ffi-chap.xml 15.7 KB
Newer Older
1
<?xml version="1.0" encoding="iso-8859-1"?>
rrt's avatar
rrt committed
2 3
<!-- FFI docs as a chapter -->

4
<chapter id="ffi">
5 6 7
 <title>
Foreign function interface (FFI)
 </title>
8

chak's avatar
chak committed
9
  <para>GHC (mostly) conforms to the Haskell 98 Foreign Function Interface
10 11 12 13 14 15 16 17 18
  Addendum 1.0, whose definition is available from <ulink url="http://haskell.org/"><literal>http://haskell.org/</literal></ulink>.</para>

  <para>To enable FFI support in GHC, give the <option>-fffi</option><indexterm><primary><option>-fffi</option></primary>
    </indexterm>flag, or
the <option>-fglasgow-exts</option><indexterm><primary><option>-fglasgow-exts</option></primary>
    </indexterm> flag which implies <option>-fffi</option>
.</para>

  <para>The FFI support in GHC diverges from the Addendum in the following ways:</para>
19 20 21

  <itemizedlist>
    <listitem>
chak's avatar
chak committed
22 23 24 25 26 27
      <para>Syntactic forms and library functions proposed in earlier versions
      of the FFI are still supported for backwards compatibility.</para>
    </listitem>

    <listitem>
      <para>GHC implements a number of GHC-specific extensions to the FFI
28
      Addendum.  These extensions are described in <xref linkend="sec-ffi-ghcexts" />, but please note that programs using
chak's avatar
chak committed
29 30
      these features are not portable.  Hence, these features should be
      avoided where possible.</para>
31 32 33
    </listitem>
  </itemizedlist>

34 35 36
  <para>The FFI libraries are documented in the accompanying library
  documentation; see for example the <literal>Foreign</literal>
  module.</para>
chak's avatar
chak committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

  <sect1 id="sec-ffi-ghcexts">
    <title>GHC extensions to the FFI Addendum</title>

    <para>The FFI features that are described in this section are specific to
    GHC.  Avoid them where possible to not compromise the portability of the
    resulting code.</para>

    <sect2>
      <title>Unboxed types</title>

      <para>The following unboxed types may be used as basic foreign types
      (see FFI Addendum, Section 3.2): <literal>Int#</literal>,
      <literal>Word#</literal>, <literal>Char#</literal>,
      <literal>Float#</literal>, <literal>Double#</literal>,
      <literal>Addr#</literal>, <literal>StablePtr# a</literal>,
      <literal>MutableByteArray#</literal>, <literal>ForeignObj#</literal>,
      and <literal>ByteArray#</literal>.</para>
    </sect2>

  </sect1>
58

chak's avatar
chak committed
59
  <sect1 id="sec-ffi-ghc">
60 61 62 63 64
    <title>Using the FFI with GHC</title>

    <para>The following sections also give some hints and tips on the
    use of the foreign function interface in GHC.</para>

65
    <sect2 id="foreign-export-ghc">
66
      <title>Using <literal>foreign export</literal> and <literal>foreign import ccall "wrapper"</literal> with GHC</title>
67 68

      <indexterm><primary><literal>foreign export
69
      </literal></primary><secondary>with GHC</secondary>
70 71 72
      </indexterm>

      <para>When GHC compiles a module (say <filename>M.hs</filename>)
73 74
      which uses <literal>foreign export</literal> or 
      <literal>foreign import "wrapper"</literal>, it generates two
75 76 77
      additional files, <filename>M_stub.c</filename> and
      <filename>M_stub.h</filename>.  GHC will automatically compile
      <filename>M_stub.c</filename> to generate
78 79
      <filename>M_stub.o</filename> at the same time.</para>

80 81 82 83 84 85 86 87 88
      <para>For a plain <literal>foreign export</literal>, the file
      <filename>M_stub.h</filename> contains a C prototype for the
      foreign exported function, and <filename>M_stub.c</filename>
      contains its definition.  For example, if we compile the
      following module:</para>

<programlisting>
module Foo where

chak's avatar
chak committed
89
foreign export ccall foo :: Int -> IO Int
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

foo :: Int -> IO Int
foo n = return (length (f n))

f :: Int -> [Int]
f 0 = []
f n = n:(f (n-1))</programlisting>

      <para>Then <filename>Foo_stub.h</filename> will contain
      something like this:</para>

