s2
676

677
-- See Note [Canonicalising type applications] about why we require flat types
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
678
can_eq_nc' True _rdr_env _envs ev eq_rel (AppTy t1 s1) _ ty2 _
679
  | Just (t2, s2) <- tcSplitAppTy_maybe ty2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
680 681
  = can_eq_app ev eq_rel t1 s1 t2 s2
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 _ (AppTy t2 s2) _
682
  | Just (t1, s1) <- tcSplitAppTy_maybe ty1
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
683
  = can_eq_app ev eq_rel t1 s1 t2 s2
684

685
-- No similarity in type structure detected. Flatten and try again.
686 687 688
can_eq_nc' False rdr_env envs ev eq_rel _ ps_ty1 _ ps_ty2
  = do { (xi1, co1) <- flatten FM_FlattenAll ev ps_ty1
       ; (xi2, co2) <- flatten FM_FlattenAll ev ps_ty2
689 690
       ; new_ev <- rewriteEqEvidence ev NotSwapped xi1 xi2 co1 co2
       ; can_eq_nc' True rdr_env envs new_ev eq_rel xi1 xi1 xi2 xi2 }
691 692

-- We've flattened and the types don't match. Give up.
693 694 695 696
can_eq_nc' True _rdr_env _envs ev _eq_rel _ ps_ty1 _ ps_ty2
  = do { traceTcS "can_eq_nc' catch-all case" (ppr ps_ty1 $$ ppr ps_ty2)
       ; canEqHardFailure ev ps_ty1 ps_ty2 }

697 698 699 700 701 702 703 704 705 706 707 708 709 710
---------------------------------
can_eq_nc_forall :: CtEvidence -> EqRel
                 -> Type -> Type    -- LHS and RHS
                 -> TcS (StopOrContinue Ct)
-- (forall as. phi1) ~ (forall bs. phi2)
-- Check for length match of as, bs
-- Then build an implication constraint: forall as. phi1 ~ phi2[as/bs]
-- But remember also to unify the kinds of as and bs
--  (this is the 'go' loop), and actually substitute phi2[as |> cos / bs]
-- Remember also that we might have forall z (a:z). blah
--  so we must proceed one binder at a time (Trac #13879)

can_eq_nc_forall ev eq_rel s1 s2
 | CtWanted { ctev_loc = loc, ctev_dest = orig_dest } <- ev
711
 = do { let free_tvs       = tyCoVarsOfTypes [s1,s2]
712 713 714 715 716 717 718 719 720 721
            (bndrs1, phi1) = tcSplitForAllTyVarBndrs s1
            (bndrs2, phi2) = tcSplitForAllTyVarBndrs s2
      ; if not (equalLength bndrs1 bndrs2)
        then do { traceTcS "Forall failure" $
                     vcat [ ppr s1, ppr s2, ppr bndrs1, ppr bndrs2
                          , ppr (map binderArgFlag bndrs1)
                          , ppr (map binderArgFlag bndrs2) ]
                ; canEqHardFailure ev s1 s2 }
        else
   do { traceTcS "Creating implication for polytype equality" $ ppr ev
722
      ; let empty_subst1 = mkEmptyTCvSubst $ mkInScopeSet free_tvs
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
      ; (subst1, skol_tvs) <- tcInstSkolTyVarsX empty_subst1 $
                              binderVars bndrs1

      ; let skol_info = UnifyForAllSkol phi1
            phi1' = substTy subst1 phi1

            -- Unify the kinds, extend the substitution
            go (skol_tv:skol_tvs) subst (bndr2:bndrs2)
              = do { let tv2 = binderVar bndr2
                   ; kind_co <- unifyWanted loc Nominal
                                            (tyVarKind skol_tv)
                                            (substTy subst (tyVarKind tv2))
                   ; let subst' = extendTvSubst subst tv2
                                       (mkCastTy (mkTyVarTy skol_tv) kind_co)
                   ; co <- go skol_tvs subst' bndrs2
                   ; return (mkForAllCo skol_tv kind_co co) }

