CgMonad.lhs 25.4 KB
Newer Older
1
%
2 3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
4
% $Id: CgMonad.lhs,v 1.40 2004/08/13 13:06:03 simonmar Exp $
5 6 7 8 9 10 11 12
%
\section[CgMonad]{The code generation monad}

See the beginning of the top-level @CodeGen@ module, to see how this
monadic stuff fits into the Big Picture.

\begin{code}
module CgMonad (
13 14
	Code,	-- type
	FCode,	-- type
15 16

	initC, thenC, thenFC, listCs, listFCs, mapCs, mapFCs,
17 18 19
	returnFC, fixC, checkedAbsC, 
	stmtC, stmtsC, labelC, emitStmts, nopC, whenC, newLabelC,
	newUnique, newUniqSupply, 
20

21 22 23 24 25 26 27 28
	CgStmts, emitCgStmts, forkCgStmts, cgStmtsToBlocks,
	getCgStmts', getCgStmts,
	noCgStmts, oneCgStmt, consCgStmt,

	getCmm,
	emitData, emitProc, emitSimpleProc,

	forkLabelledCode,
29
	forkClosureBody, forkStatics, forkAlts, forkEval,
30 31
	forkEvalHelp, forkProc, codeOnly,
	SemiTaggingStuff, ConTagZ,
32 33 34 35

	EndOfBlockInfo(..),
	setEndOfBlockInfo, getEndOfBlockInfo,

36
	setSRTLabel, getSRTLabel, 
37
	setTickyCtrLabel, getTickyCtrLabel,
38

39 40 41 42 43
	StackUsage(..), HeapUsage(..),
	VirtualSpOffset, VirtualHpOffset,
	initStkUsage, initHpUsage,
	getHpUsage,  setHpUsage,
	heapHWM,
44

45
	moduleName,
46 47 48

	Sequel(..), -- ToDo: unabstract?

rje's avatar
rje committed
49 50 51 52
	-- ideally we wouldn't export these, but some other modules access internal state
	getState, setState, getInfoDown,

	-- more localised access to monad state	
53
	getStkUsage, setStkUsage,
rje's avatar
rje committed
54 55
	getBinds, setBinds, getStaticBinds,

56
	-- out of general friendliness, we also export ...
57
	CgInfoDownwards(..), CgState(..)	-- non-abstract
58 59
    ) where

60
#include "HsVersions.h"
sof's avatar
sof committed
61

62
import {-# SOURCE #-} CgBindery ( CgBindings, nukeVolatileBinds )
63

64 65
import Cmm
import CmmUtils		( CmmStmts, isNopStmt )
66
import CLabel
67
import SMRep		( WordOff )
sof's avatar
sof committed
68
import Module		( Module )
69 70
import Id		( Id )
import VarEnv
71 72 73 74
import OrdList
import Unique		( Unique )
import Util		( mapAccumL )
import UniqSupply	( UniqSupply, mkSplitUniqSupply, splitUniqSupply, uniqFromSupply )
75
import FastString
76
import Outputable
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

infixr 9 `thenC`	-- Right-associative!
infixr 9 `thenFC`
\end{code}

%************************************************************************
%*									*
\subsection[CgMonad-environment]{Stuff for manipulating environments}
%*									*
%************************************************************************

This monadery has some information that it only passes {\em
downwards}, as well as some ``state'' which is modified as we go
along.

\begin{code}
data CgInfoDownwards	-- information only passed *downwards* by the monad
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  = MkCgInfoDown {
	cgd_mod     :: Module,		-- Module being compiled
	cgd_statics :: CgBindings,	-- [Id -> info] : static environment
	cgd_srt     :: CLabel,		-- label of the current SRT
	cgd_ticky   :: CLabel,		-- current destination for ticky counts
	cgd_eob     :: EndOfBlockInfo	-- Info for stuff to do at end of basic block:
  }

initCgInfoDown :: Module -> CgInfoDownwards
initCgInfoDown mod
  = MkCgInfoDown {	cgd_mod    = mod,
			cgd_statics = emptyVarEnv,
			cgd_srt     = error "initC: srt",
			cgd_ticky   = mkTopTickyCtrLabel,
			cgd_eob     = initEobInfo }
109

