DsBinds.hs 53.7 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import UniqSupply
39
import Digraph
40

41
import PrelNames
42
import TysPrim ( mkProxyPrimTy )
43
import TyCon
44
import TcEvidence
45
import TcType
46
import Type
47
import Kind( isKind )
batterseapower's avatar
batterseapower committed
48
import Coercion hiding (substCo)
49
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, mkListTy
50 51
                  , mkBoxedTupleTy, charTy
                  , typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
52
import Id
53
import MkId(proxyHashId)
54
import Class
55
import DataCon  ( dataConTyCon )
56
import Name
57
import IdInfo   ( IdDetails(..) )
58
import Var
59
import VarSet
Simon Marlow's avatar
Simon Marlow committed
60
import Rules
61
import VarEnv
62
import Outputable
63
import Module
Simon Marlow's avatar
Simon Marlow committed
64 65
import SrcLoc
import Maybes
66
import OrdList
Simon Marlow's avatar
Simon Marlow committed
67 68
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
69
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
70
import FastString
71
import Util
72
import MonadUtils
73
import Control.Monad(liftM,when,foldM)
74

75
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
76
*                                                                      *
77
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
78
*                                                                      *
79
**********************************************************************-}
80

81 82
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
83
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
84
dsTopLHsBinds binds = fmap (toOL . snd) (ds_lhs_binds binds)
85

86 87 88 89 90 91
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding gorup body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds Id
           -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds = do { (force_vars, binds') <- ds_lhs_binds binds
                      ; return (force_vars, binds') }
92 93

------------------------
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
ds_lhs_binds :: LHsBinds Id -> DsM ([Id], [(Id,CoreExpr)])

ds_lhs_binds binds
  = do { ds_bs <- mapBagM dsLHsBind binds
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

dsLHsBind :: LHsBind Id
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
         -> HsBind Id
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
120 121
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
122
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
123
                   | otherwise         = var
124 125 126 127 128 129 130 131
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
              force_var = if xopt Opt_Strict dflags
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
132
                  , fun_co_fn = co_fn, fun_tick = tick })
133
 = do   { (args, body) <- matchWrapper (FunRhs (idName fun)) matches
134
        ; let body' = mkOptTickBox tick body
135
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
136 137 138 139 140 141
        ; let core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
              force_var =
                if xopt Opt_Strict dflags
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
142
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
143
           return (force_var, [core_binds]) }
144

145 146
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
147
                  , pat_ticks = (rhs_tick, var_ticks) })
148
  = do  { body_expr <- dsGuarded grhss ty
149
        ; let body' = mkOptTickBox rhs_tick body_expr
150 151 152
              (is_strict,pat') = getUnBangedLPat dflags pat
        ; (force_var,sel_binds) <-
            mkSelectorBinds is_strict var_ticks pat' body'
153 154
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
155 156 157 158
        ; let force_var' = if is_strict
                           then maybe [] (\v -> [v]) force_var
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
159

160
        -- A common case: one exported variable, only non-strict binds
161 162 163
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
164 165
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
166 167
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
168 169
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
170 171 172 173
  , not (xopt Opt_Strict dflags)                 -- handle strict binds
  , not (anyBag (isBangedPatBind . unLoc) binds) -- in the next case
  = do  { (_, bind_prs) <- ds_lhs_binds binds
        ; let core_bind = Rec bind_prs
174
        ; ds_binds <- dsTcEvBinds_s ev_binds
175
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
176 177
                            mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_binds $
178 179
                            Let core_bind $
                            Var local
180

181 182 183 184 185 186
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

187
        ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
188

189 190
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
191 192
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
193
         -- See Note [Desugaring AbsBinds]
194
  = do  { (local_force_vars, bind_prs) <- ds_lhs_binds binds
195
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
196
                              | (lcl_id, rhs) <- bind_prs ]
197
                -- Monomorphic recursion possible, hence Rec
198
              new_force_vars = get_new_force_vars local_force_vars
199
              locals       = map abe_mono exports
200 201
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
202
              tup_ty       = exprType tup_expr
203
        ; ds_binds <- dsTcEvBinds_s ev_binds
204 205 206 207
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
208