            -- Done: unify phi1 ~ phi2
            go [] subst bndrs2
              = ASSERT( null bndrs2 )
                unifyWanted loc (eqRelRole eq_rel)
                            phi1' (substTy subst phi2)

            go _ _ _ = panic "cna_eq_nc_forall"  -- case (s:ss) []

748
            empty_subst2 = mkEmptyTCvSubst (getTCvInScope subst1)
749

750 751 752
      ; all_co <- checkConstraintsTcS skol_info skol_tvs $
                  go skol_tvs empty_subst2 bndrs2

753 754 755 756 757 758 759 760
      ; setWantedEq orig_dest all_co
      ; stopWith ev "Deferred polytype equality" } }

 | otherwise
 = do { traceTcS "Omitting decomposition of given polytype equality" $
        pprEq s1 s2    -- See Note [Do not decompose given polytype equalities]
      ; stopWith ev "Discard given polytype equality" }

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
---------------------------------
-- | Compare types for equality, while zonking as necessary. Gives up
-- as soon as it finds that two types are not equal.
-- This is quite handy when some unification has made two
-- types in an inert wanted to be equal. We can discover the equality without
-- flattening, which is sometimes very expensive (in the case of type functions).
-- In particular, this function makes a ~20% improvement in test case
-- perf/compiler/T5030.
--
-- Returns either the (partially zonked) types in the case of
-- inequality, or the one type in the case of equality. canEqReflexive is
-- a good next step in the 'Right' case. Returning 'Left' is always safe.
--
-- NB: This does *not* look through type synonyms. In fact, it treats type
-- synonyms as rigid constructors. In the future, it might be convenient
-- to look at only those arguments of type synonyms that actually appear
-- in the synonym RHS. But we're not there yet.
zonk_eq_types :: TcType -> TcType -> TcS (Either (Pair TcType) TcType)
zonk_eq_types = go
  where
    go (TyVarTy tv1) (TyVarTy tv2) = tyvar_tyvar tv1 tv2
    go (TyVarTy tv1) ty2           = tyvar NotSwapped tv1 ty2
    go ty1 (TyVarTy tv2)           = tyvar IsSwapped  tv2 ty1

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    -- We handle FunTys explicitly here despite the fact that they could also be
    -- treated as an application. Why? Well, for one it's cheaper to just look
    -- at two types (the argument and result types) than four (the argument,
    -- result, and their RuntimeReps). Also, we haven't completely zonked yet,
    -- so we may run into an unzonked type variable while trying to compute the
    -- RuntimeReps of the argument and result types. This can be observed in
    -- testcase tc269.
    go ty1 ty2
      | Just (arg1, res1) <- split1
      , Just (arg2, res2) <- split2
      = do { res_a <- go arg1 arg2
           ; res_b <- go res1 res2
           ; return $ combine_rev mkFunTy res_b res_a
           }
      | isJust split1 || isJust split2
      = bale_out ty1 ty2
      where
        split1 = tcSplitFunTy_maybe ty1
        split2 = tcSplitFunTy_maybe ty2

805 806 807
    go ty1 ty2
      | Just (tc1, tys1) <- tcRepSplitTyConApp_maybe ty1
      , Just (tc2, tys2) <- tcRepSplitTyConApp_maybe ty2
808 809 810 811 812 813 814 815 816
      = if tc1 == tc2 && tys1 `equalLength` tys2
          -- Crucial to check for equal-length args, because
          -- we cannot assume that the two args to 'go' have
          -- the same kind.  E.g go (Proxy *      (Maybe Int))
          --                        (Proxy (*->*) Maybe)
          -- We'll call (go (Maybe Int) Maybe)
          -- See Trac #13083
        then tycon tc1 tys1 tys2
        else bale_out ty1 ty2
817 818 819 820 821 822 823 824 825 826 827 828

    go ty1 ty2
      | Just (ty1a, ty1b) <- tcRepSplitAppTy_maybe ty1
      , Just (ty2a, ty2b) <- tcRepSplitAppTy_maybe ty2
      = do { res_a <- go ty1a ty2a
           ; res_b <- go ty1b ty2b
           ; return $ combine_rev mkAppTy res_b res_a }

    go ty1@(LitTy lit1) (LitTy lit2)
      | lit1 == lit2
      = return (Right ty1)