110
data CgState
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  = MkCgState {
     cgs_stmts :: OrdList CgStmt,	  -- Current proc
     cgs_tops  :: OrdList CmmTop,
	-- Other procedures and data blocks in this compilation unit
	-- Both the latter two are ordered only so that we can 
	-- reduce forward references, when it's easy to do so
     
     cgs_binds :: CgBindings,	-- [Id -> info] : *local* bindings environment
     				-- Bindings for top-level things are given in
				-- the info-down part
     
     cgs_stk_usg :: StackUsage,
     cgs_hp_usg  :: HeapUsage,
     
     cgs_uniqs :: UniqSupply }

initCgState :: UniqSupply -> CgState
initCgState uniqs
  = MkCgState { cgs_stmts = nilOL, cgs_tops = nilOL,
		cgs_binds = emptyVarEnv, 
		cgs_stk_usg = initStkUsage, 
		cgs_hp_usg = initHpUsage,
		cgs_uniqs = uniqs }
134 135
\end{code}

136 137 138
@EndOfBlockInfo@ tells what to do at the end of this block of code or,
if the expression is a @case@, what to do at the end of each
alternative.
139 140 141 142

\begin{code}
data EndOfBlockInfo
  = EndOfBlockInfo
143
	VirtualSpOffset   -- Args Sp: trim the stack to this point at a
144 145 146
			  -- return; push arguments starting just
			  -- above this point on a tail call.
			  
147
			  -- This is therefore the stk ptr as seen
148
			  -- by a case alternative.
149 150
	Sequel

151
initEobInfo = EndOfBlockInfo 0 OnStack
152 153 154 155 156 157 158 159
\end{code}

Any addressing modes inside @Sequel@ must be ``robust,'' in the sense
that it must survive stack pointer adjustments at the end of the
block.

\begin{code}
data Sequel
160 161
  = OnStack 		-- Continuation is on the stack
  | UpdateCode		-- Continuation is update
162

163
  | CaseAlts
164 165
	  CLabel     -- Jump to this; if the continuation is for a vectored
		     -- case this might be the label of a return vector
166
	  SemiTaggingStuff
167
	  Id	      -- The case binder, only used to see if it's dead
168 169
	  Bool	      -- True <=> polymorphic, push a SEQ frame too

170
type SemiTaggingStuff
171 172 173 174 175 176 177
  = Maybe			-- Maybe[1] we don't have any semi-tagging stuff...
     ([(ConTagZ, CLabel)],	-- Alternatives
      CLabel)			-- Default (will be a can't happen RTS label if can't happen)

type ConTagZ = Int	-- A *zero-indexed* contructor tag

-- The case branch is executed only from a successful semitagging
178 179 180
-- venture, when a case has looked at a variable, found that it's
-- evaluated, and wants to load up the contents and go to the join
-- point.
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
\end{code}

%************************************************************************
%*									*
		CgStmt type
%*									*
%************************************************************************

The CgStmts type is what the code generator outputs: it is a tree of
statements, including in-line labels.  The job of flattenCgStmts is to
turn this into a list of basic blocks, each of which ends in a jump
statement (either a local branch or a non-local jump).

\begin{code}
type CgStmts = OrdList CgStmt

data CgStmt
  = CgStmt  CmmStmt
  | CgLabel BlockId
  | CgFork  BlockId CgStmts

flattenCgStmts :: BlockId -> CgStmts -> [CmmBasicBlock]
flattenCgStmts id stmts = 
	case flatten (fromOL stmts) of
	  ([],blocks)    -> blocks
	  (block,blocks) -> BasicBlock id block : blocks
 where
  flatten [] = ([],[])

  -- A label at the end of a function or fork: this label must not be reachable,
  -- but it might be referred to from another BB that also isn't reachable.
  -- Eliminating these has to be done with a dead-code analysis.  For now,
  -- we just make it into a well-formed block by adding a recursive jump.
  flatten [CgLabel id]
    = ( [], [BasicBlock id [CmmBranch id]] )