<programlisting>
#include "HsFFI.h"
extern HsInt foo(HsInt a0);</programlisting>

      <para>and <filename>Foo_stub.c</filename> contains the
      compiler-generated definition of <literal>foo()</literal>.  To
      invoke <literal>foo()</literal> from C, just <literal>#include
      "Foo_stub.h"</literal> and call <literal>foo()</literal>.</para>

110 111 112 113 114
      <para>The <filename>foo_stub.c</filename> and
	<filename>foo_stub.h</filename> files can be redirected using the
	<option>-stubdir</option> option; see <xref linkend="options-output"
	  />.</para>

115
      <sect3 id="using-own-main"> 
116 117 118 119 120 121
	<title>Using your own <literal>main()</literal></title>

	<para>Normally, GHC's runtime system provides a
	<literal>main()</literal>, which arranges to invoke
	<literal>Main.main</literal> in the Haskell program.  However,
	you might want to link some Haskell code into a program which
ross's avatar
ross committed
122
	has a main function written in another language, say C.  In
123 124 125 126 127 128 129 130
	order to do this, you have to initialize the Haskell runtime
	system explicitly.</para>

	<para>Let's take the example from above, and invoke it from a
	standalone C program.  Here's the C code:</para>

<programlisting>
#include &lt;stdio.h&gt;
131
#include "HsFFI.h"
132

133 134 135
#ifdef __GLASGOW_HASKELL__
#include "foo_stub.h"
#endif
136

137
#ifdef __GLASGOW_HASKELL__
138
extern void __stginit_Foo ( void );
139
#endif
140 141 142 143 144

int main(int argc, char *argv[])
{
  int i;

145 146 147 148
  hs_init(&amp;argc, &amp;argv);
#ifdef __GLASGOW_HASKELL__
  hs_add_root(__stginit_Foo);
#endif
149

150
  for (i = 0; i &lt; 5; i++) {
151 152 153
    printf("%d\n", foo(2500));
  }

154
  hs_exit();
155 156 157
  return 0;
}</programlisting>

158 159 160 161 162 163
	<para>We've surrounded the GHC-specific bits with
	<literal>#ifdef __GLASGOW_HASKELL__</literal>; the rest of the
	code should be portable across Haskell implementations that
	support the FFI standard.</para>

	<para>The call to <literal>hs_init()</literal>
164 165
	initializes GHC's runtime system.  Do NOT try to invoke any
	Haskell functions before calling
166
	<literal>hs_init()</literal>: strange things will
167 168 169
	undoubtedly happen.</para>

	<para>We pass <literal>argc</literal> and
170
	<literal>argv</literal> to <literal>hs_init()</literal>
171 172 173 174
	so that it can separate out any arguments for the RTS
	(i.e. those arguments between
	<literal>+RTS...-RTS</literal>).</para>

175 176 177 178 179 180 181 182 183 184 185 186 187 188
	<para>Next, we call
	<function>hs_add_root</function><indexterm><primary><function>hs_add_root</function></primary>
	</indexterm>, a GHC-specific interface which is required to
	initialise the Haskell modules in the program.  The argument
	to <function>hs_add_root</function> should be the name of the
	initialization function for the "root" module in your program
	- in other words, the module which directly or indirectly
	imports all the other Haskell modules in the program.  In a
	standalone Haskell program the root module is normally
	<literal>Main</literal>, but when you are using Haskell code
	from a library it may not be.  If your program has multiple
	root modules, then you can call
	<function>hs_add_root</function> multiple times, one for each
	root.  The name of the initialization function for module
189 190 191 192 193 194
	<replaceable>M</replaceable> is
	<literal>__stginit_<replaceable>M</replaceable></literal>, and
	it may be declared as an external function symbol as in the
	code above.</para>

	<para>After we've finished invoking our Haskell functions, we
195
	can call <literal>hs_exit()</literal>, which
196 197 198 199
	terminates the RTS.  It runs any outstanding finalizers and
	generates any profiling or stats output that might have been
	requested.</para>

200 201 202 203 204 205 206 207
	<para>There can be multiple calls to
	<literal>hs_init()</literal>, but each one should be matched
	by one (and only one) call to
	<literal>hs_exit()</literal><footnote><para>The outermost
	<literal>hs_exit()</literal> will actually de-initialise the
	system.  NOTE that currently GHC's runtime cannot reliably
	re-initialise after this has happened.</para>
	</footnote>.</para>
208 209 210 211 212 213 214