829 830 831 832
    go ty1 ty2 = bale_out ty1 ty2
      -- We don't handle more complex forms here

    bale_out ty1 ty2 = return $ Left (Pair ty1 ty2)
833 834 835

    tyvar :: SwapFlag -> TcTyVar -> TcType
          -> TcS (Either (Pair TcType) TcType)
836
      -- Try to do as little as possible, as anything we do here is redundant
837 838 839 840 841 842 843 844
      -- with flattening. In particular, no need to zonk kinds. That's why
      -- we don't use the already-defined zonking functions
    tyvar swapped tv ty
      = case tcTyVarDetails tv of
          MetaTv { mtv_ref = ref }
            -> do { cts <- readTcRef ref
                  ; case cts of
                      Flexi        -> give_up
Simon Peyton Jones's avatar
Simon Peyton Jones committed
845 846
                      Indirect ty' -> do { trace_indirect tv ty'
                                         ; unSwap swapped go ty' ty } }
847 848 849 850 851 852 853 854 855 856 857 858
          _ -> give_up
      where
        give_up = return $ Left $ unSwap swapped Pair (mkTyVarTy tv) ty

    tyvar_tyvar tv1 tv2
      | tv1 == tv2 = return (Right (mkTyVarTy tv1))
      | otherwise  = do { (ty1', progress1) <- quick_zonk tv1
                        ; (ty2', progress2) <- quick_zonk tv2
                        ; if progress1 || progress2
                          then go ty1' ty2'
                          else return $ Left (Pair (TyVarTy tv1) (TyVarTy tv2)) }

Simon Peyton Jones's avatar
Simon Peyton Jones committed
859 860 861 862
    trace_indirect tv ty
       = traceTcS "Following filled tyvar (zonk_eq_types)"
                  (ppr tv <+> equals <+> ppr ty)

863 864 865 866 867
    quick_zonk tv = case tcTyVarDetails tv of
      MetaTv { mtv_ref = ref }
        -> do { cts <- readTcRef ref
              ; case cts of
                  Flexi        -> return (TyVarTy tv, False)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
868 869
                  Indirect ty' -> do { trace_indirect tv ty'
                                     ; return (ty', True) } }
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
      _ -> return (TyVarTy tv, False)

      -- This happens for type families, too. But recall that failure
      -- here just means to try harder, so it's OK if the type function
      -- isn't injective.
    tycon :: TyCon -> [TcType] -> [TcType]
          -> TcS (Either (Pair TcType) TcType)
    tycon tc tys1 tys2
      = do { results <- zipWithM go tys1 tys2
           ; return $ case combine_results results of
               Left tys  -> Left (mkTyConApp tc <$> tys)
               Right tys -> Right (mkTyConApp tc tys) }

    combine_results :: [Either (Pair TcType) TcType]
                    -> Either (Pair [TcType]) [TcType]
    combine_results = bimap (fmap reverse) reverse .
                      foldl' (combine_rev (:)) (Right [])

      -- combine (in reverse) a new result onto an already-combined result
    combine_rev :: (a -> b -> c)
                -> Either (Pair b) b
                -> Either (Pair a) a
                -> Either (Pair c) c
    combine_rev f (Left list) (Left elt) = Left (f <$> elt     <*> list)
    combine_rev f (Left list) (Right ty) = Left (f <$> pure ty <*> list)
    combine_rev f (Right tys) (Left elt) = Left (f <$> elt     <*> pure tys)
    combine_rev f (Right tys) (Right ty) = Right (f ty tys)
897

898
{-
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
Note [Newtypes can blow the stack]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)
  newtype Y = MkY (Int -> Y)

and now wish to prove

  [W] X ~R Y

This Wanted will loop, expanding out the newtypes ever deeper looking
for a solid match or a solid discrepancy. Indeed, there is something
appropriate to this looping, because X and Y *do* have the same representation,
in the limit -- they're both (Fix ((->) Int)). However, no finitely-sized
coercion will ever witness it. This loop won't actually cause GHC to hang,
though, because we check our depth when unwrapping newtypes.

