TcBinds.hs 82.7 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

5
\section[TcBinds]{TcBinds}
Austin Seipp's avatar
Austin Seipp committed
6
-}
7

8 9
{-# LANGUAGE CPP, RankNTypes, ScopedTypeVariables #-}

10
module TcBinds ( tcLocalBinds, tcTopBinds, tcRecSelBinds,
11
                 tcValBinds, tcHsBootSigs, tcPolyCheck,
12
                 tcSpecPrags, tcSpecWrapper,
13
                 tcVectDecls, addTypecheckedBinds,
14 15
                 TcSigInfo(..), TcSigFun,
                 TcPragEnv, mkPragEnv,
16 17
                 tcUserTypeSig, instTcTySig, chooseInferredQuantifiers,
                 instTcTySigFromId, tcExtendTyVarEnvFromSig,
18
                 badBootDeclErr, mkExport ) where
19

20
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
21
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
22 23
import {-# SOURCE #-} TcPatSyn ( tcInferPatSynDecl, tcCheckPatSynDecl
                               , tcPatSynBuilderBind, tcPatSynSig )
Simon Marlow's avatar
Simon Marlow committed
24 25
import DynFlags
import HsSyn
26
import HscTypes( isHsBootOrSig )
27
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
28 29 30
import TcEnv
import TcUnify
import TcSimplify
31
import TcEvidence
Simon Marlow's avatar
Simon Marlow committed
32 33 34
import TcHsType
import TcPat
import TcMType
35
import Inst( deeplyInstantiate )
36 37
import FamInstEnv( normaliseType )
import FamInst( tcGetFamInstEnvs )
38
import TyCon
Simon Marlow's avatar
Simon Marlow committed
39 40
import TcType
import TysPrim
41
import TysWiredIn
Simon Marlow's avatar
Simon Marlow committed
42
import Id
43
import Var
44
import VarSet
45
import VarEnv( TidyEnv )
46
import Module
Simon Marlow's avatar
Simon Marlow committed
47
import Name
48
import NameSet
49
import NameEnv
Simon Marlow's avatar
Simon Marlow committed
50
import SrcLoc
51
import Bag
52
import ListSetOps
Simon Marlow's avatar
Simon Marlow committed
53 54 55 56 57
import ErrUtils
import Digraph
import Maybes
import Util
import BasicTypes
58
import Outputable
59
import FastString
60
import Type(mkStrLitTy, tidyOpenType)
61
import PrelNames( mkUnboundName, gHC_PRIM )
62
import TcValidity (checkValidType)
63
import qualified GHC.LanguageExtensions as LangExt
64 65

import Control.Monad
66 67

#include "HsVersions.h"
68

69 70 71 72 73 74 75 76
{- *********************************************************************
*                                                                      *
               A useful helper function
*                                                                      *
********************************************************************* -}

addTypecheckedBinds :: TcGblEnv -> [LHsBinds Id] -> TcGblEnv
addTypecheckedBinds tcg_env binds
77
  | isHsBootOrSig (tcg_src tcg_env) = tcg_env
78 79 80 81 82 83
    -- Do not add the code for record-selector bindings
    -- when compiling hs-boot files
  | otherwise = tcg_env { tcg_binds = foldr unionBags
                                            (tcg_binds tcg_env)
                                            binds }

Austin Seipp's avatar
Austin Seipp committed
84 85 86
{-
************************************************************************
*                                                                      *
87
\subsection{Type-checking bindings}
Austin Seipp's avatar
Austin Seipp committed
88 89
*                                                                      *
************************************************************************
90

91
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
92 93 94 95 96 97 98 99 100 101
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

102
The real work is done by @tcBindWithSigsAndThen@.
103 104 105 106 107 108 109 110 111 112

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

113 114 115
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

116 117
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
118
The game plan for polymorphic recursion in the code above is
119 120

        * Bind any variable for which we have a type signature
121
          to an Id with a polymorphic type.  Then when type-checking
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
          the RHSs we'll make a full polymorphic call.

This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:

        f :: Eq a => [a] -> [a]
        f xs = ...f...

If we don't take care, after typechecking we get

        f = /\a -> \d::Eq a -> let f' = f a d
                               in
                               \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

        ff :: [Int] -> [Int]
        ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

        ff = f Int dEqInt

           = let f' = f Int dEqInt in \ys. ...f'...

           = let f' = let f' = f Int dEqInt in \ys. ...f'...
                      in \ys. ...f'...

Etc.

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.

Then we get

        f = /\a -> \d::Eq a -> letrec
                                 fm = \ys:[a] -> ...fm...
                               in
                               fm
Austin Seipp's avatar
Austin Seipp committed
174
-}
175

176
tcTopBinds :: [(RecFlag, LHsBinds Name)] -> [LSig Name] -> TcM (TcGblEnv, TcLclEnv)
177 178
-- The TcGblEnv contains the new tcg_binds and tcg_spects
-- The TcLclEnv has an extended type envt for the new bindings
179
tcTopBinds binds sigs
cactus's avatar
cactus committed
180 181 182 183 184
  = do  { -- Pattern synonym bindings populate the global environment
          (binds', (tcg_env, tcl_env)) <- tcValBinds TopLevel binds sigs $
            do { gbl <- getGblEnv
               ; lcl <- getLclEnv
               ; return (gbl, lcl) }
185 186
        ; specs <- tcImpPrags sigs   -- SPECIALISE prags for imported Ids

187 188
        ; let { tcg_env' = tcg_env { tcg_imp_specs = specs ++ tcg_imp_specs tcg_env }
                           `addTypecheckedBinds` map snd binds' }
189 190