  -- A jump/branch: throw away all the code up to the next label, because
  -- it is unreachable.  Be careful to keep forks that we find on the way.
  flatten (CgStmt stmt : stmts)
    | isJump stmt
    = case dropWhile isOrdinaryStmt stmts of
	[]                     -> ( [stmt], [] )
	[CgLabel id]	       -> ( [stmt], [BasicBlock id [CmmBranch id]])
	(CgLabel id : stmts)   -> ( [stmt], BasicBlock id block : blocks )
	    where (block,blocks) = flatten stmts
	(CgFork fork_id stmts : ss) -> 
	   flatten (CgFork fork_id stmts : CgStmt stmt : ss)

  flatten (s:ss) = 
	case s of
	  CgStmt stmt -> (stmt:block,blocks)
	  CgLabel id  -> ([CmmBranch id],BasicBlock id block:blocks)
	  CgFork fork_id stmts -> 
		(block, BasicBlock fork_id fork_block : fork_blocks ++ blocks)
		where (fork_block, fork_blocks) = flatten (fromOL stmts)
    where (block,blocks) = flatten ss

isJump (CmmJump _ _) = True
isJump (CmmBranch _) = True
isJump _ = False

isOrdinaryStmt (CgStmt _) = True
isOrdinaryStmt _ = False
\end{code}

%************************************************************************
%*									*
		Stack and heap models
%*									*
%************************************************************************
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
\begin{code}
type VirtualHpOffset = WordOff	-- Both are in
type VirtualSpOffset = WordOff	-- units of words

data StackUsage 
  = StackUsage {
	virtSp :: VirtualSpOffset,
		-- Virtual offset of topmost allocated slot

	frameSp :: VirtualSpOffset,
		-- Virtual offset of the return address of the enclosing frame.
		-- This RA describes the liveness/pointedness of
		-- all the stack from frameSp downwards
		-- INVARIANT: less than or equal to virtSp

	 freeStk :: [VirtualSpOffset], 
		-- List of free slots, in *increasing* order
		-- INVARIANT: all <= virtSp
		-- All slots <= virtSp are taken except these ones

	 realSp :: VirtualSpOffset,	
		-- Virtual offset of real stack pointer register

	 hwSp :: VirtualSpOffset
  }		   -- Highest value ever taken by virtSp

-- INVARAINT: The environment contains no Stable references to
-- 	      stack slots below (lower offset) frameSp
--	      It can contain volatile references to this area though.

data HeapUsage =
  HeapUsage {
	virtHp :: VirtualHpOffset,	-- Virtual offset of highest-allocated word
	realHp :: VirtualHpOffset	-- realHp: Virtual offset of real heap ptr
  }
287
\end{code}
288

289 290 291 292
The heap high water mark is the larger of virtHp and hwHp.  The latter is
only records the high water marks of forked-off branches, so to find the
heap high water mark you have to take the max of virtHp and hwHp.  Remember,
virtHp never retreats!
293

294
Note Jan 04: ok, so why do we only look at the virtual Hp??
295 296

\begin{code}
297 298 299
heapHWM :: HeapUsage -> VirtualHpOffset
heapHWM = virtHp
\end{code}
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
Initialisation.

\begin{code}
initStkUsage :: StackUsage
initStkUsage = StackUsage {
			virtSp = 0,
			frameSp = 0,
			freeStk = [],
			realSp = 0,
			hwSp = 0
	       }
		
initHpUsage :: HeapUsage 
initHpUsage = HeapUsage {
	      	virtHp = 0,
		realHp = 0
	      }
318 319 320 321 322 323 324
\end{code}

@stateIncUsage@$~e_1~e_2$ incorporates in $e_1$ the stack and heap high water
marks found in $e_2$.

\begin{code}
stateIncUsage :: CgState -> CgState -> CgState
325 326 327 328 329 330 331 332 333 334 335 336
stateIncUsage s1 s2@(MkCgState { cgs_stk_usg = stk_usg, cgs_hp_usg = hp_usg })
     = s1 { cgs_hp_usg  = cgs_hp_usg  s1 `maxHpHw`  virtHp hp_usg,
	    cgs_stk_usg = cgs_stk_usg s1 `maxStkHw` hwSp   stk_usg }
       `addCodeBlocksFrom` s2
		
stateIncUsageEval :: CgState -> CgState -> CgState
stateIncUsageEval s1 s2
     = s1 { cgs_stk_usg = cgs_stk_usg s1 `maxStkHw` hwSp (cgs_stk_usg s2) }
       `addCodeBlocksFrom` s2
	-- We don't max the heap high-watermark because stateIncUsageEval is
	-- used only in forkEval, which in turn is only used for blocks of code
	-- which do their own heap-check.
337

