Parser.y.pp 53.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
34
import StaticFlags	( opt_SccProfilingOn )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41 42

import FastString
import Maybes		( orElse )
import Outputable
43
import GLAEXTS
44 45 46
}

{-
47 48 49 50 51 52 53 54 55 56 57
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

58
-----------------------------------------------------------------------------
59
Conflicts: 36 shift/reduce (1.25)
60

61
10 for abiguity in 'if x then y else z + 1'		[State 178]
62 63 64
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

65
1 for ambiguity in 'if x then y else z :: T'		[State 178]
66 67
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

68
4 for ambiguity in 'if x then y else z -< e'		[State 178]
ross's avatar
ross committed
69
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
70 71 72 73 74 75 76 77 78 79
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
ross's avatar
ross committed
80

81
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
82 83
	(e::a) `b` c, or 
	(e :: (a `b` c))
84
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
85
    Same duplication between states 11 and 253 as the previous case
86

87
1 for ambiguity in 'let ?x ...'				[State 329]
88 89 90 91
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

92
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
93 94 95 96
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

97
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
116
     -- This doesn't seem to work anymore -=chak
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

179
 'forall'	{ L _ ITforall }		-- GHC extension keywords
180 181 182 183 184 185 186 187
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
188
 'iso'		{ L _ ITiso }
189 190 191 192 193 194
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

195 196 197
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension
 IPSPLITVARID  	{ L _ (ITsplitipvarid _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
 		    
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
285
%name parseType ctype
286
%partial parseHeader header
287
%tokentype { (Located Token) }
288 289
%%

290 291 292 293 294 295 296 297
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

298 299 300 301 302 303 304 305 306 307 308 309 310
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc ->
311
		   return (L loc (HsModule (Just $2) $4 (fst $6) (snd $6) $3)) }
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
				(fst $2) (snd $2) Nothing)) }

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule (Just $2) $4 $6 [] $3)) }
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing)) }

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

351 352 353 354 355 356 357
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

358 359 360 361 362
exportlist  :: { [LIE RdrName] }
	: ','					{ [] }
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
363 364
	:  export				{ [$1] }
	|  export ',' exportlist		{ $1 : $3 }
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	|  {- empty -}				{ [] }

   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
	:  qcnames ',' qcname			{ unLoc $3 : $1 }
	|  qcname				{ [unLoc $1]  }

qcname 	:: { Located RdrName }	-- Variable or data constructor
	:  qvar					{ $1 }
383
	|  qcon					{ $1 }
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
409
maybeas :: { Located (Maybe ModuleName) }
410 411 412 413 414 415 416 417
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
418 419
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

440
topdecls :: { OrdList (LHsDecl RdrName) }
441
	: topdecls ';' topdecl		{ $1 `appOL` $3 }
442
	| topdecls ';'			{ $1 }
443
	| topdecl			{ $1 }
444

445
topdecl :: { OrdList (LHsDecl RdrName) }
446
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
447 448
  	| ty_decl			{% checkTopTypeD $1 >>=
					   return.unitOL.L1 }
449
	| 'instance' inst_type where
450 451 452
		{ let (binds, sigs, ats) = cvBindsAndSigs (unLoc $3)
		  in unitOL (L (comb3 $1 $2 $3) 
			    (InstD (InstDecl $2 binds sigs ats))) }
453 454 455 456
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
457 458
      	| decl					{ unLoc $1 }

459 460 461 462 463 464
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

465 466 467 468 469 470
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
	: 'class' tycl_hdr fds where
		{% do { let { (binds, sigs, ats)           = 
			        cvBindsAndSigs (unLoc $4)
471
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
472
                      ; checkTyVars tparms False  -- only type vars allowed
473
		      ; checkKindSigs ats
474 475 476 477 478 479 480
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
					        (unLoc $3) sigs binds ats) } }

