DsBinds.hs 47 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import Digraph
39

40
import PrelNames
41
import TysPrim ( mkProxyPrimTy )
42
import TyCon
43
import TcEvidence
44
import TcType
45
import Type
46
import Coercion
Eric Seidel's avatar
Eric Seidel committed
47
import TysWiredIn ( typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
48
import Id
49
import MkId(proxyHashId)
50
import Class
51
import Name
52
import IdInfo   ( IdDetails(..) )
53
import VarSet
Simon Marlow's avatar
Simon Marlow committed
54
import Rules
55
import VarEnv
56
import Outputable
57
import Module
Simon Marlow's avatar
Simon Marlow committed
58 59
import SrcLoc
import Maybes
60
import OrdList
Simon Marlow's avatar
Simon Marlow committed
61 62
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
63
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
64
import FastString
65
import Util
66
import MonadUtils
67
import qualified GHC.LanguageExtensions as LangExt
68
import Control.Monad
69

70
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
71
*                                                                      *
72
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
73
*                                                                      *
74
**********************************************************************-}
75

76 77
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
78
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
79
dsTopLHsBinds binds = fmap (toOL . snd) (ds_lhs_binds binds)
80

81 82 83 84 85 86
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding gorup body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds Id
           -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds = do { (force_vars, binds') <- ds_lhs_binds binds
                      ; return (force_vars, binds') }
87 88

------------------------
89

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
ds_lhs_binds :: LHsBinds Id -> DsM ([Id], [(Id,CoreExpr)])

ds_lhs_binds binds
  = do { ds_bs <- mapBagM dsLHsBind binds
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

dsLHsBind :: LHsBind Id
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
         -> HsBind Id
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
115 116
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
117
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
118
                   | otherwise         = var
119
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
120
              force_var = if xopt LangExt.Strict dflags
121 122 123 124 125 126
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
127
                  , fun_co_fn = co_fn, fun_tick = tick })
128
 = do   { (args, body) <- matchWrapper (FunRhs (idName fun)) Nothing matches
129
        ; let body' = mkOptTickBox tick body
130
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
131 132
        ; let core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
              force_var =
133
                if xopt LangExt.Strict dflags
134 135 136
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
137
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
138
           return (force_var, [core_binds]) }
139

140 141
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
142
                  , pat_ticks = (rhs_tick, var_ticks) })
143
  = do  { body_expr <- dsGuarded grhss ty
144
        ; let body' = mkOptTickBox rhs_tick body_expr
145 146 147
              (is_strict,pat') = getUnBangedLPat dflags pat
        ; (force_var,sel_binds) <-
            mkSelectorBinds is_strict var_ticks pat' body'
148 149
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
150 151 152 153
        ; let force_var' = if is_strict
                           then maybe [] (\v -> [v]) force_var
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
154

155
        -- A common case: one exported variable, only non-strict binds
156 157 158
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
159 160
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
161 162
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
163 164
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
165
  , not (xopt LangExt.Strict dflags)             -- handle strict binds
166
  , not (anyBag (isBangedPatBind . unLoc) binds) -- in the next case
167 168 169
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (_, bind_prs) <- ds_lhs_binds binds
170
        ; let core_bind = Rec bind_prs
171
        ; ds_binds <- dsTcEvBinds_s ev_binds
172
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
173 174 175 176
                 mkLams tyvars $ mkLams dicts $
                 mkCoreLets ds_binds $
                 Let core_bind $
                 Var local
177

178 179
        ; (spec_binds, rules) <- dsSpecs rhs prags

180
        ; let   global'  = addIdSpecialisations global rules
181 182 183
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

184
        ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
185

186 187
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
188 189
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
190
         -- See Note [Desugaring AbsBinds]
191 192 193
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (local_force_vars, bind_prs) <- ds_lhs_binds binds
194
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
195
                              | (lcl_id, rhs) <- bind_prs ]
196
                -- Monomorphic recursion possible, hence Rec
197
              new_force_vars = get_new_force_vars local_force_vars
198
              locals       = map abe_mono exports
199 200
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
201
              tup_ty       = exprType tup_expr
202
        ; ds_binds <- dsTcEvBinds_s ev_binds
203 204 205 206
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
207