338 339 340 341 342 343 344 345 346 347 348 349
addCodeBlocksFrom :: CgState -> CgState -> CgState
-- Add code blocks from the latter to the former
-- (The cgs_stmts will often be empty, but not always; see codeOnly)
s1 `addCodeBlocksFrom` s2
  = s1 { cgs_stmts = cgs_stmts s1 `appOL` cgs_stmts s2,
	 cgs_tops  = cgs_tops  s1 `appOL` cgs_tops  s2 }

maxHpHw :: HeapUsage -> VirtualHpOffset -> HeapUsage
hp_usg `maxHpHw` hw = hp_usg { virtHp = virtHp hp_usg `max` hw }

maxStkHw :: StackUsage -> VirtualSpOffset -> StackUsage
stk_usg `maxStkHw` hw = stk_usg { hwSp = hwSp stk_usg `max` hw }
350 351 352 353
\end{code}

%************************************************************************
%*									*
354
		The FCode monad
355 356 357 358
%*									*
%************************************************************************

\begin{code}
rje's avatar
rje committed
359
newtype FCode a = FCode (CgInfoDownwards -> CgState -> (a, CgState))
360
type Code       = FCode ()
rje's avatar
rje committed
361 362 363 364

instance Monad FCode where
	(>>=) = thenFC
	return = returnFC
365 366 367 368 369 370 371 372

{-# INLINE thenC #-}
{-# INLINE thenFC #-}
{-# INLINE returnFC #-}
\end{code}
The Abstract~C is not in the environment so as to improve strictness.

\begin{code}
373 374 375 376 377 378 379
initC :: Module -> FCode a -> IO a

initC mod (FCode code)
  = do	{ uniqs <- mkSplitUniqSupply 'c'
	; case code (initCgInfoDown mod) (initCgState uniqs) of
	      (res, _) -> return res
	}
380 381

returnFC :: a -> FCode a
rje's avatar
rje committed
382
returnFC val = FCode (\info_down state -> (val, state))
383 384 385
\end{code}

\begin{code}
rje's avatar
rje committed
386 387 388 389
thenC :: Code -> FCode a -> FCode a
thenC (FCode m) (FCode k) = 
  	FCode (\info_down state -> let (_,new_state) = m info_down state in 
  		k info_down new_state)
390 391

listCs :: [Code] -> Code
rje's avatar
rje committed
392 393 394 395 396
listCs [] = return ()
listCs (fc:fcs) = do
	fc
	listCs fcs
   	
397
mapCs :: (a -> Code) -> [a] -> Code
rje's avatar
rje committed
398
mapCs = mapM_
399 400 401
\end{code}

\begin{code}
rje's avatar
rje committed
402 403 404 405 406 407 408 409 410
thenFC	:: FCode a -> (a -> FCode c) -> FCode c
thenFC (FCode m) k = FCode (
	\info_down state ->
		let 
			(m_result, new_state) = m info_down state
			(FCode kcode) = k m_result
		in 
			kcode info_down new_state
	)
411 412

listFCs :: [FCode a] -> FCode [a]
rje's avatar
rje committed
413
listFCs = sequence
414 415

mapFCs :: (a -> FCode b) -> [a] -> FCode [b]
rje's avatar
rje committed
416
mapFCs = mapM
417 418 419 420 421
\end{code}

And the knot-tying combinator:
\begin{code}
fixC :: (a -> FCode a) -> FCode a
rje's avatar
rje committed
422 423 424 425 426 427 428 429 430 431 432
fixC fcode = FCode (
	\info_down state -> 
		let
			FCode fc = fcode v
			result@(v,_) = fc info_down state
			--	    ^--------^
		in
			result
	)
\end{code}

433 434 435 436 437 438
%************************************************************************
%*									*
	Operators for getting and setting the state and "info_down".