917 918 919 920 921 922 923 924 925
Note [Eager reflexivity check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)

and

  [W] X ~R X
926

927 928 929 930 931
Naively, we would start unwrapping X and end up in a loop. Instead,
we do this eager reflexivity check. This is necessary only for representational
equality because the flattener technology deals with the similar case
(recursive type families) for nominal equality.

932 933
Note that this check does not catch all cases, but it will catch the cases
we're most worried about, types like X above that are actually inhabited.
934

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
935
Here's another place where this reflexivity check is key:
936 937 938
Consider trying to prove (f a) ~R (f a). The AppTys in there can't
be decomposed, because representational equality isn't congruent with respect
to AppTy. So, when canonicalising the equality above, we get stuck and
939
would normally produce a CIrredCan. However, we really do want to
940 941 942 943 944 945 946 947 948
be able to solve (f a) ~R (f a). So, in the representational case only,
we do a reflexivity check.

(This would be sound in the nominal case, but unnecessary, and I [Richard
E.] am worried that it would slow down the common case.)
-}

------------------------
-- | We're able to unwrap a newtype. Update the bits accordingly.
949
can_eq_newtype_nc :: CtEvidence           -- ^ :: ty1 ~ ty2
950
                  -> SwapFlag
951 952
                  -> TcType                                    -- ^ ty1
                  -> ((Bag GlobalRdrElt, TcCoercion), TcType)  -- ^ :: ty1 ~ ty1'
953 954 955
                  -> TcType               -- ^ ty2
                  -> TcType               -- ^ ty2, with type synonyms
                  -> TcS (StopOrContinue Ct)
956
can_eq_newtype_nc ev swapped ty1 ((gres, co), ty1') ty2 ps_ty2
957
  = do { traceTcS "can_eq_newtype_nc" $
958
         vcat [ ppr ev, ppr swapped, ppr co, ppr gres, ppr ty1', ppr ty2 ]
959 960

         -- check for blowing our stack:
961 962
         -- See Note [Newtypes can blow the stack]
       ; checkReductionDepth (ctEvLoc ev) ty1
963
       ; addUsedGREs (bagToList gres)
964 965 966
           -- we have actually used the newtype constructor here, so
           -- make sure we don't warn about importing it!

967 968 969
       ; new_ev <- rewriteEqEvidence ev swapped ty1' ps_ty2
                                     (mkTcSymCo co) (mkTcReflCo Representational ps_ty2)
       ; can_eq_nc False new_ev ReprEq ty1' ty1' ty2 ps_ty2 }
970

971
---------
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
972
-- ^ Decompose a type application.
973
-- All input types must be flat. See Note [Canonicalising type applications]
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
974 975
can_eq_app :: CtEvidence       -- :: s1 t1 ~r s2 t2
           -> EqRel            -- r
976 977 978
           -> Xi -> Xi         -- s1 t1
           -> Xi -> Xi         -- s2 t2
           -> TcS (StopOrContinue Ct)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
979 980