-- Type declarations
--
ty_decl :: { LTyClDecl RdrName }
481 482
        -- type function signature and equations (w/ type synonyms as special
        -- case); we need to handle all this in one rule to avoid a large
483
        -- number of shift/reduce conflicts
484 485 486 487 488
        : 'type' opt_iso type kind_or_ctype
	        --
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared and type
		-- patterns for type function equations
489
		-- 
490 491 492 493 494 495 496 497 498 499 500 501
		-- We have that `typats :: Maybe [LHsType name]' is `Nothing'
		-- (in the second case alternative) when all arguments are
		-- variables (and we thus have a vanilla type synonym
		-- declaration); otherwise, it contains all arguments as type
		-- patterns.
		--
 		{% case $4 of 
		     Left kind -> 
		       do { (tc, tvs, _) <- checkSynHdr $3 False
		          ; return (L (comb3 $1 $3 kind) 
				      (TyFunction tc tvs $2 (unLoc kind)))
		          } 
502
		     Right ty | not $2 -> 
503 504 505
		       do { (tc, tvs, typats) <- checkSynHdr $3 True
		          ; return (L (comb2 $1 ty) 
				      (TySynonym tc tvs typats ty)) }
506 507 508
		     Right ty | otherwise -> 
		       parseError (comb2 $1 ty) 
		         "iso tag is only allowed in kind signatures"
509 510
                }

511 512 513 514 515 516 517 518 519
        -- kind signature of indexed type
        | data_or_newtype tycl_hdr '::' kind
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                      ; checkTyVars tparms False  -- no type pattern
		      ; return $
			  L (comb3 $1 $2 $4)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			     (Just (unLoc $4)) [] Nothing) } }

520
        -- data type or newtype declaration
521
	| data_or_newtype tycl_hdr constrs deriving
522
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
523
                      ; tpats <- checkTyVars tparms True  -- can have type pats
524 525 526 527 528 529
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, tpats) 
			     Nothing (reverse (unLoc $3)) (unLoc $4)) } }
530

531
        -- GADT declaration
532
        | data_or_newtype tycl_hdr opt_kind_sig 
533
		 'where' gadt_constrlist
534
		 deriving
535 536 537 538 539 540
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                      ; tpats <- checkTyVars tparms True -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $4 $5)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, tpats) $3
			     (reverse (unLoc $5)) (unLoc $6)) } }
541 542 543 544 545

opt_iso :: { Bool }
	:       { False }
	| 'iso'	{ True  }

546 547 548
kind_or_ctype :: { Either (Located Kind) (LHsType RdrName) }
        : '::' kind     { Left  (LL (unLoc $2)) }
	| '=' ctype	{ Right (LL (unLoc $2)) }
549 550 551 552
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
553

554 555 556 557
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

558 559
opt_kind_sig :: { Maybe Kind }
	: 				{ Nothing }
560
	| '::' kind			{ Just (unLoc $2) }
561

562
-- tycl_hdr parses the header of a class or data type decl,
563 564 565 566
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
567
--      T Int [a]			-- for associated types
568
-- Rather a lot of inlining here, else we get reduce/reduce errors
569 570 571
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
572
		       [LHsType RdrName]) }
573
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
574 575 576 577 578
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

-----------------------------------------------------------------------------
-- Nested declarations

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
-- Type declaration or value declaration
--
tydecl  :: { Located (OrdList (LHsDecl RdrName)) }
tydecl  : ty_decl		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	| decl                          { $1 }

tydecls	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: tydecls ';' tydecl		{ LL (unLoc $1 `appOL` unLoc $3) }
	| tydecls ';'			{ LL (unLoc $1) }
	| tydecl			{ $1 }
	| {- empty -}			{ noLoc nilOL }


tydecllist 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'            tydecls '}'	{ LL (unLoc $2) }
	|     vocurly    tydecls close	{ $2 }

-- Form of the body of class and instance declarations
--
where 	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' tydecllist		{ LL (unLoc $2) }
	| {- empty -}			{ noLoc nilOL }

605
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
606
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
607
	| decls ';'			{ LL (unLoc $1) }
608
	| decl				{ $1 }
609
	| {- empty -}			{ noLoc nilOL }
610 611