%*									*
%************************************************************************
rje's avatar
rje committed
439 440 441 442 443 444 445 446

\begin{code}
getState :: FCode CgState
getState = FCode $ \info_down state -> (state,state)

setState :: CgState -> FCode ()
setState state = FCode $ \info_down _ -> ((),state)

447 448 449 450
getStkUsage :: FCode StackUsage
getStkUsage = do
	state <- getState
	return $ cgs_stk_usg state
rje's avatar
rje committed
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465
setStkUsage :: StackUsage -> Code
setStkUsage new_stk_usg = do
	state <- getState
	setState $ state {cgs_stk_usg = new_stk_usg}

getHpUsage :: FCode HeapUsage
getHpUsage = do
	state <- getState
	return $ cgs_hp_usg state
	
setHpUsage :: HeapUsage -> Code
setHpUsage new_hp_usg = do
	state <- getState
	setState $ state {cgs_hp_usg = new_hp_usg}
rje's avatar
rje committed
466 467 468

getBinds :: FCode CgBindings
getBinds = do
469 470
	state <- getState
	return $ cgs_binds state
rje's avatar
rje committed
471 472
	
setBinds :: CgBindings -> FCode ()
473 474 475
setBinds new_binds = do
	state <- getState
	setState $ state {cgs_binds = new_binds}
rje's avatar
rje committed
476 477 478

getStaticBinds :: FCode CgBindings
getStaticBinds = do
479 480
	info  <- getInfoDown
	return (cgd_statics info)
rje's avatar
rje committed
481 482 483 484 485

withState :: FCode a -> CgState -> FCode (a,CgState)
withState (FCode fcode) newstate = FCode $ \info_down state -> 
	let (retval, state2) = fcode info_down newstate in ((retval,state2), state)

486 487 488 489 490 491 492 493 494 495 496 497 498
newUniqSupply :: FCode UniqSupply
newUniqSupply = do
	state <- getState
	let (us1, us2) = splitUniqSupply (cgs_uniqs state)
	setState $ state { cgs_uniqs = us1 }
	return us2

newUnique :: FCode Unique
newUnique = do
	us <- newUniqSupply
	return (uniqFromSupply us)

------------------
rje's avatar
rje committed
499 500 501 502 503 504 505 506
getInfoDown :: FCode CgInfoDownwards
getInfoDown = FCode $ \info_down state -> (info_down,state)

withInfoDown :: FCode a -> CgInfoDownwards -> FCode a
withInfoDown (FCode fcode) info_down = FCode $ \_ state -> fcode info_down state 

doFCode :: FCode a -> CgInfoDownwards -> CgState -> (a,CgState)
doFCode (FCode fcode) info_down state = fcode info_down state
507 508
\end{code}

rje's avatar
rje committed
509

510 511 512 513 514 515
%************************************************************************
%*									*
		Forking
%*									*
%************************************************************************

516 517 518 519 520 521
@forkClosureBody@ takes a code, $c$, and compiles it in a completely
fresh environment, except that:
	- compilation info and statics are passed in unchanged.
The current environment is passed on completely unaltered, except that
abstract C from the fork is incorporated.

522 523 524 525
@forkProc@ takes a code and compiles it in the current environment,
returning the basic blocks thus constructed.  The current environment
is passed on completely unchanged.  It is pretty similar to
@getBlocks@, except that the latter does affect the environment.
526 527 528 529 530 531 532 533

@forkStatics@ $fc$ compiles $fc$ in an environment whose statics come
from the current bindings, but which is otherwise freshly initialised.
The Abstract~C returned is attached to the current state, but the
bindings and usage information is otherwise unchanged.

\begin{code}
forkClosureBody :: Code -> Code
534 535 536 537 538 539 540 541 542
forkClosureBody body_code
  = do	{ info <- getInfoDown
	; us   <- newUniqSupply
	; state <- getState
   	; let	body_info_down = info { cgd_eob = initEobInfo }
		((),fork_state)	= doFCode body_code body_info_down 
					  (initCgState us)
	; ASSERT( isNilOL (cgs_stmts fork_state) )
	  setState $ state `addCodeBlocksFrom` fork_state }
rje's avatar
rje committed
543
	
