DsBinds.hs 42.7 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import UniqSupply
39
import Digraph
40

41
import PrelNames
42
import TyCon      ( isTupleTyCon, tyConDataCons_maybe )
43
import TcEvidence
44
import TcType
45
import Type
batterseapower's avatar
batterseapower committed
46
import Coercion hiding (substCo)
47 48
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, tupleCon, mkListTy
                  , mkBoxedTupleTy, stringTy )
Simon Marlow's avatar
Simon Marlow committed
49
import Id
50
import Class
51
import DataCon  ( dataConTyCon, dataConWorkId )
52
import Name
53
import MkId     ( seqId )
54
import IdInfo   ( IdDetails(..) )
55
import Var
56
import VarSet
Simon Marlow's avatar
Simon Marlow committed
57
import Rules
58
import VarEnv
59
import Outputable
60
import Module
Simon Marlow's avatar
Simon Marlow committed
61 62
import SrcLoc
import Maybes
63
import OrdList
Simon Marlow's avatar
Simon Marlow committed
64 65
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
66
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
67
import FastString
68
import ErrUtils( MsgDoc )
69
import ListSetOps( getNth )
70
import Util
71
import Control.Monad( when )
72
import MonadUtils
73
import Control.Monad(liftM)
74

Austin Seipp's avatar
Austin Seipp committed
75 76 77
{-
************************************************************************
*                                                                      *
78
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
Austin Seipp's avatar
Austin Seipp committed
79 80 81
*                                                                      *
************************************************************************
-}
82

83 84
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
85

86
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
87
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
88
                      ; return (fromOL binds') }
89 90

------------------------
91
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
92

93 94
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
                        ; return (foldBag appOL id nilOL ds_bs) }
95

96 97
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
98

99
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
100

101
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
102 103
  = do  { dflags <- getDynFlags
        ; core_expr <- dsLExpr expr
104

105 106
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
107
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
108
                   | otherwise         = var
109

110
        ; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
111

112 113 114
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
                  , fun_co_fn = co_fn, fun_tick = tick
                  , fun_infix = inf })
115
 = do   { dflags <- getDynFlags
116
        ; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
117
        ; let body' = mkOptTickBox tick body
118
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
119
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
120
           return (unitOL (makeCorePair dflags fun False 0 rhs)) }
121 122 123

dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
                  , pat_ticks = (rhs_tick, var_ticks) })
124
  = do  { body_expr <- dsGuarded grhss ty
125 126
        ; let body' = mkOptTickBox rhs_tick body_expr
        ; sel_binds <- mkSelectorBinds var_ticks pat body'
127 128
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
129
    ; return (toOL sel_binds) }
sof's avatar
sof committed
130

131 132 133 134
        -- A common case: one exported variable
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
135 136 137
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
138 139
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
140
  = do  { dflags <- getDynFlags
141 142 143
        ; bind_prs <- ds_lhs_binds binds
        ; let core_bind = Rec (fromOL bind_prs)
        ; ds_binds <- dsTcEvBinds_s ev_binds
144
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
145 146
                            mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_binds $
147 148
                            Let core_bind $
                            Var local
149

150 151 152 153 154 155 156
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

        ; return (main_bind `consOL` spec_binds) }
sof's avatar
sof committed
157

158 159 160
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
161
         -- See Note [Desugaring AbsBinds]
162 163 164
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
165
                              | (lcl_id, rhs) <- fromOL bind_prs ]
166
                -- Monomorphic recursion possible, hence Rec
167

168 169 170
              locals       = map abe_mono exports
              tup_expr     = mkBigCoreVarTup locals
              tup_ty       = exprType tup_expr
171
        ; ds_binds <- dsTcEvBinds_s ev_binds
172 173 174 175
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
176

177
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
178

179
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
180
                           , abe_mono = local, abe_prags = spec_prags })
181 182
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
183
                                 mkLams tyvars $ mkLams dicts $
184 185
                                 mkTupleSelector locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
186
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
187 188
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
189 190 191
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
192 193
                           -- Id is just the selector.  Hmm.
                     ; return ((global', rhs) `consOL` spec_binds) }
194