209
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
210

211 212 213 214 215
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

216
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
217
                           , abe_mono = local, abe_prags = spec_prags })
218 219
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
220
                                 mkLams tyvars $ mkLams dicts $
221
                                 mkTupleSelector all_locals local tup_id $
222
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
223
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
224 225
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
226 227 228
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
229
                           -- Id is just the selector.  Hmm.
230
                     ; return ((global', rhs) : fromOL spec_binds) }
231

232
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
233

234 235 236
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
237 238 239 240 241 242 243 244 245 246 247
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
    get_exports :: [Id] -> DsM ([Id], [ABExport Id])
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
                     ,abe_prags = SpecPrags []})

dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

cactus's avatar
cactus committed
283

284
------------------------
285 286
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
287
  | is_default_method                 -- Default methods are *always* inlined
288 289
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

290
  | DFunId is_newtype <- idDetails gbl_id
291 292
  = (mk_dfun_w_stuff is_newtype, rhs)

293 294
  | otherwise
  = case inlinePragmaSpec inline_prag of
295 296 297
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
298
          Inline          -> inline_pair
299

300 301
  where
    inline_prag   = idInlinePragma gbl_id
302
    inlinable_unf = mkInlinableUnfolding dflags rhs
303 304
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
305 306
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
307
       , let real_arity = dict_arity + arity
308
        -- NB: The arity in the InlineRule takes account of the dictionaries
309 310 311 312 313 314
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
315

316 317 318
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
319
       | is_newtype
320 321 322 323 324 325 326 327 328 329 330 331
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

332 333 334 335

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
336

Austin Seipp's avatar
Austin Seipp committed
337
{-
338 339
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
340 341 342 343 344 345 346 347
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

348 349 350 351 352
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
353 354
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
355
But we don't want that, because if M.f isn't exported,
356 357
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
358 359 360
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
361 362 363
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
364 365 366 367
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
368
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
369
Although I'm a bit worried about whether full laziness might
370
float the f_lcl binding out and then inline M.f at its call site
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

386
The top-level AbsBinds for $cround has no tyvars or dicts (because the
387 388 389 390 391 392 393
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

394 395 396 397 398
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
399 400 401

and desugar it to

402 403 404
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
405 406

where B is the *non-recursive* binding
407 408 409
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
410 411

Notice (a) g has a different number of type variables to f, so we must
412 413
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
414

415 416 417 418
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
419

420 421 422 423
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
424 425

Why got to this trouble?  It's a common case, and it removes the
426
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
427 428 429 430
compilation, especially in a case where there are a *lot* of
bindings.


431 432 433 434 435 436 437 438
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
439
happen as a result of method sharing), there's a danger that we never
440 441 442 443
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
444
has the arity with which it is declared in the source code.  In this
445
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
446
should mean that (foo d) is a PAP and we don't share it.
447 448 449

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
450 451 452 453 454 455 456 457 458 459 460 461 462 463
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

The simplest thing is to return it in the polymoprhic
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Austin Seipp's avatar
Austin Seipp committed
538
-}
539

540
------------------------
541
dsSpecs :: CoreExpr     -- Its rhs
542
        -> TcSpecPrags
543 544
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
545
-- See Note [Handling SPECIALISE pragmas] in TcBinds
546 547 548 549 550 551
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

552 553 554
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
555 556 557
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
558
  | isJust (isClassOpId_maybe poly_id)
559 560
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
561 562
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
563 564
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
565

566 567
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
568 569 570
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
571
                            -- See Note [Activation pragmas for SPECIALISE]
572

573
  | otherwise
574
  = putSrcSpanDs loc $
575 576
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
577 578
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
579 580 581
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
582 583 584 585
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
586
           Left msg -> do { warnDs msg; return Nothing } ;
587
           Right (rule_bndrs, _fn, args) -> do
588

589
       { dflags <- getDynFlags
590
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
591 592 593 594
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
595 596 597
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
598
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
599
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
600 601 602
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
603

604
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
605

606 607 608 609
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
--              (warnDs $ ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
610 611 612 613 614