-- AppTys only decompose for nominal equality, so this case just leads
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
981
-- to an irreducible constraint; see typecheck/should_compile/T10494
Simon Peyton Jones's avatar
Simon Peyton Jones committed
982
-- See Note [Decomposing equality], note {4}
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
983 984
can_eq_app ev ReprEq _ _ _ _
  = do { traceTcS "failing to decompose representational AppTy equality" (ppr ev)
985
       ; continueWith (mkIrredCt ev) }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
986 987
          -- no need to call canEqFailure, because that flattens, and the
          -- types involved here are already flat
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
988 989

can_eq_app ev NomEq s1 t1 s2 t2
990
  | CtDerived { ctev_loc = loc } <- ev
991 992 993 994
  = do { unifyDeriveds loc [Nominal, Nominal] [s1, t1] [s2, t2]
       ; stopWith ev "Decomposed [D] AppTy" }
  | CtWanted { ctev_dest = dest, ctev_loc = loc } <- ev
  = do { co_s <- unifyWanted loc Nominal s1 s2
995 996 997 998
       ; let arg_loc
               | isNextArgVisible s1 = loc
               | otherwise           = updateCtLocOrigin loc toInvisibleOrigin
       ; co_t <- unifyWanted arg_loc Nominal t1 t2
999 1000 1001
       ; let co = mkAppCo co_s co_t
       ; setWantedEq dest co
       ; stopWith ev "Decomposed [W] AppTy" }
1002 1003 1004 1005 1006 1007 1008 1009 1010

    -- If there is a ForAll/(->) mismatch, the use of the Left coercion
    -- below is ill-typed, potentially leading to a panic in splitTyConApp
    -- Test case: typecheck/should_run/Typeable1
    -- We could also include this mismatch check above (for W and D), but it's slow
    -- and we'll get a better error message not doing it
  | s1k `mismatches` s2k
  = canEqHardFailure ev (s1 `mkAppTy` t1) (s2 `mkAppTy` t2)

1011 1012
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- ev
  = do { let co   = mkTcCoVarCo evar
1013 1014
             co_s = mkTcLRCo CLeft  co
             co_t = mkTcLRCo CRight co
1015
       ; evar_s <- newGivenEvVar loc ( mkTcEqPredLikeEv ev s1 s2
1016
                                     , evCoercion co_s )
1017
       ; evar_t <- newGivenEvVar loc ( mkTcEqPredLikeEv ev t1 t2
1018
                                     , evCoercion co_t )
1019 1020
       ; emitWorkNC [evar_t]
       ; canEqNC evar_s NomEq s1 s2 }
1021 1022 1023 1024 1025 1026 1027 1028

  where
    s1k = typeKind s1
    s2k = typeKind s2

    k1 `mismatches` k2
      =  isForAllTy k1 && not (isForAllTy k2)
      || not (isForAllTy k1) && isForAllTy k2
1029

1030 1031
-----------------------
-- | Break apart an equality over a casted type
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1032
-- looking like   (ty1 |> co1) ~ ty2   (modulo a swap-flag)
1033 1034 1035 1036
canEqCast :: Bool         -- are both types flat?
          -> CtEvidence
          -> EqRel
          -> SwapFlag
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1037 1038
          -> TcType -> Coercion   -- LHS (res. RHS), ty1 |> co1
          -> TcType -> TcType     -- RHS (res. LHS), ty2 both normal and pretty
1039 1040 1041 1042 1043
          -> TcS (StopOrContinue Ct)
canEqCast flat ev eq_rel swapped ty1 co1 ty2 ps_ty2
  = do { traceTcS "Decomposing cast" (vcat [ ppr ev
                                           , ppr ty1 <+> text "|>" <+> ppr co1
                                           , ppr ps_ty2 ])
1044 1045 1046 1047
       ; new_ev <- rewriteEqEvidence ev swapped ty1 ps_ty2
                                     (mkTcReflCo role ty1 `mkTcCoherenceRightCo` co1)
                                     (mkTcReflCo role ps_ty2)
       ; can_eq_nc flat new_ev eq_rel ty1 ty1 ty2 ps_ty2 }
1048 1049 1050
  where
    role = eqRelRole eq_rel