195
        ; export_binds_s <- mapM mk_bind exports
196

197 198
        ; return ((poly_tup_id, poly_tup_rhs) `consOL`
                    concatOL export_binds_s) }
199 200 201 202 203 204 205 206 207 208 209
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
210

cactus's avatar
cactus committed
211 212
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"

213
------------------------
214 215
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
216
  | is_default_method                 -- Default methods are *always* inlined
217 218
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

219
  | DFunId is_newtype <- idDetails gbl_id
220 221
  = (mk_dfun_w_stuff is_newtype, rhs)

222 223
  | otherwise
  = case inlinePragmaSpec inline_prag of
224 225 226
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
227
          Inline          -> inline_pair
228

229 230
  where
    inline_prag   = idInlinePragma gbl_id
231
    inlinable_unf = mkInlinableUnfolding dflags rhs
232 233
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
234 235
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
236
       , let real_arity = dict_arity + arity
237
        -- NB: The arity in the InlineRule takes account of the dictionaries
238 239 240 241 242 243
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
244

245 246 247
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
248
       | is_newtype
249 250 251 252 253 254 255 256 257 258 259 260
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

261 262 263 264

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
265

Austin Seipp's avatar
Austin Seipp committed
266
{-
267 268 269 270 271 272 273 274 275 276
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

277 278 279 280 281
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
282 283
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
284
But we don't want that, because if M.f isn't exported,
285 286
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
287 288 289
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
290 291 292
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
293 294 295 296
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
297
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
298
Although I'm a bit worried about whether full laziness might
299
float the f_lcl binding out and then inline M.f at its call site
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

315
The top-level AbsBinds for $cround has no tyvars or dicts (because the
316 317 318 319 320 321 322
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

323 324 325 326 327
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
328 329 330

and desugar it to

331 332 333
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
334 335

where B is the *non-recursive* binding
336 337 338
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
339 340

Notice (a) g has a different number of type variables to f, so we must
341 342
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
343

344 345 346 347
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
348

349 350 351 352
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
353 354

Why got to this trouble?  It's a common case, and it removes the
355
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
356 357 358 359
compilation, especially in a case where there are a *lot* of
bindings.


360 361 362 363 364 365 366 367
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
368
happen as a result of method sharing), there's a danger that we never
369 370 371 372
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
373
has the arity with which it is declared in the source code.  In this
374
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
375
should mean that (foo d) is a PAP and we don't share it.
376 377 378

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
379 380 381 382 383 384 385 386 387 388 389 390 391 392
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
Austin Seipp's avatar
Austin Seipp committed
393
-}
394

395
------------------------
396
dsSpecs :: CoreExpr     -- Its rhs
397
        -> TcSpecPrags
398 399
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
400
-- See Note [Handling SPECIALISE pragmas] in TcBinds
401 402 403 404 405 406
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

407 408 409
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
410 411 412
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
413
  | isJust (isClassOpId_maybe poly_id)
414 415
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
416 417
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
418 419
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
420

421 422
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
423 424 425
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
426
                            -- See Note [Activation pragmas for SPECIALISE]
427

428
  | otherwise
429
  = putSrcSpanDs loc $
430 431
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
432 433
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
434 435 436
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
437 438 439 440
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
441
           Left msg -> do { warnDs msg; return Nothing } ;
442
           Right (rule_bndrs, _fn, args) -> do
443

444
       { dflags <- getDynFlags
Simon Peyton Jones's avatar
Simon Peyton Jones committed
445 446 447 448
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
449 450 451
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
452
             rule =  mkRule False {- Not auto -} is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
453
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
454 455 456
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
457

458
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
459

Ian Lynagh's avatar
Ian Lynagh committed
460 461
       ; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags)
              (warnDs (specOnInline poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
462 463 464 465 466

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
467 468 469 470
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
471
             = rhs          -- Local Id; this is its rhs
472 473
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
474 475 476
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
477
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
478
                            -- The type checker has checked that it *has* an unfolding
479

480 481 482 483 484
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
485
                                 -- in OccurAnal
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


specOnInline :: Name -> MsgDoc
504
specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
505
                 <+> quotes (ppr f)
506