612
decllist :: { Located (OrdList (LHsDecl RdrName)) }
613 614 615
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

616 617
-- Binding groups other than those of class and instance declarations
--
618
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
619
						-- No type declarations
620 621 622
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
623

624
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
625
						-- No type declarations
626
	: 'where' binds			{ LL (unLoc $2) }
627
	| {- empty -}			{ noLoc emptyLocalBinds }
628 629 630 631 632


-----------------------------------------------------------------------------
-- Transformation Rules

633
rules	:: { OrdList (LHsDecl RdrName) }
634
	:  rules ';' rule			{ $1 `snocOL` $3 }
635
        |  rules ';'				{ $1 }
636 637
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
638

639
rule  	:: { LHsDecl RdrName }
640
	: STRING activation rule_forall infixexp '=' exp
641 642
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
643
				  $3 $4 placeHolderNames $6 placeHolderNames) }
644

645 646 647
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

668
deprecations :: { OrdList (LHsDecl RdrName) }
669
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
670
	| deprecations ';' 			{ $1 }
671 672
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
673 674

-- SUP: TEMPORARY HACK, not checking for `module Foo'
675
deprecation :: { OrdList (LHsDecl RdrName) }
676
	: depreclist STRING
677 678
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
679 680 681 682 683 684


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
685
fdecl : 'import' callconv safety fspec
686
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
687
      | 'import' callconv        fspec		
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
       : STRING var '::' sigtype      { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtype      { LL (noLoc nilFS, $1, $3) }
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

721
sigtypes1 :: { [LHsType RdrName] }
722
	: sigtype			{ [ $1 ] }
723
	| sigtype ',' sigtypes1		{ $1 : $3 }
724 725 726 727 728 729 730 731 732 733 734 735

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

736 737 738 739
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
context :: { LHsContext RdrName }
	: btype 			{% checkContext $1 }

type :: { LHsType RdrName }
755
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
756 757 758 759 760
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
761
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
762
 	| btype '->' ctype		{ LL $ HsFunTy $1 $3 }
763 764 765 766 767 768 769

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
770
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
771
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
772
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
773
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
774 775
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
776
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
777
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
778 779 780 781 782 783 784 785
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
786
	: sigtype			{% checkInstType $1 }
787

788 789 790 791
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

792 793 794 795 796
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
797 798
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
799 800 801 802 803 804 805

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
806 807
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

828
kind	:: { Located Kind }
829
	: akind			{ $1 }
830
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
831

832 833 834 835
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
836 837 838 839 840


-----------------------------------------------------------------------------
-- Datatype declarations

841 842 843 844 845 846
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
847
        | gadt_constrs ';' 		{ $1 }
848 849
        | gadt_constr                   { L1 [$1] } 

850 851 852 853 854 855
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

856
gadt_constr :: { LConDecl RdrName }
857
        : con '::' sigtype
858 859 860
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
861
        -- XXX revisit audreyt
862 863 864 865 866 867 868 869 870 871 872 873
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3)) }
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6)) }
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4)) }
-}

874 875 876 877 878 879 880 881 882 883 884 885

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
        | '=' constrs1                  { LL (unLoc $2) }

constrs1 :: { Located [LConDecl RdrName] }
	: constrs1 '|' constr		{ LL ($3 : unLoc $1) }
	| constr			{ L1 [$1] }

constr :: { LConDecl RdrName }
	: forall context '=>' constr_stuff	
		{ let (con,details) = unLoc $4 in 
886
		  LL (ConDecl con Explicit (unLoc $1) $2 details ResTyH98) }
887 888
	| forall constr_stuff
		{ let (con,details) = unLoc $2 in 
889
		  LL (ConDecl con Explicit (unLoc $1) (noLoc []) details ResTyH98) }
890 891 892 893 894 895

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
896 897 898 899 900 901 902
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
903 904 905
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
906
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
907