544
forkStatics :: FCode a -> FCode a
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
forkStatics body_code
  = do	{ info  <- getInfoDown
	; us    <- newUniqSupply
	; state <- getState
	; let	rhs_info_down = info { cgd_statics = cgs_binds state,
				       cgd_eob     = initEobInfo }
		(result, fork_state_out) = doFCode body_code rhs_info_down 
						   (initCgState us)
	; ASSERT( isNilOL (cgs_stmts fork_state_out) )
	  setState (state `addCodeBlocksFrom` fork_state_out)
	; return result }

forkProc :: Code -> FCode CgStmts
forkProc body_code
  = do	{ info_down <- getInfoDown
	; us    <- newUniqSupply
	; state <- getState
	; let	fork_state_in = (initCgState us) 
					{ cgs_binds   = cgs_binds state,
					  cgs_stk_usg = cgs_stk_usg state,
					  cgs_hp_usg  = cgs_hp_usg state }
			-- ToDo: is the hp usage necesary?
		(code_blks, fork_state_out) = doFCode (getCgStmts body_code) 
						      info_down fork_state_in
	; setState $ state `stateIncUsageEval` fork_state_out
	; return code_blks }

codeOnly :: Code -> Code
-- Emit any code from the inner thing into the outer thing
-- Do not affect anything else in the outer state
-- Used in almost-circular code to prevent false loop dependencies
codeOnly body_code
  = do	{ info_down <- getInfoDown
	; us   <- newUniqSupply
	; state <- getState
	; let	fork_state_in = (initCgState us) { cgs_binds   = cgs_binds state,
					           cgs_stk_usg = cgs_stk_usg state,
					           cgs_hp_usg  = cgs_hp_usg state }
		((), fork_state_out) = doFCode body_code info_down fork_state_in
	; setState $ state `addCodeBlocksFrom` fork_state_out }
585 586 587 588 589 590 591 592 593 594
\end{code}

@forkAlts@ $bs~d$ takes fcodes $bs$ for the branches of a @case@, and
an fcode for the default case $d$, and compiles each in the current
environment.  The current environment is passed on unmodified, except
that
	- the worst stack high-water mark is incorporated
	- the virtual Hp is moved on to the worst virtual Hp for the branches

\begin{code}
595 596 597
forkAlts :: [FCode a] -> FCode [a]

forkAlts branch_fcodes
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
  = do	{ info_down <- getInfoDown
	; us <- newUniqSupply
	; state <- getState
	; let compile us branch 
		= (us2, doFCode branch info_down branch_state)
		where
		  (us1,us2) = splitUniqSupply us
	          branch_state = (initCgState us1) {
					cgs_binds   = cgs_binds state,
					cgs_stk_usg = cgs_stk_usg state,
					cgs_hp_usg  = cgs_hp_usg state }

	      (_us, results) = mapAccumL compile us branch_fcodes
	      (branch_results, branch_out_states) = unzip results
	; setState $ foldl stateIncUsage state branch_out_states
		-- NB foldl.  state is the *left* argument to stateIncUsage
	; return branch_results }
615 616 617
\end{code}

@forkEval@ takes two blocks of code.
618 619 620 621 622 623 624 625 626

   -  The first meddles with the environment to set it up as expected by
      the alternatives of a @case@ which does an eval (or gc-possible primop).
   -  The second block is the code for the alternatives.
      (plus info for semi-tagging purposes)

@forkEval@ picks up the virtual stack pointer and returns a suitable
@EndOfBlockInfo@ for the caller to use, together with whatever value
is returned by the second block.
627 628 629 630 631 632 633 634 635 636 637

It uses @initEnvForAlternatives@ to initialise the environment, and
@stateIncUsageAlt@ to incorporate usage; the latter ignores the heap
usage.

\begin{code}
forkEval :: EndOfBlockInfo              -- For the body
    	 -> Code			-- Code to set environment
	 -> FCode Sequel		-- Semi-tagging info to store
	 -> FCode EndOfBlockInfo	-- The new end of block info

638
forkEval body_eob_info env_code body_code
639 640
  = do  { (v, sequel) <- forkEvalHelp body_eob_info env_code body_code
 	; returnFC (EndOfBlockInfo v sequel) }
641