	<para>NOTE: when linking the final program, it is normally
	easiest to do the link using GHC, although this isn't
	essential.  If you do use GHC, then don't forget the flag
	<option>-no-hs-main</option><indexterm><primary><option>-no-hs-main</option></primary>
	  </indexterm>, otherwise GHC will try to link
	to the <literal>Main</literal> Haskell module.</para>
215 216 217
      </sect3>

      <sect3 id="foreign-export-dynamic-ghc">
218
	<title>Using <literal>foreign import ccall "wrapper"</literal> with GHC</title>
219

chak's avatar
chak committed
220 221
	<indexterm><primary><literal>foreign import
	ccall "wrapper"</literal></primary><secondary>with GHC</secondary>
222 223
	</indexterm>

chak's avatar
chak committed
224 225 226 227 228 229 230 231 232 233
	<para>When <literal>foreign import ccall "wrapper"</literal> is used
        in a Haskell module, The C stub file <filename>M_stub.c</filename>
        generated by GHC contains small helper functions used by the code
        generated for the imported wrapper, so it must be linked in to the
        final program.  When linking the program, remember to include
        <filename>M_stub.o</filename> in the final link command line, or
        you'll get link errors for the missing function(s) (this isn't
        necessary when building your program with <literal>ghc
        &ndash;&ndash;make</literal>, as GHC will automatically link in the
        correct bits).</para>
234
      </sect3>
235
    </sect2>
236
    
237 238 239 240 241 242 243 244
    <sect2 id="glasgow-foreign-headers">
      <title>Using function headers</title>

      <indexterm><primary>C calls, function headers</primary></indexterm>

      <para>When generating C (using the <option>-fvia-C</option>
      directive), one can assist the C compiler in detecting type
      errors by using the <option>-&num;include</option> directive
245
      (<xref linkend="options-C-compiler"/>) to provide
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
      <filename>.h</filename> files containing function
      headers.</para>

      <para>For example,</para>

<programlisting>
#include "HsFFI.h"

void         initialiseEFS (HsInt size);
HsInt        terminateEFS (void);
HsForeignObj emptyEFS(void);
HsForeignObj updateEFS (HsForeignObj a, HsInt i, HsInt x);
HsInt        lookupEFS (HsForeignObj a, HsInt i);
</programlisting>

      <para>The types <literal>HsInt</literal>,
chak's avatar
chak committed
262 263
      <literal>HsForeignObj</literal> etc. are described in the H98 FFI
      Addendum.</para>
264 265 266 267 268 269 270 271

      <para>Note that this approach is only
      <emphasis>essential</emphasis> for returning
      <literal>float</literal>s (or if <literal>sizeof(int) !=
      sizeof(int *)</literal> on your architecture) but is a Good
      Thing for anyone who cares about writing solid code.  You're
      crazy not to do it.</para>

272 273 274 275 276 277 278 279 280 281
<para>
What if you are importing a module from another package, and
a cross-module inlining exposes a foreign call that needs a supporting
<option>-&num;include</option>?  If the imported module is from the same package as
the module being compiled, you should supply all the <option>-&num;include</option>
that you supplied when compiling the imported module.  If the imported module comes
from another package, you won't necessarily know what the appropriate 
<option>-&num;include</option> options are; but they should be in the package 
configuration, which GHC knows about.  So if you are building a package, remember
to put all those <option>-&num;include</option> options into the package configuration.
282
See the <literal>c_includes</literal> field in <xref linkend="package-management"/>.
283 284 285 286 287 288 289
</para>

<para>
It is also possible, according the FFI specification, to put the 
<option>-&num;include</option> option in the foreign import 
declaration itself:
<programlisting>
290
  foreign import "foo.h f" f :: Int -> IO Int
291 292 293
</programlisting>
When compiling this module, GHC will generate a C file that includes
the specified <option>-&num;include</option>.  However, GHC
ross's avatar
ross committed
294
<emphasis>disables</emphasis> cross-module inlining for such foreign
295 296 297 298 299 300 301 302
calls, because it doesn't transport the <option>-&num;include</option>
information across module boundaries.  (There is no fundamental reason for this;
it was just tiresome to implement.  The wrapper, which unboxes the arguments
etc, is still inlined across modules.)  So if you want the foreign call itself
to be inlined across modules, use the command-line and package-configuration
<option>-&num;include</option> mechanism.
</para>