208
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
209

210 211 212 213 214
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

215
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
216
                           , abe_mono = local, abe_prags = spec_prags })
217 218
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
219
                                 mkLams tyvars $ mkLams dicts $
220
                                 mkTupleSelector all_locals local tup_id $
221
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
222
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
223 224
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
225 226 227
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
228
                           -- Id is just the selector.  Hmm.
229
                     ; return ((global', rhs) : fromOL spec_binds) }
230

231
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
232

233 234 235
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
236 237 238 239 240
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
241 242 243 244
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
245 246

    add_inline :: Id -> Id    -- tran
247 248
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
    get_exports :: [Id] -> DsM ([Id], [ABExport Id])
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
                     ,abe_prags = SpecPrags []})

dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

cactus's avatar
cactus committed
284

285
------------------------
286 287
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
288
  | is_default_method                 -- Default methods are *always* inlined
289 290
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

291
  | DFunId is_newtype <- idDetails gbl_id
292 293
  = (mk_dfun_w_stuff is_newtype, rhs)

294 295
  | otherwise
  = case inlinePragmaSpec inline_prag of
296 297 298
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
299
          Inline          -> inline_pair
300

301 302
  where
    inline_prag   = idInlinePragma gbl_id
303
    inlinable_unf = mkInlinableUnfolding dflags rhs
304 305
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
306 307
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
308
       , let real_arity = dict_arity + arity
309
        -- NB: The arity in the InlineRule takes account of the dictionaries
310 311 312 313 314 315
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
316

317 318 319
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
320
       | is_newtype
321 322 323 324 325 326 327 328 329 330 331 332
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

333 334 335 336

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
337

Austin Seipp's avatar
Austin Seipp committed
338
{-
339 340
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
341 342 343 344 345 346 347 348
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

349 350 351 352 353
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
354 355
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
356
But we don't want that, because if M.f isn't exported,
357 358
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
359 360 361
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
362 363 364
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
365 366 367 368
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
369
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
370
Although I'm a bit worried about whether full laziness might
371
float the f_lcl binding out and then inline M.f at its call site
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

387
The top-level AbsBinds for $cround has no tyvars or dicts (because the
388 389 390 391 392 393 394
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

395 396 397 398 399
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
400 401 402

and desugar it to

403 404 405
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
406 407

where B is the *non-recursive* binding
408 409 410
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
411 412

Notice (a) g has a different number of type variables to f, so we must
413 414
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
415

416 417 418 419
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
420

421 422 423 424
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
425 426

Why got to this trouble?  It's a common case, and it removes the
427
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
428 429 430 431
compilation, especially in a case where there are a *lot* of
bindings.


432 433 434 435 436 437 438 439
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
440
happen as a result of method sharing), there's a danger that we never
441 442 443 444
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
445
has the arity with which it is declared in the source code.  In this
446
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
447
should mean that (foo d) is a PAP and we don't share it.
448 449 450

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
451 452 453 454 455 456 457 458 459 460 461 462 463 464
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
521
The simplest thing is to return it in the polymorphic
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Austin Seipp's avatar
Austin Seipp committed
539
-}
540

541
------------------------
542
dsSpecs :: CoreExpr     -- Its rhs
543
        -> TcSpecPrags
544 545
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
546
-- See Note [Handling SPECIALISE pragmas] in TcBinds
547 548 549 550 551 552
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

553 554 555
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
556 557 558
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
559
  | isJust (isClassOpId_maybe poly_id)
560 561
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
562 563
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
564 565
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
566

567 568
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
569 570 571
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
572
                            -- See Note [Activation pragmas for SPECIALISE]
573

574
  | otherwise
575
  = putSrcSpanDs loc $
576 577
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
578 579
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
580 581 582
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
583 584 585 586
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
587
           Left msg -> do { warnDs msg; return Nothing } ;
588
           Right (rule_bndrs, _fn, args) -> do
589

590
       { dflags <- getDynFlags
591
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
592 593 594 595
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
596 597 598
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
599
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
600
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
601 602 603
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
604

605
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
606

607 608 609 610
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
--              (warnDs $ ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
611 612 613 614 615

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
616 617 618 619
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
620
             = rhs          -- Local Id; this is its rhs
621 622
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
623 624 625
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
626
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
627
                            -- The type checker has checked that it *has* an unfolding
628

629 630 631 632 633
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
634
                                 -- in OccurAnal
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