908 909 910 911
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

912 913 914 915 916
fielddecls :: { [([Located RdrName], LBangType RdrName)] }
	: fielddecl ',' fielddecls	{ unLoc $1 : $3 }
	| fielddecl			{ [unLoc $1] }

fielddecl :: { Located ([Located RdrName], LBangType RdrName) }
917
	: sig_vars '::' ctype		{ LL (reverse (unLoc $1), $3) }
918

919 920 921 922
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
923 924
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
925 926 927
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
928 929
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

956
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
957
	: sigdecl			{ $1 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
958 959 960 961
	| '!' infixexp rhs		{% do { pat <- checkPattern $2;
					        return (LL $ unitOL $ LL $ ValD $ 
							PatBind (LL $ BangPat pat) (unLoc $3)
								placeHolderType placeHolderNames) } }
962
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
963
						return (LL $ unitOL (LL $ ValD r)) } }
964 965

rhs	:: { Located (GRHSs RdrName) }
966 967
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
968 969 970 971 972 973

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
974
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
975

976
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
977 978
	: infixexp '::' sigtype
				{% do s <- checkValSig $1 $3; 
979
				      return (LL $ unitOL (LL $ SigD s)) }
980 981
		-- See the above notes for why we need infixexp here
	| var ',' sig_vars '::' sigtype	
982
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
983
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
984 985
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
986
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
987
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
988
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec)
989
					    | t <- $4] }
990
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
991
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
992
					    | t <- $5] }
993
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
994
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
995 996 997 998 999 1000

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
ross's avatar
ross committed
1001 1002 1003 1004
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
1005 1006 1007 1008 1009 1010 1011 1012 1013
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
	: '\\' aexp aexps opt_asig '->' exp	
			{% checkPatterns ($2 : reverse $3) >>= \ ps -> 
1014
			   return (LL $ HsLam (mkMatchGroup [LL $ Match ps $4
1015
					    (GRHSs (unguardedRHS $6) emptyLocalBinds
1016
							)])) }
1017 1018
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
1019
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
1020 1021 1022
	| '-' fexp				{ LL $ mkHsNegApp $2 }

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
1023 1024
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
1025
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
1026 1027
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexps 	:: { [LHsExpr RdrName] }
	: aexps aexp				{ $2 : $1 }
  	| {- empty -}				{ [] }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1057
--	| '!' aexp			{ LL $ EBangPat $2 }
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) 
							(reverse $3);
				        return (LL r) }}
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
 	| qcname '{|' gentype '|}'      { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
						     (sL (getLoc $3) (HsType $3)) }

aexp2	:: { LHsExpr RdrName }
	: ipvar				{ L1 (HsIPVar $! unLoc $1) }
	| qcname			{ L1 (HsVar   $! unLoc $1) }
	| literal			{ L1 (HsLit   $! unLoc $1) }
	| INTEGER			{ L1 (HsOverLit $! mkHsIntegral (getINTEGER $1)) }
	| RATIONAL			{ L1 (HsOverLit $! mkHsFractional (getRATIONAL $1)) }
	| '(' exp ')'			{ LL (HsPar $2) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1081
	| '(' texp ',' texps ')'	{ LL $ ExplicitTuple ($2 : reverse $4) Boxed }
1082 1083 1084 1085 1086 1087 1088
	| '(#' texps '#)'		{ LL $ ExplicitTuple (reverse $2)      Unboxed }
	| '[' list ']'                  { LL (unLoc $2) }
	| '[:' parr ':]'                { LL (unLoc $2) }
	| '(' infixexp qop ')'		{ LL $ SectionL $2 $3 }
	| '(' qopm infixexp ')'		{ LL $ SectionR $2 $3 }
	| '_'				{ L1 EWildPat }
	
1089
	-- Template Haskell Extension
1090
	| TH_ID_SPLICE          { L1 $ HsSpliceE (mkHsSplice 
1091
					(L1 $ HsVar (mkUnqual varName 
1092 1093 1094
							(getTH_ID_SPLICE $1)))) } -- $x
	| '$(' exp ')'   	{ LL $ HsSpliceE (mkHsSplice $2) }               -- $( exp )