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
615 616 617 618
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
619
             = rhs          -- Local Id; this is its rhs
620 621
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
622 623 624
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
625
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
626
                            -- The type checker has checked that it *has* an unfolding
627

628 629 630 631 632
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
633
                                 -- in OccurAnal
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


651 652 653 654 655 656 657 658 659 660 661
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
        warnDs (ruleOrphWarn rule)
    return rule

ruleOrphWarn :: CoreRule -> SDoc
ruleOrphWarn rule = ptext (sLit "Orphan rule:") <+> ppr rule
662

663 664 665 666 667 668 669 670 671 672 673 674 675
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

676 677 678 679 680 681 682 683
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

684
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
706
SPEC [n] f :: ty            [n]   INLINE [k]
707 708 709 710 711 712 713 714 715 716
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
717 718
************************************************************************
*                                                                      *
719
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
720 721 722
*                                                                      *
************************************************************************
-}
723

724
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
725 726
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
727
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
728
--
729
-- Returns Nothing if the LHS isn't of the expected shape
730 731 732 733 734 735
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

736 737
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
738 739 740
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
741 742
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
743
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
744
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
745

746
  | otherwise
747
  = Left bad_shape_msg
748
 where
749 750 751 752
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

753 754
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
755

756
   orig_bndr_set = mkVarSet orig_bndrs
757

758
        -- Add extra dict binders: Note [Free dictionaries]
759 760 761 762 763 764 765 766 767 768 769 770
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
771 772

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
773 774
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
775
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
776
                             , ptext (sLit "is not bound in RULE lhs")])
777 778 779
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
780
   pp_bndr bndr
781 782 783
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
784 785

   drop_dicts :: CoreExpr -> CoreExpr
786
   drop_dicts e
787 788 789
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
790
       (bnds, body) = split_lets (occurAnalyseExpr e)
791
           -- The occurAnalyseExpr drops dead bindings which is
792 793
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
812

Austin Seipp's avatar
Austin Seipp committed
813
{-
814
Note [Decomposing the left-hand side of a RULE]
815
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
816
There are several things going on here.
817 818
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
819
* extra_dict_bndrs: see Note [Free dictionaries]
820 821 822

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
823
drop_dicts drops dictionary bindings on the LHS where possible.
824 825
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
826
   Reasoning here is that there is only one d:Eq [Int], and so we can
827 828 829 830
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
831
         one of the orig_bndrs, which we assume occur on RHS.
832 833 834 835 836 837
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
838
         to match, but there is no other way to get d:Eq a
839

840
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
841 842 843 844 845 846
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
847
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
848 849 850 851 852 853
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
854
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
855 856
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

857 858 859
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

860 861 862 863 864 865 866 867 868 869
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
870
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
871 872 873 874 875 876
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


877 878 879 880
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

881
   (a) Inline any remaining dictionary bindings (which hopefully
882 883 884
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
885
       Note that we substitute the function too; we might
886 887
       have this as a LHS:  let f71 = M.f Int in f71

888
   (c) Do eta reduction.  To see why, consider the fold/build rule,
889 890 891 892
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
893
         augment g (build h)
894
       we do not want to get
895
         augment (\a. g a) (build h)
896 897
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
898

899
Note [Matching seqId]
900 901
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
902
and this code turns it back into an application of seq!
903 904
See Note [Rules for seq] in MkId for the details.

905 906 907
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
908
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
909
        ... SPECIALISE f :: Eq a => a -> a ...
910 911
It's true that this *is* a more specialised type, but the rule
we get is something like this:
912 913
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
914 915
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
916 917 918 919
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

920 921
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
922 923
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
924 925 926
over it too.  *Any* dict with that type will do.

So for example when you have
927 928
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
929
        ... SPECIALISE f :: Int -> Int ...
930 931

Then we get the SpecPrag
932
        SpecPrag (f Int dInt)
933 934

And from that we want the rule
935 936 937

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
938 939 940 941 942 943 944

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

945

Austin Seipp's avatar
Austin Seipp committed
946 947
************************************************************************
*                                                                      *
948
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
949 950
*                                                                      *
************************************************************************
simonpj@microsoft.com's avatar