1051
------------------------
1052 1053 1054 1055
canTyConApp :: CtEvidence -> EqRel
            -> TyCon -> [TcType]
            -> TyCon -> [TcType]
            -> TcS (StopOrContinue Ct)
1056
-- See Note [Decomposing TyConApps]
1057
canTyConApp ev eq_rel tc1 tys1 tc2 tys2
1058
  | tc1 == tc2
1059
  , tys1 `equalLength` tys2
1060
  = do { inerts <- getTcSInerts
1061 1062
       ; if can_decompose inerts
         then do { traceTcS "canTyConApp"
1063 1064 1065 1066
                       (ppr ev $$ ppr eq_rel $$ ppr tc1 $$ ppr tys1 $$ ppr tys2)
                 ; canDecomposableTyConAppOK ev eq_rel tc1 tys1 tys2
                 ; stopWith ev "Decomposed TyConApp" }
         else canEqFailure ev eq_rel ty1 ty2 }
1067

1068 1069
  -- See Note [Skolem abstract data] (at tyConSkolem)
  | tyConSkolem tc1 || tyConSkolem tc2
1070
  = do { traceTcS "canTyConApp: skolem abstract" (ppr tc1 $$ ppr tc2)
1071
       ; continueWith (mkIrredCt ev) }
1072

1073 1074
  -- Fail straight away for better error messages
  -- See Note [Use canEqFailure in canDecomposableTyConApp]
1075 1076
  | eq_rel == ReprEq && not (isGenerativeTyCon tc1 Representational &&
                             isGenerativeTyCon tc2 Representational)
1077 1078
  = canEqFailure ev eq_rel ty1 ty2
  | otherwise
1079
  = canEqHardFailure ev ty1 ty2
1080 1081 1082 1083
  where
    ty1 = mkTyConApp tc1 tys1
    ty2 = mkTyConApp tc2 tys2

1084 1085 1086
    loc  = ctEvLoc ev
    pred = ctEvPred ev

1087 1088 1089 1090 1091
     -- See Note [Decomposing equality]
    can_decompose inerts
      =  isInjectiveTyCon tc1 (eqRelRole eq_rel)
      || (ctEvFlavour ev /= Given && isEmptyBag (matchableGivens loc pred inerts))

1092 1093 1094 1095 1096
{-
Note [Use canEqFailure in canDecomposableTyConApp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must use canEqFailure, not canEqHardFailure here, because there is
the possibility of success if working with a representational equality.
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1097
Here is one case:
1098 1099 1100 1101 1102

  type family TF a where TF Char = Bool
  data family DF a
  newtype instance DF Bool = MkDF Int

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1103
Suppose we are canonicalising (Int ~R DF (TF a)), where we don't yet
1104 1105
know `a`. This is *not* a hard failure, because we might soon learn
that `a` is, in fact, Char, and then the equality succeeds.
1106

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1107 1108
Here is another case:

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1109
  [G] Age ~R Int
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1110 1111 1112 1113

where Age's constructor is not in scope. We don't want to report
an "inaccessible code" error in the context of this Given!

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
For example, see typecheck/should_compile/T10493, repeated here:

  import Data.Ord (Down)  -- no constructor

  foo :: Coercible (Down Int) Int => Down Int -> Int
  foo = coerce

That should compile, but only because we use canEqFailure and not
canEqHardFailure.

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
Note [Decomposing equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have a constraint (of any flavour and role) that looks like
T tys1 ~ T tys2, what can we conclude about tys1 and tys2? The answer,
of course, is "it depends". This Note spells it all out.

In this Note, "decomposition" refers to taking the constraint
  [fl] (T tys1 ~X T tys2)
(for some flavour fl and some role X) and replacing it with
  [fls'] (tys1 ~Xs' tys2)
where that notation indicates a list of new constraints, where the
new constraints may have different flavours and different roles.

The key property to consider is injectivity. When decomposing a Given the
decomposition is sound if and only if T is injective in all of its type
arguments. When decomposing a Wanted, the decomposition is sound (assuming the
correct roles in the produced equality constraints), but it may be a guess --
that is, an unforced decision by the constraint solver. Decomposing Wanteds
over injective TyCons does not entail guessing. But sometimes we want to
decompose a Wanted even when the TyCon involved is not injective! (See below.)