1095
	| TH_VAR_QUOTE qvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1096
	| TH_VAR_QUOTE qcon 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	| TH_TY_QUOTE tyvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
 	| TH_TY_QUOTE gtycon	{ LL $ HsBracket (VarBr (unLoc $2)) }
	| '[|' exp '|]'         { LL $ HsBracket (ExpBr $2) }                       
	| '[t|' ctype '|]'      { LL $ HsBracket (TypBr $2) }                       
	| '[p|' infixexp '|]'   {% checkPattern $2 >>= \p ->
					   return (LL $ HsBracket (PatBr p)) }
	| '[d|' cvtopbody '|]'	{ LL $ HsBracket (DecBr (mkGroup $2)) }

	-- arrow notation extension
	| '(|' aexp2 cmdargs '|)'	{ LL $ HsArrForm $2 Nothing (reverse $3) }

cmdargs	:: { [LHsCmdTop RdrName] }
	: cmdargs acmd			{ $2 : $1 }
  	| {- empty -}			{ [] }

acmd	:: { LHsCmdTop RdrName }
	: aexp2			{ L1 $ HsCmdTop $1 [] placeHolderType undefined }

cvtopbody :: { [LHsDecl RdrName] }
1116 1117 1118 1119 1120 1121
	:  '{'            cvtopdecls0 '}'		{ $2 }
	|      vocurly    cvtopdecls0 close		{ $2 }

cvtopdecls0 :: { [LHsDecl RdrName] }
	: {- empty -}		{ [] }
	| cvtopdecls		{ $1 }
1122

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1123 1124 1125 1126 1127 1128
texp :: { LHsExpr RdrName }
	: exp				{ $1 }
	| qopm infixexp			{ LL $ SectionR $1 $2 }
	-- The second production is really here only for bang patterns
	-- but 

1129
texps :: { [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1130 1131
	: texps ',' texp		{ $3 : $1 }
	| texp				{ [$1] }
1132 1133 1134 1135 1136 1137 1138 1139 1140


-----------------------------------------------------------------------------
-- List expressions

-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.

list :: { LHsExpr RdrName }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1141
	: texp			{ L1 $ ExplicitList placeHolderType [$1] }
1142
	| lexps 		{ L1 $ ExplicitList placeHolderType (reverse (unLoc $1)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1143 1144 1145 1146 1147
	| texp '..'		{ LL $ ArithSeq noPostTcExpr (From $1) }
	| texp ',' exp '..' 	{ LL $ ArithSeq noPostTcExpr (FromThen $1 $3) }
	| texp '..' exp	 	{ LL $ ArithSeq noPostTcExpr (FromTo $1 $3) }
	| texp ',' exp '..' exp	{ LL $ ArithSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| texp pquals		{ sL (comb2 $1 $>) $ mkHsDo ListComp (reverse (unLoc $2)) $1 }
1148 1149

lexps :: { Located [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1150 1151
	: lexps ',' texp 		{ LL ($3 : unLoc $1) }
	| texp ',' texp			{ LL [$3,$1] }
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

-----------------------------------------------------------------------------
-- List Comprehensions

pquals :: { Located [LStmt RdrName] }	-- Either a singleton ParStmt, 
					-- or a reversed list of Stmts
	: pquals1			{ case unLoc $1 of
					    [qs] -> L1 qs
					    qss  -> L1 [L1 (ParStmt stmtss)]
						 where
						    stmtss = [ (reverse qs, undefined) 
						    	     | qs <- qss ]
					}
			
pquals1 :: { Located [[LStmt RdrName]] }
	: pquals1 '|' quals		{ LL (unLoc $3 : unLoc $1) }
	| '|' quals			{ L (getLoc $2) [unLoc $2] }

quals :: { Located [LStmt RdrName] }
	: quals ',' qual		{ LL ($3 : unLoc $1) }
	| qual				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Parallel array expressions

-- The rules below are little bit contorted; see the list case for details.
-- Note that, in contrast to lists, we only have finite arithmetic sequences.
-- Moreover, we allow explicit arrays with no element (represented by the nil
-- constructor in the list case).