        ; return (tcg_env', tcl_env) }
191
        -- The top level bindings are flattened into a giant
Ian Lynagh's avatar
Ian Lynagh committed
192
        -- implicitly-mutually-recursive LHsBinds
cactus's avatar
cactus committed
193

194 195
tcRecSelBinds :: HsValBinds Name -> TcM TcGblEnv
tcRecSelBinds (ValBindsOut binds sigs)
196
  = tcExtendGlobalValEnv [sel_id | L _ (IdSig sel_id) <- sigs] $
197 198 199
    do { (rec_sel_binds, tcg_env) <- discardWarnings $
                                     tcValBinds TopLevel binds sigs getGblEnv
       ; let tcg_env' = tcg_env `addTypecheckedBinds` map snd rec_sel_binds
200 201
       ; return tcg_env' }
tcRecSelBinds (ValBindsIn {}) = panic "tcRecSelBinds"
202

203
tcHsBootSigs :: [(RecFlag, LHsBinds Name)] -> [LSig Name] -> TcM [Id]
204 205
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
206
tcHsBootSigs binds sigs
Ian Lynagh's avatar
Ian Lynagh committed
207
  = do  { checkTc (null binds) badBootDeclErr
208
        ; concat <$> mapM (addLocM tc_boot_sig) (filter isTypeLSig sigs) }
209
  where
210
    tc_boot_sig (TypeSig lnames hs_ty) = mapM f lnames
211
      where
212
        f (L _ name)
213 214
          = do { sigma_ty <- solveEqualities $
                             tcHsSigWcType (FunSigCtxt name False) hs_ty
215
               ; return (mkVanillaGlobal name sigma_ty) }
Ian Lynagh's avatar
Ian Lynagh committed
216
        -- Notice that we make GlobalIds, not LocalIds
Ian Lynagh's avatar
Ian Lynagh committed
217
    tc_boot_sig s = pprPanic "tcHsBootSigs/tc_boot_sig" (ppr s)
218

219
badBootDeclErr :: MsgDoc
Ian Lynagh's avatar
Ian Lynagh committed
220
badBootDeclErr = ptext (sLit "Illegal declarations in an hs-boot file")
221

222 223
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
Ian Lynagh's avatar
Ian Lynagh committed
224
             -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
225

226
tcLocalBinds EmptyLocalBinds thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
227 228
  = do  { thing <- thing_inside
        ; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
229

230 231 232 233
tcLocalBinds (HsValBinds (ValBindsOut binds sigs)) thing_inside
  = do  { (binds', thing) <- tcValBinds NotTopLevel binds sigs thing_inside
        ; return (HsValBinds (ValBindsOut binds' sigs), thing) }
tcLocalBinds (HsValBinds (ValBindsIn {})) _ = panic "tcLocalBinds"
234

235
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
236
  = do  { (given_ips, ip_binds') <-
237
            mapAndUnzipM (wrapLocSndM (tc_ip_bind ipClass)) ip_binds
238

239
        -- If the binding binds ?x = E, we  must now
Ian Lynagh's avatar
Ian Lynagh committed
240
        -- discharge any ?x constraints in expr_lie
241
        -- See Note [Implicit parameter untouchables]
242
        ; (ev_binds, result) <- checkConstraints (IPSkol ips)
243
                                  [] given_ips thing_inside
244 245

        ; return (HsIPBinds (IPBinds ip_binds' ev_binds), result) }
246
  where
Alan Zimmerman's avatar
Alan Zimmerman committed
247
    ips = [ip | L _ (IPBind (Left (L _ ip)) _) <- ip_binds]
248

Ian Lynagh's avatar
Ian Lynagh committed
249 250 251
        -- I wonder if we should do these one at at time
        -- Consider     ?x = 4
        --              ?y = ?x + 1
Alan Zimmerman's avatar
Alan Zimmerman committed
252
    tc_ip_bind ipClass (IPBind (Left (L _ ip)) expr)
253
       = do { ty <- newOpenFlexiTyVarTy
254 255
            ; let p = mkStrLitTy $ hsIPNameFS ip
            ; ip_id <- newDict ipClass [ p, ty ]
256
            ; expr' <- tcMonoExpr expr ty
257 258 259 260 261 262
            ; let d = toDict ipClass p ty `fmap` expr'
            ; return (ip_id, (IPBind (Right ip_id) d)) }
    tc_ip_bind _ (IPBind (Right {}) _) = panic "tc_ip_bind"

    -- Coerces a `t` into a dictionry for `IP "x" t`.
    -- co : t -> IP "x" t
263
    toDict ipClass x ty = HsWrap $ mkWpCastR $
264
                          wrapIP $ mkClassPred ipClass [x,ty]
265

266 267
{- Note [Implicit parameter untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
268 269 270 271 272
We add the type variables in the types of the implicit parameters
as untouchables, not so much because we really must not unify them,
but rather because we otherwise end up with constraints like this
    Num alpha, Implic { wanted = alpha ~ Int }
The constraint solver solves alpha~Int by unification, but then
273
doesn't float that solved constraint out (it's not an unsolved
274
wanted).  Result disaster: the (Num alpha) is again solved, this
275 276
time by defaulting.  No no no.