642
forkEvalHelp :: EndOfBlockInfo  -- For the body
643 644
    	     -> Code		-- Code to set environment
	     -> FCode a		-- The code to do after the eval
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	     -> FCode (VirtualSpOffset,	-- Sp
		       a)		-- Result of the FCode
	-- A disturbingly complicated function
forkEvalHelp body_eob_info env_code body_code
  = do	{ info_down@(MkCgInfoDown cg_info statics srt ticky _) <- getInfoDown
	; us   <- newUniqSupply
	; state <- getState
	; let { info_down_for_body = info_down {cgd_eob = body_eob_info}
	      ; (_, env_state) = doFCode env_code info_down_for_body 
					 (state {cgs_uniqs = us})
	      ; state_for_body = (initCgState (cgs_uniqs env_state)) 
					{ cgs_binds   = binds_for_body,
	      				  cgs_stk_usg = stk_usg_for_body }
	      ; binds_for_body   = nukeVolatileBinds (cgs_binds env_state)
	      ; stk_usg_from_env = cgs_stk_usg env_state
	      ; virtSp_from_env  = virtSp stk_usg_from_env
	      ; stk_usg_for_body = stk_usg_from_env {realSp = virtSp_from_env,
	      					     hwSp   = virtSp_from_env}
	      ; (value_returned, state_at_end_return)
	        	= doFCode body_code info_down_for_body state_for_body		
	  } 
	; ASSERT( isNilOL (cgs_stmts state_at_end_return) )
		 -- The code coming back should consist only of nested declarations,
668
		 -- notably of the return vector!
669 670
	  setState $ state `stateIncUsageEval` state_at_end_return
	; return (virtSp_from_env, value_returned) }
671 672


673 674 675
-- ----------------------------------------------------------------------------
-- Combinators for emitting code

676
nopC :: Code
rje's avatar
rje committed
677
nopC = return ()
678

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
whenC :: Bool -> Code -> Code
whenC True  code = code
whenC False code = nopC

stmtC :: CmmStmt -> Code
stmtC stmt = emitCgStmt (CgStmt stmt)

labelC :: BlockId -> Code
labelC id = emitCgStmt (CgLabel id)

newLabelC :: FCode BlockId
newLabelC = do { id <- newUnique; return (BlockId id) }

checkedAbsC :: CmmStmt -> Code
-- Emit code, eliminating no-ops
checkedAbsC stmt = emitStmts (if isNopStmt stmt then nilOL
	 		      else unitOL stmt)

stmtsC :: [CmmStmt] -> Code
stmtsC stmts = emitStmts (toOL stmts)

-- Emit code; no no-op checking
emitStmts :: CmmStmts -> Code
emitStmts stmts = emitCgStmts (fmap CgStmt stmts)

-- forkLabelledCode is for emitting a chunk of code with a label, outside
-- of the current instruction stream.
forkLabelledCode :: Code -> FCode BlockId
forkLabelledCode code = getCgStmts code >>= forkCgStmts

emitCgStmt :: CgStmt -> Code
emitCgStmt stmt
  = do	{ state <- getState
	; setState $ state { cgs_stmts = cgs_stmts state `snocOL` stmt }
	}

emitData :: Section -> [CmmStatic] -> Code
emitData sect lits
  = do 	{ state <- getState
	; setState $ state { cgs_tops = cgs_tops state `snocOL` data_block } }
  where
    data_block = CmmData sect lits

emitProc :: [CmmLit] -> CLabel -> [LocalReg] -> [CmmBasicBlock] -> Code
emitProc lits lbl args blocks
  = do  { let proc_block = CmmProc (map CmmStaticLit lits) lbl args blocks
	; state <- getState
	; setState $ state { cgs_tops = cgs_tops state `snocOL` proc_block } }

emitSimpleProc :: CLabel -> Code -> Code
-- Emit a procedure whose body is the specified code; no info table
emitSimpleProc lbl code
  = do	{ stmts <- getCgStmts code
	; blks <- cgStmtsToBlocks stmts
	; emitProc [] lbl [] blks }

getCmm :: Code -> FCode Cmm
-- Get all the CmmTops (there should be no stmts)
getCmm code 
  = do	{ state1 <- getState
	; ((), state2) <- withState code (state1 { cgs_tops  = nilOL })
	; setState $ state2 { cgs_tops = cgs_tops state1 } 
	; return (Cmm (fromOL (cgs_tops state2))) }

-- ----------------------------------------------------------------------------
-- CgStmts

-- These functions deal in terms of CgStmts, which is an abstract type
-- representing the code in the current proc.