303 304 305 306 307 308 309 310
      <sect3 id="finding-header-files">
	<title>Finding Header files</title>

	<para>Header files named by the <option>-&num;include</option>
	option or in a <literal>foreign import</literal> declaration
	are searched for using the C compiler's usual search path.
	You can add directories to this search path using the
	<option>-I</option> option (see <xref
311
	linkend="c-pre-processor"/>).</para>
312 313 314 315 316 317 318 319 320 321 322

	<para>Note: header files are ignored unless compiling via C.
	If you had been compiling your code using the native code
	generator (the default) and suddenly switch to compiling via
	C, then you can get unexpected errors about missing include
	files.  Compiling via C is enabled automatically when certain
	options are given (eg. <option>-O</option> and
	<option>-prof</option> both enable
	<option>-fvia-C</option>).</para>
      </sect3>

323
    </sect2>
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

    <sect2>
      <title>Memory Allocation</title>

      <para>The FFI libraries provide several ways to allocate memory
      for use with the FFI, and it isn't always clear which way is the
      best.  This decision may be affected by how efficient a
      particular kind of allocation is on a given compiler/platform,
      so this section aims to shed some light on how the different
      kinds of allocation perform with GHC.</para>

      <variablelist>
	<varlistentry>
	  <term><literal>alloca</literal> and friends</term>
	  <listitem>
	    <para>Useful for short-term allocation when the allocation
	    is intended to scope over a given <literal>IO</literal>
ross's avatar
ross committed
341
	    computation.  This kind of allocation is commonly used
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	    when marshalling data to and from FFI functions.</para>

	    <para>In GHC, <literal>alloca</literal> is implemented
	    using <literal>MutableByteArray#</literal>, so allocation
	    and deallocation are fast: much faster than C's
	    <literal>malloc/free</literal>, but not quite as fast as
	    stack allocation in C.  Use <literal>alloca</literal>
	    whenever you can.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term><literal>mallocForeignPtr</literal></term>
	  <listitem>
	    <para>Useful for longer-term allocation which requires
	    garbage collection.  If you intend to store the pointer to
	    the memory in a foreign data structure, then
	    <literal>mallocForeignPtr</literal> is
	    <emphasis>not</emphasis> a good choice, however.</para>

	    <para>In GHC, <literal>mallocForeignPtr</literal> is also
	    implemented using <literal>MutableByteArray#</literal>.
	    Although the memory is pointed to by a
	    <literal>ForeignPtr</literal>, there are no actual
	    finalizers involved (unless you add one with
	    <literal>addForeignPtrFinalizer</literal>), and the
	    deallocation is done using GC, so
	    <literal>mallocForeignPtr</literal> is normally very
	    cheap.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term><literal>malloc/free</literal></term>
	  <listitem>
	    <para>If all else fails, then you need to resort to
	    <literal>Foreign.malloc</literal> and
	    <literal>Foreign.free</literal>.  These are just wrappers
ross's avatar
ross committed
380
	    around the C functions of the same name, and their
381 382 383 384 385 386 387 388 389
	    efficiency will depend ultimately on the implementations
	    of these functions in your platform's C library.  We
	    usually find <literal>malloc</literal> and
	    <literal>free</literal> to be significantly slower than
	    the other forms of allocation above.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
ross's avatar
ross committed
390
	  <term><literal>Foreign.Marshal.Pool</literal></term>
391 392 393 394 395 396
	  <listitem>
	    <para>Pools are currently implemented using
	    <literal>malloc/free</literal>, so while they might be a
	    more convenient way to structure your memory allocation
	    than using one of the other forms of allocation, they
	    won't be any more efficient.  We do plan to provide an
ross's avatar
ross committed
397
	    improved-performance implementation of Pools in the
398 399 400 401 402
	    future, however.</para>
	  </listitem>
	</varlistentry>
      </variablelist>
    </sect2>
403
  </sect1>
404
</chapter>
405 406 407

<!-- Emacs stuff:
     ;;; Local Variables: ***
408 409
     ;;; mode: xml ***
     ;;; sgml-parent-document: ("users_guide.xml" "book" "chapter") ***
410 411
     ;;; End: ***
 -->