277
However [Oct 10] this is all handled automatically by the
278 279
untouchable-range idea.

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
Note [Inlining and hs-boot files]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this example (Trac #10083):

    ---------- RSR.hs-boot ------------
    module RSR where
      data RSR
      eqRSR :: RSR -> RSR -> Bool

    ---------- SR.hs ------------
    module SR where
      import {-# SOURCE #-} RSR
      data SR = MkSR RSR
      eqSR (MkSR r1) (MkSR r2) = eqRSR r1 r2

    ---------- RSR.hs ------------
    module RSR where
      import SR
      data RSR = MkRSR SR -- deriving( Eq )
      eqRSR (MkRSR s1) (MkRSR s2) = (eqSR s1 s2)
      foo x y = not (eqRSR x y)

When compiling RSR we get this code

    RSR.eqRSR :: RSR -> RSR -> Bool
    RSR.eqRSR = \ (ds1 :: RSR.RSR) (ds2 :: RSR.RSR) ->
                case ds1 of _ { RSR.MkRSR s1 ->
                case ds2 of _ { RSR.MkRSR s2 ->
                SR.eqSR s1 s2 }}

    RSR.foo :: RSR -> RSR -> Bool
    RSR.foo = \ (x :: RSR) (y :: RSR) -> not (RSR.eqRSR x y)

Now, when optimising foo:
    Inline eqRSR (small, non-rec)
    Inline eqSR  (small, non-rec)
but the result of inlining eqSR from SR is another call to eqRSR, so
everything repeats.  Neither eqSR nor eqRSR are (apparently) loop
breakers.

Solution: when compiling RSR, add a NOINLINE pragma to every function
exported by the boot-file for RSR (if it exists).

ALAS: doing so makes the boostrappted GHC itself slower by 8% overall
      (on Trac #9872a-d, and T1969.  So I un-did this change, and
      parked it for now.  Sigh.
Austin Seipp's avatar
Austin Seipp committed
326
-}
327

328
tcValBinds :: TopLevelFlag
329 330
           -> [(RecFlag, LHsBinds Name)] -> [LSig Name]
           -> TcM thing
331
           -> TcM ([(RecFlag, LHsBinds TcId)], thing)
332

333
tcValBinds top_lvl binds sigs thing_inside
334 335 336 337
  = do  { let patsyns = getPatSynBinds binds

            -- Typecheck the signature
        ; (poly_ids, sig_fn) <- tcAddPatSynPlaceholders patsyns $
338
                                tcTySigs sigs
Ian Lynagh's avatar
Ian Lynagh committed
339

340 341 342 343 344 345 346 347 348 349 350 351 352
        ; _self_boot <- tcSelfBootInfo
        ; let prag_fn = mkPragEnv sigs (foldr (unionBags . snd) emptyBag binds)

-- -------  See Note [Inlining and hs-boot files] (change parked) --------
--              prag_fn | isTopLevel top_lvl   -- See Note [Inlining and hs-boot files]
--                      , SelfBoot { sb_ids = boot_id_names } <- self_boot
--                      = foldNameSet add_no_inl prag_fn1 boot_id_names
--                      | otherwise
--                      = prag_fn1
--              add_no_inl boot_id_name prag_fn
--                = extendPragEnv prag_fn (boot_id_name, no_inl_sig boot_id_name)
--              no_inl_sig name = L boot_loc (InlineSig (L boot_loc name) neverInlinePragma)
--              boot_loc = mkGeneralSrcSpan (fsLit "The hs-boot file for this module")
Ian Lynagh's avatar
Ian Lynagh committed
353

354 355 356 357 358
                -- Extend the envt right away with all the Ids
                -- declared with complete type signatures
                -- Do not extend the TcIdBinderStack; instead
                -- we extend it on a per-rhs basis in tcExtendForRhs
        ; tcExtendLetEnvIds top_lvl [(idName id, id) | id <- poly_ids] $ do
359 360
            { (binds', (extra_binds', thing)) <- tcBindGroups top_lvl sig_fn prag_fn binds $ do
                   { thing <- thing_inside
361 362 363
                     -- See Note [Pattern synonym builders don't yield dependencies]
                   ; patsyn_builders <- mapM tcPatSynBuilderBind patsyns
                   ; let extra_binds = [ (NonRecursive, builder) | builder <- patsyn_builders ]
364
                   ; return (extra_binds, thing) }
365
            ; return (binds' ++ extra_binds', thing) }}
366

367
------------------------
368
tcBindGroups :: TopLevelFlag -> TcSigFun -> TcPragEnv
Ian Lynagh's avatar
Ian Lynagh committed
369 370
             -> [(RecFlag, LHsBinds Name)] -> TcM thing
             -> TcM ([(RecFlag, LHsBinds TcId)], thing)
371 372
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time
373
-- Here a "strongly connected component" has the strightforward
374
-- meaning of a group of bindings that mention each other,
375
-- ignoring type signatures (that part comes later)
376

377
tcBindGroups _ _ _ [] thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
378 379
  = do  { thing <- thing_inside
        ; return ([], thing) }
380

381
tcBindGroups top_lvl sig_fn prag_fn (group : groups) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
382
  = do  { (group', (groups', thing))
383
                <- tc_group top_lvl sig_fn prag_fn group $
384
                   tcBindGroups top_lvl sig_fn prag_fn groups thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
385
        ; return (group' ++ groups', thing) }
sof's avatar
sof committed
386

387
------------------------
388
tc_group :: forall thing.
389
            TopLevelFlag -> TcSigFun -> TcPragEnv
Ian Lynagh's avatar
Ian Lynagh committed
390 391
         -> (RecFlag, LHsBinds Name) -> TcM thing
         -> TcM ([(RecFlag, LHsBinds TcId)], thing)
392 393

-- Typecheck one strongly-connected component of the original program.
394
-- We get a list of groups back, because there may
395 396
-- be specialisations etc as well