Austin Seipp's avatar
Austin Seipp committed
507
{-
508 509 510 511 512 513 514 515
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

516
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
538
SPEC [n] f :: ty            [n]   INLINE [k]
539 540 541 542 543 544 545 546 547 548
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
549 550
************************************************************************
*                                                                      *
551
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
552 553 554
*                                                                      *
************************************************************************
-}
555

556
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
557 558
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
559
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
560
--
561
-- Returns Nothing if the LHS isn't of the expected shape
562 563 564 565 566 567 568 569
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

  | Var fn_var <- fun
  , not (fn_var `elemVarSet` orig_bndr_set)
570 571 572 573 574 575 576
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
    --                                  , ptext (sLit "bndrs1:") <+> ppr bndrs1
    --                                  , ptext (sLit "fn_var:") <+> ppr fn_var
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
    Right (bndrs1, fn_var, args)
577 578

  | Case scrut bndr ty [(DEFAULT, _, body)] <- fun
579
  , isDeadBinder bndr   -- Note [Matching seqId]
580 581 582
  , let args' = [Type (idType bndr), Type ty, scrut, body]
  = Right (bndrs1, seqId, args' ++ args)

583
  | otherwise
584
  = Left bad_shape_msg
585
 where
586 587 588 589 590 591
   lhs1       = drop_dicts orig_lhs
   lhs2       = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun,args) = collectArgs lhs2
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
   bndrs1     = orig_bndrs ++ extra_dict_bndrs
592

593
   orig_bndr_set = mkVarSet orig_bndrs
594

595
        -- Add extra dict binders: Note [Free dictionaries]
596 597 598
   extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d)
                      | d <- varSetElems (lhs_fvs `delVarSetList` orig_bndrs)
                      , isDictId d ]
599 600

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
601 602
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
603
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
604
                             , ptext (sLit "is not bound in RULE lhs")])
605 606 607
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
608
   pp_bndr bndr
609 610 611
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
612 613

   drop_dicts :: CoreExpr -> CoreExpr
614
   drop_dicts e
615 616 617
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
618
       (bnds, body) = split_lets (occurAnalyseExpr e)
619
           -- The occurAnalyseExpr drops dead bindings which is
620 621
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
640

Austin Seipp's avatar
Austin Seipp committed
641
{-
642
Note [Decomposing the left-hand side of a RULE]
643
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
644
There are several things going on here.
645 646
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
647
* extra_dict_bndrs: see Note [Free dictionaries]
648 649 650

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
651
drop_dicts drops dictionary bindings on the LHS where possible.
652 653
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
654
   Reasoning here is that there is only one d:Eq [Int], and so we can
655 656 657 658
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
659
         one of the orig_bndrs, which we assume occur on RHS.
660 661 662 663 664 665
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
666
         to match, but there is no other way to get d:Eq a
667

668
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
669 670 671 672 673 674
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
675
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
676 677 678 679 680 681
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
682
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
683 684
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

685 686 687
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

688 689 690 691 692 693 694 695 696 697
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
698
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
699 700 701 702 703 704
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


705 706 707 708
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

709
   (a) Inline any remaining dictionary bindings (which hopefully
710 711 712
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
713
       Note that we substitute the function too; we might
714 715
       have this as a LHS:  let f71 = M.f Int in f71

716
   (c) Do eta reduction.  To see why, consider the fold/build rule,
717 718 719 720
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
721
         augment g (build h)
722
       we do not want to get
723
         augment (\a. g a) (build h)
724 725
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
726

727
Note [Matching seqId]
728 729
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
730
and this code turns it back into an application of seq!
731 732
See Note [Rules for seq] in MkId for the details.

733 734 735
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
736
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
737
        ... SPECIALISE f :: Eq a => a -> a ...
738 739
It's true that this *is* a more specialised type, but the rule
we get is something like this:
740 741
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
742 743
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
744 745 746 747
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

748 749
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
750 751
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
752 753 754
over it too.  *Any* dict with that type will do.