652 653 654 655 656 657 658 659 660 661 662
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
        warnDs (ruleOrphWarn rule)
    return rule

ruleOrphWarn :: CoreRule -> SDoc
ruleOrphWarn rule = ptext (sLit "Orphan rule:") <+> ppr rule
663

664 665 666 667 668 669 670 671 672 673 674 675 676
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

677 678 679 680 681 682 683 684
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

685
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
707
SPEC [n] f :: ty            [n]   INLINE [k]
708 709 710 711 712 713 714 715 716 717
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
718 719
************************************************************************
*                                                                      *
720
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
721 722 723
*                                                                      *
************************************************************************
-}
724

725
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
726 727
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
728
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
729
--
730
-- Returns Nothing if the LHS isn't of the expected shape
731 732 733 734 735 736
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

737 738
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
739 740 741
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
742 743
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
744
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
745
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
746

747
  | otherwise
748
  = Left bad_shape_msg
749
 where
750 751 752 753
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

754 755
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
756

757
   orig_bndr_set = mkVarSet orig_bndrs
758

759
        -- Add extra dict binders: Note [Free dictionaries]
760 761 762 763 764 765 766 767 768 769 770 771
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
772 773

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
774 775
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
776
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
777
                             , ptext (sLit "is not bound in RULE lhs")])
778 779 780
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
781
   pp_bndr bndr
782 783 784
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
785 786

   drop_dicts :: CoreExpr -> CoreExpr
787
   drop_dicts e
788 789 790
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
791
       (bnds, body) = split_lets (occurAnalyseExpr e)
792
           -- The occurAnalyseExpr drops dead bindings which is
793 794
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
795 796

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
797 798
   split_lets (Let (NonRec d r) body)
     | isDictId d
799
     = ((d,r):bs, body')
800 801 802 803 804 805 806 807 808
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
809 810 811 812

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
813
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
814 815 816 817
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
818

Austin Seipp's avatar
Austin Seipp committed
819
{-
820
Note [Decomposing the left-hand side of a RULE]
821
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
822
There are several things going on here.
823 824
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
825
* extra_dict_bndrs: see Note [Free dictionaries]
826 827 828

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
829
drop_dicts drops dictionary bindings on the LHS where possible.
830 831
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
832
   Reasoning here is that there is only one d:Eq [Int], and so we can
833 834 835 836
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
837
         one of the orig_bndrs, which we assume occur on RHS.
838 839 840 841 842 843
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
844
         to match, but there is no other way to get d:Eq a
845

846
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
847 848 849 850 851 852
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
853
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
854 855 856 857 858 859
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
860
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
861 862
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

863 864 865
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

866 867 868 869 870 871 872 873 874 875
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
876
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
877 878 879 880 881 882
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


883 884 885 886
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

887
   (a) Inline any remaining dictionary bindings (which hopefully
888 889 890
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
891
       Note that we substitute the function too; we might
892 893
       have this as a LHS:  let f71 = M.f Int in f71

894
   (c) Do eta reduction.  To see why, consider the fold/build rule,
895 896 897 898
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
899
         augment g (build h)
900
       we do not want to get
901
         augment (\a. g a) (build h)
902 903
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
904

905
Note [Matching seqId]
906 907
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
908
and this code turns it back into an application of seq!
909 910
See Note [Rules for seq] in MkId for the details.

911 912 913
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
914
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
915
        ... SPECIALISE f :: Eq a => a -> a ...
916 917
It's true that this *is* a more specialised type, but the rule
we get is something like this:
918 919
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
920 921
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
922 923 924 925
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

926 927
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
928 929
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
930 931 932
over it too.  *Any* dict with that type will do.

So for example when you have
933 934
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
935
        ... SPECIALISE f :: Int -> Int ...
936 937

Then we get the SpecPrag
938
        SpecPrag (f Int dInt)
939 940

And from that we want the rule
941 942 943

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
944 945 946 947 948 949 950

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

Austin Seipp's avatar
Austin Seipp committed
951 952
************************************************************************
*                                                                      *
953
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
954 955
*                                                                      *
************************************************************************
956

Austin Seipp's avatar
Austin Seipp committed
957
-}
958

959
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
960
dsHsWrapper WpHole            e = return e
961 962 963
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
964 965 966 967
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)