So, in broad strokes, we want this rule:

(*) Decompose a constraint (T tys1 ~X T tys2) if and only if T is injective
at role X.

Pursuing the details requires exploring three axes:
* Flavour: Given vs. Derived vs. Wanted
* Role: Nominal vs. Representational
* TyCon species: datatype vs. newtype vs. data family vs. type family vs. type variable

(So a type variable isn't a TyCon, but it's convenient to put the AppTy case
in the same table.)

Right away, we can say that Derived behaves just as Wanted for the purposes
of decomposition. The difference between Derived and Wanted is the handling of
evidence. Since decomposition in these cases isn't a matter of soundness but of
guessing, we want the same behavior regardless of evidence.

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1163 1164 1165 1166 1167 1168
Here is a table (discussion following) detailing where decomposition of
   (T s1 ... sn) ~r (T t1 .. tn)
is allowed.  The first four lines (Data types ... type family) refer
to TyConApps with various TyCons T; the last line is for AppTy, where
there is presumably a type variable at the head, so it's actually
   (s s1 ... sn) ~r (t t1 .. tn)
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

NOMINAL               GIVEN                       WANTED

Datatype               YES                         YES
Newtype                YES                         YES
Data family            YES                         YES
Type family            YES, in injective args{1}   YES, in injective args{1}
Type variable          YES                         YES

REPRESENTATIONAL      GIVEN                       WANTED

Datatype               YES                         YES
Newtype                NO{2}                      MAYBE{2}
Data family            NO{3}                      MAYBE{3}
Type family             NO                          NO
Type variable          NO{4}                       NO{4}

{1}: Type families can be injective in some, but not all, of their arguments,
so we want to do partial decomposition. This is quite different than the way
other decomposition is done, where the decomposed equalities replace the original
one. We thus proceed much like we do with superclasses: emitting new Givens
when "decomposing" a partially-injective type family Given and new Deriveds
when "decomposing" a partially-injective type family Wanted. (As of the time of
writing, 13 June 2015, the implementation of injective type families has not
been merged, but it should be soon. Please delete this parenthetical if the
implementation is indeed merged.)

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1196
{2}: See Note [Decomposing newtypes at representational role]
1197

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1198 1199 1200
{3}: Because of the possibility of newtype instances, we must treat
data families like newtypes. See also Note [Decomposing newtypes at
representational role]. See #10534 and test case
1201
typecheck/should_fail/T10534.
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

{4}: Because type variables can stand in for newtypes, we conservatively do not
decompose AppTys over representational equality.

In the implementation of can_eq_nc and friends, we don't directly pattern
match using lines like in the tables above, as those tables don't cover
all cases (what about PrimTyCon? tuples?). Instead we just ask about injectivity,
boiling the tables above down to rule (*). The exceptions to rule (*) are for
injective type families, which are handled separately from other decompositions,
and the MAYBE entries above.

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
Note [Decomposing newtypes at representational role]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This note discusses the 'newtype' line in the REPRESENTATIONAL table
in Note [Decomposing equality]. (At nominal role, newtypes are fully
decomposable.)

Here is a representative example of why representational equality over
newtypes is tricky:

  newtype Nt a = Mk Bool         -- NB: a is not used in the RHS,
  type role Nt representational  -- but the user gives it an R role anyway

If we have [W] Nt alpha ~R Nt beta, we *don't* want to decompose to
[W] alpha ~R beta, because it's possible that alpha and beta aren't
representationally equal. Here's another example.

  newtype Nt a = MkNt (Id a)
  type family Id a where Id a = a

  [W] Nt Int ~R Nt Age

Because of its use of a type family, Nt's parameter will get inferred to have
a nominal role. Thus, decomposing the wanted will yield [W] Int ~N Age, which
is unsatisfiable. Unwrapping, though, leads to a solution.