So for example when you have
755 756
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
757
        ... SPECIALISE f :: Int -> Int ...
758 759

Then we get the SpecPrag
760
        SpecPrag (f Int dInt)
761 762

And from that we want the rule
763 764 765

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
766 767 768 769 770 771 772

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

773

Austin Seipp's avatar
Austin Seipp committed
774 775
************************************************************************
*                                                                      *
776
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
777 778
*                                                                      *
************************************************************************
779

Austin Seipp's avatar
Austin Seipp committed
780
-}
781

782
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
783
dsHsWrapper WpHole            e = return e
784 785 786
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
787 788 789 790 791 792
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)
                                      ; e2 <- dsHsWrapper c2 (e `mkCoreAppDs` e1)
                                      ; return (Lam x e2) }
793
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
Joachim Breitner's avatar
Joachim Breitner committed
794
                                  dsTcCoercion co (mkCast e)
795 796
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e
797
dsHsWrapper (WpEvApp    tm)   e = liftM (App e) (dsEvTerm tm)
798 799

--------------------------------------
800 801 802 803 804
dsTcEvBinds_s :: [TcEvBinds] -> DsM [CoreBind]
dsTcEvBinds_s []       = return []
dsTcEvBinds_s (b:rest) = ASSERT( null rest )  -- Zonker ensures null
                         dsTcEvBinds b

805
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
806
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
807 808
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

809
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
810
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
811
  where
812 813 814
    ds_scc (AcyclicSCC (EvBind { eb_lhs = v, eb_rhs = r }))
                          = liftM (NonRec v) (dsEvTerm r)
    ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs)
815

816
    ds_pair (EvBind { eb_lhs = v, eb_rhs = r }) = liftM ((,) v) (dsEvTerm r)
817 818 819 820 821

sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
  where
    edges :: [(EvBind, EvVar, [EvVar])]
822
    edges = foldrBag ((:) . mk_node) [] bs
823 824

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
825 826
    mk_node b@(EvBind { eb_lhs = var, eb_rhs = term })
       = (b, var, varSetElems (evVarsOfTerm term))
827 828 829


---------------------------------------
830
dsEvTerm :: EvTerm -> DsM CoreExpr
831
dsEvTerm (EvId v) = return (Var v)
832

833
dsEvTerm (EvCast tm co)
834
  = do { tm' <- dsEvTerm tm
835
       ; dsTcCoercion co $ mkCast tm' }
836 837 838 839 840
                        -- 'v' is always a lifted evidence variable so it is
                        -- unnecessary to call varToCoreExpr v here.

dsEvTerm (EvDFunApp df tys tms) = do { tms' <- mapM dsEvTerm tms
                                     ; return (Var df `mkTyApps` tys `mkApps` tms') }
841 842

dsEvTerm (EvCoercion (TcCoVarCo v)) = return (Var v)  -- See Note [Simple coercions]
Joachim Breitner's avatar
Joachim Breitner committed
843
dsEvTerm (EvCoercion co)            = dsTcCoercion co mkEqBox
844

845
dsEvTerm (EvTupleSel v n)
846 847 848
   = do { tm' <- dsEvTerm v
        ; let scrut_ty = exprType tm'
              (tc, tys) = splitTyConApp scrut_ty
849 850
              Just [dc] = tyConDataCons_maybe tc
              xs = mkTemplateLocals tys
851
              the_x = getNth xs n
852 853 854 855
        ; ASSERT( isTupleTyCon tc )
          return $
          Case tm' (mkWildValBinder scrut_ty) (idType the_x) [(DataAlt dc, xs, Var the_x)] }

856
dsEvTerm (EvTupleMk tms)
857 858 859
  = do { tms' <- mapM dsEvTerm tms
       ; let tys = map exprType tms'
       ; return $ Var (dataConWorkId dc) `mkTyApps` tys `mkApps` tms' }
860
  where
861 862
    dc = tupleCon ConstraintTuple (length tms)

863
dsEvTerm (EvSuperClass d n)
864 865
  = do { d' <- dsEvTerm d
       ; let (cls, tys) = getClassPredTys (exprType d')
866
             sc_sel_id  = classSCSelId cls n    -- Zero-indexed
867
       ; return $ Var sc_sel_id `mkTyApps` tys `App` d' }
868
  where
869