parr :: { LHsExpr RdrName }
	: 				{ noLoc (ExplicitPArr placeHolderType []) }
	| exp				{ L1 $ ExplicitPArr placeHolderType [$1] }
	| lexps 			{ L1 $ ExplicitPArr placeHolderType 
						       (reverse (unLoc $1)) }
1187 1188 1189
	| exp '..' exp	 		{ LL $ PArrSeq noPostTcExpr (FromTo $1 $3) }
	| exp ',' exp '..' exp		{ LL $ PArrSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| exp pquals			{ sL (comb2 $1 $>) $ mkHsDo PArrComp (reverse (unLoc $2)) $1 }
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

-- We are reusing `lexps' and `pquals' from the list case.

-----------------------------------------------------------------------------
-- Case alternatives

altslist :: { Located [LMatch RdrName] }
	: '{'            alts '}'	{ LL (reverse (unLoc $2)) }
	|     vocurly    alts  close	{ L (getLoc $2) (reverse (unLoc $2)) }

alts    :: { Located [LMatch RdrName] }
        : alts1				{ L1 (unLoc $1) }
	| ';' alts			{ LL (unLoc $2) }

alts1 	:: { Located [LMatch RdrName] }
	: alts1 ';' alt			{ LL ($3 : unLoc $1) }
	| alts1 ';'			{ LL (unLoc $1) }
	| alt				{ L1 [$1] }

alt 	:: { LMatch RdrName }
	: infixexp opt_sig alt_rhs	{%  checkPattern $1 >>= \p ->
			    		    return (LL (Match [p] $2 (unLoc $3))) }
1212 1213
	| '!' infixexp opt_sig alt_rhs	{%  checkPattern $2 >>= \p ->
			    		    return (LL (Match [LL $ BangPat p] $3 (unLoc $4))) }
1214 1215

alt_rhs :: { Located (GRHSs RdrName) }
1216
	: ralt wherebinds		{ LL (GRHSs (unLoc $1) (unLoc $2)) }
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

ralt :: { Located [LGRHS RdrName] }
	: '->' exp			{ LL (unguardedRHS $2) }
	| gdpats			{ L1 (reverse (unLoc $1)) }

gdpats :: { Located [LGRHS RdrName] }
	: gdpats gdpat			{ LL ($2 : unLoc $1) }
	| gdpat				{ L1 [$1] }

gdpat	:: { LGRHS RdrName }
1227
	: '|' quals '->' exp	 	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1228 1229 1230 1231 1232 1233 1234 1235 1236

-----------------------------------------------------------------------------
-- Statement sequences

stmtlist :: { Located [LStmt RdrName] }
	: '{'         	stmts '}'	{ LL (unLoc $2) }
	|     vocurly   stmts close	{ $2 }

--	do { ;; s ; s ; ; s ;; }
1237
-- The last Stmt should be an expression, but that's hard to enforce
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
-- here, because we need too much lookahead if we see do { e ; }
-- So we use ExprStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead
stmts :: { Located [LStmt RdrName] }
	: stmt stmts_help		{ LL ($1 : unLoc $2) }
	| ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

stmts_help :: { Located [LStmt RdrName] } -- might be empty
	: ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

-- For typing stmts at the GHCi prompt, where 
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt RdrName) }
	: stmt				{ Just $1 }
	| {- nothing -}			{ Nothing }

stmt  :: { LStmt RdrName }
	: qual				{ $1 }
	| infixexp '->' exp		{% checkPattern $3 >>= \p ->
1259 1260
					   return (LL $ mkBindStmt p $1) }
  	| 'rec' stmtlist		{ LL $ mkRecStmt (unLoc $2) }
1261 1262

qual  :: { LStmt RdrName }
1263
	: exp '<-' exp			{% checkPattern $1 >>= \p ->
1264 1265
					   return (LL $ mkBindStmt p $3) }
	| exp				{ L1 $ mkExprStmt $1 }
1266 1267 1268 1269 1270 1271 1272