397
tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
398 399
        -- A single non-recursive binding
        -- We want to keep non-recursive things non-recursive
400
        -- so that we desugar unlifted bindings correctly
cactus's avatar
cactus committed
401 402
  = do { let bind = case bagToList binds of
                 [bind] -> bind
403 404
                 []     -> panic "tc_group: empty list of binds"
                 _      -> panic "tc_group: NonRecursive binds is not a singleton bag"
cactus's avatar
cactus committed
405 406
       ; (bind', thing) <- tc_single top_lvl sig_fn prag_fn bind thing_inside
       ; return ( [(NonRecursive, bind')], thing) }
407 408

tc_group top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
409 410
  =     -- To maximise polymorphism, we do a new
        -- strongly-connected-component analysis, this time omitting
Ian Lynagh's avatar
Ian Lynagh committed
411
        -- any references to variables with type signatures.
412
        -- (This used to be optional, but isn't now.)
413
        -- See Note [Polymorphic recursion] in HsBinds.
414
    do  { traceTc "tc_group rec" (pprLHsBinds binds)
cactus's avatar
cactus committed
415
        ; when hasPatSyn $ recursivePatSynErr binds
416
        ; (binds1, thing) <- go sccs
417
        ; return ([(Recursive, binds1)], thing) }
Ian Lynagh's avatar
Ian Lynagh committed
418
                -- Rec them all together
419
  where
420
    hasPatSyn = anyBag (isPatSyn . unLoc) binds
cactus's avatar
cactus committed
421 422 423
    isPatSyn PatSynBind{} = True
    isPatSyn _ = False

424
    sccs :: [SCC (LHsBind Name)]
425 426
    sccs = stronglyConnCompFromEdgedVertices (mkEdges sig_fn binds)

427
    go :: [SCC (LHsBind Name)] -> TcM (LHsBinds TcId, thing)
428 429
    go (scc:sccs) = do  { (binds1, ids1) <- tc_scc scc
                        ; (binds2, thing) <- tcExtendLetEnv top_lvl ids1 $
430 431 432
                                             go sccs
                        ; return (binds1 `unionBags` binds2, thing) }
    go []         = do  { thing <- thing_inside; return (emptyBag, thing) }
433

434 435
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive [bind]
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    binds
sof's avatar
sof committed
436

437
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
438

cactus's avatar
cactus committed
439 440 441 442
recursivePatSynErr :: OutputableBndr name => LHsBinds name -> TcM a
recursivePatSynErr binds
  = failWithTc $
    hang (ptext (sLit "Recursive pattern synonym definition with following bindings:"))
443
       2 (vcat $ map pprLBind . bagToList $ binds)
cactus's avatar
cactus committed
444 445 446 447 448 449
  where
    pprLoc loc  = parens (ptext (sLit "defined at") <+> ppr loc)
    pprLBind (L loc bind) = pprWithCommas ppr (collectHsBindBinders bind) <+>
                            pprLoc loc

tc_single :: forall thing.
450
            TopLevelFlag -> TcSigFun -> TcPragEnv
451
          -> LHsBind Name -> TcM thing
cactus's avatar
cactus committed
452
          -> TcM (LHsBinds TcId, thing)
453
tc_single _top_lvl sig_fn _prag_fn (L _ (PatSynBind psb@PSB{ psb_id = L _ name })) thing_inside
454 455
  = do { (aux_binds, tcg_env) <- tc_pat_syn_decl
       ; thing <- setGblEnv tcg_env thing_inside
cactus's avatar
cactus committed
456 457
       ; return (aux_binds, thing)
       }
458
  where
459
    tc_pat_syn_decl :: TcM (LHsBinds TcId, TcGblEnv)
460
    tc_pat_syn_decl = case sig_fn name of
461 462 463
        Nothing                 -> tcInferPatSynDecl psb
        Just (TcPatSynSig tpsi) -> tcCheckPatSynDecl psb tpsi
        Just                 _  -> panic "tc_single"
464

cactus's avatar
cactus committed
465
tc_single top_lvl sig_fn prag_fn lbind thing_inside
466 467 468 469
  = do { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn
                                      NonRecursive NonRecursive
                                      [lbind]
       ; thing <- tcExtendLetEnv top_lvl ids thing_inside
cactus's avatar
cactus committed
470
       ; return (binds1, thing) }
471

472
------------------------
473
type BKey = Int -- Just number off the bindings
474

475 476
mkEdges :: TcSigFun -> LHsBinds Name -> [Node BKey (LHsBind Name)]
-- See Note [Polymorphic recursion] in HsBinds.
477
mkEdges sig_fn binds
478
  = [ (bind, key, [key | n <- nameSetElems (bind_fvs (unLoc bind)),
Ian Lynagh's avatar
Ian Lynagh committed
479
                         Just key <- [lookupNameEnv key_map n], no_sig n ])
480 481 482 483
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
thomasw's avatar
thomasw committed
484
    no_sig n = noCompleteSig (sig_fn n)
485 486 487

    keyd_binds = bagToList binds `zip` [0::BKey ..]

Ian Lynagh's avatar
Ian Lynagh committed
488
    key_map :: NameEnv BKey     -- Which binding it comes from
489
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
490
                                     , bndr <- collectHsBindBinders bind ]
491

492
------------------------
493
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragEnv
494 495 496 497
            -> RecFlag         -- Whether the group is really recursive
            -> RecFlag         -- Whether it's recursive after breaking
                               -- dependencies based on type signatures
            -> [LHsBind Name]  -- None are PatSynBind
498
            -> TcM (LHsBinds TcId, [TcId])
499

500
-- Typechecks a single bunch of values bindings all together,
501 502 503
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
504 505
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
506 507
-- important.
--
508
-- Knows nothing about the scope of the bindings
509
-- None of the bindings are pattern synonyms
510

511 512
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc bind_list
  = setSrcSpan loc                              $
513
    recoverM (recoveryCode binder_names sig_fn) $ do
514
        -- Set up main recover; take advantage of any type sigs
515