-- emit CgStmts into the current instruction stream
emitCgStmts :: CgStmts -> Code
emitCgStmts stmts
  = do	{ state <- getState
	; setState $ state { cgs_stmts = cgs_stmts state `appOL` stmts } }

-- emit CgStmts outside the current instruction stream, and return a label
forkCgStmts :: CgStmts -> FCode BlockId
forkCgStmts stmts
  = do  { id <- newLabelC
	; emitCgStmt (CgFork id stmts)
	; return id
	}

-- turn CgStmts into [CmmBasicBlock], for making a new proc.
cgStmtsToBlocks :: CgStmts -> FCode [CmmBasicBlock]
cgStmtsToBlocks stmts
  = do  { id <- newLabelC
	; return (flattenCgStmts id stmts)
	}	

-- collect the code emitted by an FCode computation
getCgStmts' :: FCode a -> FCode (a, CgStmts)
getCgStmts' fcode
  = do	{ state1 <- getState
	; (a, state2) <- withState fcode (state1 { cgs_stmts = nilOL })
	; setState $ state2 { cgs_stmts = cgs_stmts state1  }
	; return (a, cgs_stmts state2) }

getCgStmts :: FCode a -> FCode CgStmts
getCgStmts fcode = do { (_,stmts) <- getCgStmts' fcode; return stmts }

-- Simple ways to construct CgStmts:
noCgStmts :: CgStmts
noCgStmts = nilOL

oneCgStmt :: CmmStmt -> CgStmts
oneCgStmt stmt = unitOL (CgStmt stmt)

consCgStmt :: CmmStmt -> CgStmts -> CgStmts
consCgStmt stmt stmts = CgStmt stmt `consOL` stmts

-- ----------------------------------------------------------------------------
-- Get the current module name
794

795
moduleName :: FCode Module
796 797 798 799
moduleName = do { info <- getInfoDown; return (cgd_mod info) }

-- ----------------------------------------------------------------------------
-- Get/set the end-of-block info
800 801

setEndOfBlockInfo :: EndOfBlockInfo -> Code -> Code
rje's avatar
rje committed
802
setEndOfBlockInfo eob_info code	= do
803 804
	info  <- getInfoDown
	withInfoDown code (info {cgd_eob = eob_info})
805 806

getEndOfBlockInfo :: FCode EndOfBlockInfo
rje's avatar
rje committed
807
getEndOfBlockInfo = do
808 809
	info <- getInfoDown
	return (cgd_eob info)
810

811 812
-- ----------------------------------------------------------------------------
-- Get/set the current SRT label
813

814 815 816
-- There is just one SRT for each top level binding; all the nested
-- bindings use sub-sections of this SRT.  The label is passed down to
-- the nested bindings via the monad.
817 818

getSRTLabel :: FCode CLabel	-- Used only by cgPanic
819 820
getSRTLabel = do info  <- getInfoDown
		 return (cgd_srt info)
821

822
setSRTLabel :: CLabel -> FCode a -> FCode a
823
setSRTLabel srt_lbl code
824 825 826 827 828
  = do  info <- getInfoDown
	withInfoDown code (info { cgd_srt = srt_lbl})

-- ----------------------------------------------------------------------------
-- Get/set the current ticky counter label
829 830

getTickyCtrLabel :: FCode CLabel
rje's avatar
rje committed
831
getTickyCtrLabel = do
832 833
	info <- getInfoDown
	return (cgd_ticky info)
834 835

setTickyCtrLabel :: CLabel -> Code -> Code
rje's avatar
rje committed
836
setTickyCtrLabel ticky code = do
837 838
	info <- getInfoDown
	withInfoDown code (info {cgd_ticky = ticky})
839
\end{code}