Conclusion:
 * Unwrap newtypes before attempting to decompose them.
   This is done in can_eq_nc'.

It all comes from the fact that newtypes aren't necessarily injective
w.r.t. representational equality.

1245
Furthermore, as explained in Note [NthCo and newtypes] in TyCoRep, we can't use
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
NthCo on representational coercions over newtypes. NthCo comes into play
only when decomposing givens.

Conclusion:
 * Do not decompose [G] N s ~R N t

Is it sensible to decompose *Wanted* constraints over newtypes?  Yes!
It's the only way we could ever prove (IO Int ~R IO Age), recalling
that IO is a newtype.

However we must be careful.  Consider

  type role Nt representational

  [G] Nt a ~R Nt b       (1)
  [W] NT alpha ~R Nt b   (2)
  [W] alpha ~ a          (3)

If we focus on (3) first, we'll substitute in (2), and now it's
identical to the given (1), so we succeed.  But if we focus on (2)
first, and decompose it, we'll get (alpha ~R b), which is not soluble.
This is exactly like the question of overlapping Givens for class
constraints: see Note [Instance and Given overlap] in TcInteract.

Conclusion:
  * Decompose [W] N s ~R N t  iff there no given constraint that could
    later solve it.
1273 1274 1275
-}

canDecomposableTyConAppOK :: CtEvidence -> EqRel
1276
                          -> TyCon -> [TcType] -> [TcType]
1277 1278
                          -> TcS ()
-- Precondition: tys1 and tys2 are the same length, hence "OK"
1279
canDecomposableTyConAppOK ev eq_rel tc tys1 tys2
1280
  = case ev of
1281
     CtDerived {}
1282
        -> unifyDeriveds loc tc_roles tys1 tys2
1283

1284 1285 1286
     CtWanted { ctev_dest = dest }
        -> do { cos <- zipWith4M unifyWanted new_locs tc_roles tys1 tys2
              ; setWantedEq dest (mkTyConAppCo role tc cos) }
1287

1288 1289
     CtGiven { ctev_evar = evar }
        -> do { let ev_co = mkCoVarCo evar
1290
              ; given_evs <- newGivenEvVars loc $
1291
                             [ ( mkPrimEqPredRole r ty1 ty2
1292
                               , evCoercion $ mkNthCo r i ev_co )
1293
                             | (r, ty1, ty2, i) <- zip4 tc_roles tys1 tys2 [0..]
1294 1295
                             , r /= Phantom
                             , not (isCoercionTy ty1) && not (isCoercionTy ty2) ]
1296 1297
              ; emitWorkNC given_evs }
  where
1298 1299 1300 1301 1302 1303
    loc        = ctEvLoc ev
    role       = eqRelRole eq_rel
    tc_roles   = tyConRolesX role tc

      -- the following makes a better distinction between "kind" and "type"
      -- in error messages
1304
    bndrs      = tyConBinders tc
1305
    is_kinds   = map isNamedTyConBinder bndrs
1306
    is_viss    = map isVisibleTyConBinder bndrs
1307

1308 1309 1310 1311 1312 1313 1314
    kind_xforms = map (\is_kind -> if is_kind then toKindLoc else id) is_kinds
    vis_xforms  = map (\is_vis  -> if is_vis  then id
                                   else flip updateCtLocOrigin toInvisibleOrigin)
                      is_viss

    -- zipWith3 (.) composes its first two arguments and applies it to the third
    new_locs = zipWith3 (.) kind_xforms vis_xforms (repeat loc)
1315 1316 1317

-- | Call when canonicalizing an equality fails, but if the equality is
-- representational, there is some hope for the future.
1318
-- Examples in Note [Use canEqFailure in canDecomposableTyConApp]
1319 1320
canEqFailure :: CtEvidence -> EqRel
             -> TcType -> TcType -> TcS (StopOrContinue Ct)