516
    { traceTc "------------------------------------------------" Outputable.empty
517
    ; traceTc "Bindings for {" (ppr binder_names)
518
    ; dflags   <- getDynFlags
519
    ; type_env <- getLclTypeEnv
520
    ; let plan = decideGeneralisationPlan dflags type_env
521
                         binder_names bind_list sig_fn
522
    ; traceTc "Generalisation plan" (ppr plan)
523 524 525 526
    ; result@(tc_binds, poly_ids) <- case plan of
         NoGen              -> tcPolyNoGen rec_tc prag_fn sig_fn bind_list
         InferGen mn        -> tcPolyInfer rec_tc prag_fn sig_fn mn bind_list
         CheckGen lbind sig -> tcPolyCheck rec_tc prag_fn sig lbind
527

chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
528
        -- Check whether strict bindings are ok
Ian Lynagh's avatar
Ian Lynagh committed
529 530
        -- These must be non-recursive etc, and are not generalised
        -- They desugar to a case expression in the end
531 532 533 534
    ; checkStrictBinds top_lvl rec_group bind_list tc_binds poly_ids
    ; traceTc "} End of bindings for" (vcat [ ppr binder_names, ppr rec_group
                                            , vcat [ppr id <+> ppr (idType id) | id <- poly_ids]
                                          ])
535

536
    ; return result }
537
  where
538 539
    binder_names = collectHsBindListBinders bind_list
    loc = foldr1 combineSrcSpans (map getLoc bind_list)
540
         -- The mbinds have been dependency analysed and
541
         -- may no longer be adjacent; so find the narrowest
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
542
         -- span that includes them all
543

544
------------------
545
tcPolyNoGen     -- No generalisation whatsoever
546
  :: RecFlag       -- Whether it's recursive after breaking
547
                   -- dependencies based on type signatures
548
  -> TcPragEnv -> TcSigFun
549
  -> [LHsBind Name]
550
  -> TcM (LHsBinds TcId, [TcId])
551

552 553
tcPolyNoGen rec_tc prag_fn tc_sig_fn bind_list
  = do { (binds', mono_infos) <- tcMonoBinds rec_tc tc_sig_fn
554
                                             (LetGblBndr prag_fn)
555
                                             bind_list
556
       ; mono_ids' <- mapM tc_mono_info mono_infos
557
       ; return (binds', mono_ids') }
558 559
  where
    tc_mono_info (name, _, mono_id)
560
      = do { mono_ty' <- zonkTcType (idType mono_id)
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
561
             -- Zonk, mainly to expose unboxed types to checkStrictBinds
562
           ; let mono_id' = setIdType mono_id mono_ty'
563
           ; _specs <- tcSpecPrags mono_id' (lookupPragEnv prag_fn name)
564
           ; return mono_id' }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
565 566 567 568
           -- NB: tcPrags generates error messages for
           --     specialisation pragmas for non-overloaded sigs
           -- Indeed that is why we call it here!
           -- So we can safely ignore _specs
569 570

------------------
571
tcPolyCheck :: RecFlag       -- Whether it's recursive after breaking
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
572
                             -- dependencies based on type signatures
573
            -> TcPragEnv
574
            -> TcIdSigInfo
575
            -> LHsBind Name
576
            -> TcM (LHsBinds TcId, [TcId])
577
-- There is just one binding,
578
--   it binds a single variable,
Simon Peyton Jones's avatar
Simon Peyton Jones committed
579
--   it has a complete type signature,
580
tcPolyCheck rec_tc prag_fn
581
            sig@(TISI { sig_bndr  = CompleteSig poly_id
582
                      , sig_skols = skol_prs
583 584 585 586
                      , sig_theta = theta
                      , sig_tau   = tau
                      , sig_ctxt  = ctxt
                      , sig_loc   = loc })
587
            bind
588 589
  = do { ev_vars <- newEvVars theta
       ; let skol_info = SigSkol ctxt (mkPhiTy theta tau)
590
             prag_sigs = lookupPragEnv prag_fn name
591
             skol_tvs  = map snd skol_prs
592 593 594 595
                 -- Find the location of the original source type sig, if
                 -- there is was one.  This will appear in messages like
                 -- "type variable x is bound by .. at <loc>"
             name = idName poly_id
596 597
       ; (ev_binds, (binds', [mono_info]))
            <- setSrcSpan loc $
598
               checkConstraints skol_info skol_tvs ev_vars $
599
               tcMonoBinds rec_tc (\_ -> Just (TcIdSig sig)) LetLclBndr [bind]
600

601 602
       ; spec_prags <- tcSpecPrags poly_id prag_sigs
       ; poly_id    <- addInlinePrags poly_id prag_sigs
603

604 605 606 607 608
       ; let (_, _, mono_id) = mono_info
             export = ABE { abe_wrap = idHsWrapper
                          , abe_poly = poly_id
                          , abe_mono = mono_id
                          , abe_prags = SpecPrags spec_prags }
609
             abs_bind = L loc $ AbsBinds
610
                        { abs_tvs = skol_tvs
611
                        , abs_ev_vars = ev_vars, abs_ev_binds = [ev_binds]
612
                        , abs_exports = [export], abs_binds = binds' }
613
       ; return (unitBag abs_bind, [poly_id]) }
614

615 616 617
tcPolyCheck _rec_tc _prag_fn sig _bind
  = pprPanic "tcPolyCheck" (ppr sig)

618
------------------
619
tcPolyInfer
620
  :: RecFlag       -- Whether it's recursive after breaking
621
                   -- dependencies based on type signatures
622
  -> TcPragEnv -> TcSigFun
623
  -> Bool         -- True <=> apply the monomorphism restriction
624
  -> [LHsBind Name]
625 626
  -> TcM (LHsBinds TcId, [TcId])
tcPolyInfer rec_tc prag_fn tc_sig_fn mono bind_list
627
  = do { (tclvl, wanted, (binds', mono_infos))
628
             <- pushLevelAndCaptureConstraints  $
629
                tcMonoBinds rec_tc tc_sig_fn LetLclBndr bind_list
630

631
       ; let name_taus = [(name, idType mono_id) | (name, _, mono_id) <- mono_infos]
632 633
             sigs      = [ sig | (_, Just sig, _) <- mono_infos ]
       ; traceTc "simplifyInfer call" (ppr tclvl $$ ppr name_taus $$ ppr wanted)
634
       ; (qtvs, givens, ev_binds)
635
                 <- simplifyInfer tclvl mono sigs name_taus wanted
636

637
       ; let inferred_theta = map evVarPred givens
638 639
       ; exports <- checkNoErrs $
                    mapM (mkExport prag_fn qtvs inferred_theta) mono_infos
thomasw's avatar
thomasw committed
640

641
       ; loc <- getSrcSpanM
642
       ; let poly_ids = map abe_poly exports
643
             abs_bind = L loc $
644
                        AbsBinds { abs_tvs = qtvs
645
                                 , abs_ev_vars = givens, abs_ev_binds = [ev_binds]
646
                                 , abs_exports = exports, abs_binds = binds' }
647

648 649
       ; traceTc "Binding:" (ppr (poly_ids `zip` map idType poly_ids))
       ; return (unitBag abs_bind, poly_ids) }
650
         -- poly_ids are guaranteed zonked by mkExport
651 652

--------------
653
mkExport :: TcPragEnv
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
654
         -> [TyVar] -> TcThetaType      -- Both already zonked
Ian Lynagh's avatar
Ian Lynagh committed
655
         -> MonoBindInfo
656
         -> TcM (ABExport Id)
657 658 659 660
-- Only called for generalisation plan IferGen, not by CheckGen or NoGen
--
-- mkExport generates exports with
--      zonked type variables,
Ian Lynagh's avatar
Ian Lynagh committed
661
--      zonked poly_ids
662 663 664 665
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
666
-- type environment; see the invariant on TcEnv.tcExtendIdEnv
667

668
-- Pre-condition: the qtvs and theta are already zonked
669

670 671 672
mkExport prag_fn qtvs theta mono_info@(poly_name, mb_sig, mono_id)
  = do  { mono_ty  <- zonkTcType (idType mono_id)
        ; poly_id <- case mb_sig of
673
              Just sig | Just poly_id <- completeIdSigPolyId_maybe sig
674 675 676 677
                       -> return poly_id
              _other   -> checkNoErrs $
                          mkInferredPolyId qtvs theta
                                           poly_name mb_sig mono_ty
678
              -- The checkNoErrs ensures that if the type is ambiguous
679 680 681
              -- we don't carry on to the impedence matching, and generate
              -- a duplicate ambiguity error.  There is a similar
              -- checkNoErrs for complete type signatures too.
682 683

        -- NB: poly_id has a zonked type
684
        ; poly_id <- addInlinePrags poly_id prag_sigs
685
        ; spec_prags <- tcSpecPrags poly_id prag_sigs
Ian Lynagh's avatar
Ian Lynagh committed
686
                -- tcPrags requires a zonked poly_id
687

688
        -- See Note [Impedence matching]
689 690
        -- NB: we have already done checkValidType, including an ambiguity check,
        --     on the type; either when we checked the sig or in mkInferredPolyId
691
        ; let sel_poly_ty = mkInvSigmaTy qtvs theta mono_ty
692 693 694 695 696 697 698
              poly_ty     = idType poly_id
        ; wrap <- if sel_poly_ty `eqType` poly_ty
                  then return idHsWrapper  -- Fast path; also avoids complaint when we infer
                                           -- an ambiguouse type and have AllowAmbiguousType
                                           -- e..g infer  x :: forall a. F a -> Int
                  else addErrCtxtM (mk_impedence_match_msg mono_info sel_poly_ty poly_ty) $
                       tcSubType_NC sig_ctxt sel_poly_ty poly_ty
699 700 701 702

        ; warn_missing_sigs <- woptM Opt_WarnMissingLocalSigs
        ; when warn_missing_sigs $ localSigWarn poly_id mb_sig

703 704
        ; return (ABE { abe_wrap = wrap
                        -- abe_wrap :: idType poly_id ~ (forall qtvs. theta => mono_ty)
705 706
                      , abe_poly = poly_id
                      , abe_mono = mono_id
707
                      , abe_prags = SpecPrags spec_prags}) }
708
  where
709
    prag_sigs = lookupPragEnv prag_fn poly_name
710
    sig_ctxt  = InfSigCtxt poly_name
711

712 713 714 715
mkInferredPolyId :: [TyVar] -> TcThetaType
                 -> Name -> Maybe TcIdSigInfo -> TcType
                 -> TcM TcId
mkInferredPolyId qtvs inferred_theta poly_name mb_sig mono_ty
716
  = do { fam_envs <- tcGetFamInstEnvs
717
       ; let (_co, mono_ty') = normaliseType fam_envs Nominal mono_ty
718 719
               -- Unification may not have normalised the type,
               -- (see Note [Lazy flattening] in TcFlatten) so do it
720 721 722
               -- here to make it as uncomplicated as possible.
               -- Example: f :: [F Int] -> Bool
               -- should be rewritten to f :: [Char] -> Bool, if possible
723
               --
Gabor Greif's avatar
Gabor Greif committed
724
               -- We can discard the coercion _co, because we'll reconstruct
725
               -- it in the call to tcSubType below
726

727
       ; (my_tvs, theta') <- chooseInferredQuantifiers
728
                                inferred_theta (tyCoVarsOfType mono_ty') mb_sig
729

730
       ; let qtvs' = filter (`elemVarSet` my_tvs) qtvs   -- Maintain original order
731
             inferred_poly_ty = mkInvSigmaTy qtvs' theta' mono_ty'
732

Simon Peyton Jones's avatar
Simon Peyton Jones committed
733 734 735
       ; traceTc "mkInferredPolyId" (vcat [ppr poly_name, ppr qtvs, ppr my_tvs, ppr theta'
                                          , ppr inferred_poly_ty])
       ; addErrCtxtM (mk_inf_msg poly_name inferred_poly_ty) $
736
         checkValidType (InfSigCtxt poly_name) inferred_poly_ty
737
         -- See Note [Validity of inferred types]
738

739
       ; return (mkLocalIdOrCoVar poly_name inferred_poly_ty) }
740

741 742 743 744 745 746

chooseInferredQuantifiers :: TcThetaType -> TcTyVarSet -> Maybe TcIdSigInfo
                          -> TcM (TcTyVarSet, TcThetaType)
chooseInferredQuantifiers inferred_theta tau_tvs Nothing
  = do { let free_tvs = closeOverKinds (growThetaTyVars inferred_theta tau_tvs)
                        -- Include kind variables!  Trac #7916
747
             my_theta = pickQuantifiablePreds free_tvs inferred_theta
748 749 750 751 752 753 754 755
       ; return (free_tvs, my_theta) }

chooseInferredQuantifiers inferred_theta tau_tvs
                          (Just (TISI { sig_bndr = bndr_info
                                      , sig_ctxt = ctxt
                                      , sig_theta = annotated_theta }))
  | PartialSig { sig_cts = extra } <- bndr_info
  , Nothing <- extra
756 757
  = do { annotated_theta <- zonkTcTypes annotated_theta
       ; let free_tvs = closeOverKinds (tyCoVarsOfTypes annotated_theta
758 759 760 761 762 763
                                        `unionVarSet` tau_tvs)
       ; traceTc "ciq" (vcat [ ppr bndr_info, ppr annotated_theta, ppr free_tvs])
       ; return (free_tvs, annotated_theta) }

  | PartialSig { sig_cts = extra } <- bndr_info
  , Just loc <- extra
764 765
  = do { annotated_theta <- zonkTcTypes annotated_theta
       ; let free_tvs = closeOverKinds (tyCoVarsOfTypes annotated_theta
766
                                        `unionVarSet` tau_tvs)
767
             my_theta = pickQuantifiablePreds free_tvs inferred_theta
768 769 770 771 772

       -- Report the inferred constraints for an extra-constraints wildcard/hole as
       -- an error message, unless the PartialTypeSignatures flag is enabled. In this
       -- case, the extra inferred constraints are accepted without complaining.
       -- Returns the annotated constraints combined with the inferred constraints.
773 774 775
             inferred_diff = [ pred
                             | pred <- my_theta
                             , all (not . (`eqType` pred)) annotated_theta ]
thomasw's avatar
thomasw committed
776
             final_theta   = annotated_theta ++ inferred_diff
777
       ; partial_sigs      <- xoptM LangExt.PartialTypeSignatures
thomasw's avatar
thomasw committed
778 779
       ; warn_partial_sigs <- woptM Opt_WarnPartialTypeSignatures
       ; msg <- mkLongErrAt loc (mk_msg inferred_diff partial_sigs) empty
780 781 782 783
       ; traceTc "completeTheta" $
            vcat [ ppr bndr_info
                 , ppr annotated_theta, ppr inferred_theta
                 , ppr inferred_diff ]
thomasw's avatar
thomasw committed
784
       ; case partial_sigs of
785
           True | warn_partial_sigs -> reportWarning msg
thomasw's avatar
thomasw committed
786 787 788
                | otherwise         -> return ()
           False                    -> reportError msg

789 790 791 792
       ; return (free_tvs, final_theta) }

  | otherwise = pprPanic "chooseInferredQuantifiers" (ppr bndr_info)

thomasw's avatar
thomasw committed
793 794 795
  where
    pts_hint = text "To use the inferred type, enable PartialTypeSignatures"
    mk_msg inferred_diff suppress_hint
796 797
       = vcat [ hang ((text "Found constraint wildcard") <+> quotes (char '_'))
                   2 (text "standing for") <+> quotes (pprTheta inferred_diff)
thomasw's avatar
thomasw committed
798
              , if suppress_hint then empty else pts_hint
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
              , typeSigCtxt ctxt bndr_info ]


mk_impedence_match_msg :: MonoBindInfo
                       -> TcType -> TcType
                       -> TidyEnv -> TcM (TidyEnv, SDoc)
-- This is a rare but rather awkward error messages
mk_impedence_match_msg (name, mb_sig, _) inf_ty sig_ty tidy_env
 = do { (tidy_env1, inf_ty) <- zonkTidyTcType tidy_env  inf_ty
      ; (tidy_env2, sig_ty) <- zonkTidyTcType tidy_env1 sig_ty
      ; let msg = vcat [ ptext (sLit "When checking that the inferred type")
                       , nest 2 $ ppr name <+> dcolon <+> ppr inf_ty
                       , ptext (sLit "is as general as its") <+> what <+> ptext (sLit "signature")
                       , nest 2 $ ppr name <+> dcolon <+> ppr sig_ty ]
      ; return (tidy_env2, msg) }
  where
    what = case mb_sig of
             Nothing                     -> ptext (sLit "inferred")
             Just sig | isPartialSig sig -> ptext (sLit "(partial)")
                      | otherwise        -> empty


mk_inf_msg :: Name -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_inf_msg poly_name poly_ty tidy_env
 = do { (tidy_env1, poly_ty) <- zonkTidyTcType tidy_env poly_ty
      ; let msg = vcat [ ptext (sLit "When checking the inferred type")
                       , nest 2 $ ppr poly_name <+> dcolon <+> ppr poly_ty ]
      ; return (tidy_env1, msg) }
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

-- | Warn the user about polymorphic local binders that lack type signatures.
localSigWarn :: Id -> Maybe TcIdSigInfo -> TcM ()
localSigWarn id mb_sig
  | Just _ <- mb_sig               = return ()
  | not (isSigmaTy (idType id))    = return ()
  | otherwise                      = warnMissingSig msg id
  where
    msg = ptext (sLit "Polymorphic local binding with no type signature:")

warnMissingSig :: SDoc -> Id -> TcM ()
warnMissingSig msg id
  = do  { env0 <- tcInitTidyEnv
        ; let (env1, tidy_ty) = tidyOpenType env0 (idType id)
        ; addWarnTcM (env1, mk_msg tidy_ty) }
  where
    mk_msg ty = sep [ msg, nest 2 $ pprPrefixName (idName id) <+> dcolon <+> ppr ty ]

Austin Seipp's avatar
Austin Seipp committed
846
{-
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
Note [Partial type signatures and generalisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we have a partial type signature, like
   f :: _ -> Int
then we *always* use the InferGen plan, and hence tcPolyInfer.
We do this even for a local binding with -XMonoLocalBinds.
Reasons:
  * The TcSigInfo for 'f' has a unification variable for the '_',
    whose TcLevel is one level deeper than the current level.
    (See pushTcLevelM in tcTySig.)  But NoGen doesn't increase
    the TcLevel like InferGen, so we lose the level invariant.

  * The signature might be   f :: forall a. _ -> a
    so it really is polymorphic.  It's not clear what it would
    mean to use NoGen on this, and indeed the ASSERT in tcLhs,
    in the (Just sig) case, checks that if there is a signature
    then we are using LetLclBndr, and hence a nested AbsBinds with
    increased TcLevel

It might be possible to fix these difficulties somehow, but there
doesn't seem much point.  Indeed, adding a partial type signature is a
way to get per-binding inferred generalisation.

870 871
Note [Validity of inferred types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
872
We need to check inferred type for validity, in case it uses language
873 874 875 876 877
extensions that are not turned on.  The principle is that if the user
simply adds the inferred type to the program source, it'll compile fine.
See #8883.

Examples that might fail:
878 879
 - the type might be ambiguous

880 881 882 883 884
 - an inferred theta that requires type equalities e.g. (F a ~ G b)
                                or multi-parameter type classes
 - an inferred type that includes unboxed tuples


885 886 887 888 889 890 891 892 893 894
Note [Impedence matching]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   f 0 x = x
   f n x = g [] (not x)

   g [] y = f 10 y
   g _  y = f 9  y

After typechecking we'll get
895 896
  f_mono_ty :: a -> Bool -> Bool
  g_mono_ty :: [b] -> Bool -> Bool
897 898 899 900 901 902 903 904
with constraints
  (Eq a, Num a)

Note that f is polymorphic in 'a' and g in 'b'; and these are not linked.
The types we really want for f and g are
   f :: forall a. (Eq a, Num a) => a -> Bool -> Bool
   g :: forall b. [b] -> Bool -> Bool

Gabor Greif's avatar
Gabor Greif committed
905
We can get these by "impedance matching":
906 907 908 909 910 911 912
   tuple :: forall a b. (Eq a, Num a) => (a -> Bool -> Bool, [b] -> Bool -> Bool)
   tuple a b d1 d1 = let ...bind f_mono, g_mono in (f_mono, g_mono)

   f a d1 d2 = case tuple a Any d1 d2 of (f, g) -> f
   g b = case tuple Integer b dEqInteger dNumInteger of (f,g) -> g

Suppose the shared quantified tyvars are qtvs and constraints theta.
913
Then we want to check that
914 915
   f's final inferred polytype is more polymorphic than
      forall qtvs. theta => f_mono_ty
Gabor Greif's avatar
Gabor Greif committed
916
and the proof is the impedance matcher.
917

Gabor Greif's avatar
Gabor Greif committed
918
Notice that the impedance matcher may do defaulting.  See Trac #7173.
919 920 921 922

It also cleverly does an ambiguity check; for example, rejecting
   f :: F a -> a
where F is a non-injective type function.
Austin Seipp's avatar
Austin Seipp committed
923
-}
924

925 926 927 928
--------------
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise
-- subsequent error messages
929
recoveryCode :: [Name] -> TcSigFun -> TcM (LHsBinds TcId, [Id])
930 931
recoveryCode binder_names sig_fn
  = do  { traceTc "tcBindsWithSigs: error recovery" (ppr binder_names)
thomasw's avatar
thomasw committed
932
        ; let poly_ids = map mk_dummy binder_names
933
        ; return (emptyBag, poly_ids) }
934 935
  where
    mk_dummy name
936 937
      | Just sig <- sig_fn name
      , Just poly_id <- completeSigPolyId_maybe sig
thomasw's avatar
thomasw committed
938 939 940
      = poly_id
      | otherwise
      = mkLocalId name forall_a_a
941 942

forall_a_a :: TcType
943
forall_a_a = mkInvForAllTys [levity1TyVar, openAlphaTyVar] openAlphaTy
944 945 946 947 948 949 950 951 952 953 954 955 956 957

{- *********************************************************************
*                                                                      *
                   Pragmas, including SPECIALISE
*                                                                      *
************************************************************************

Note [Handling SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The basic idea is this:

   f:: Num a => a -> b -> a
   {-# SPECIALISE foo :: Int -> b -> Int #-}

958 959 960
We check that
   (forall a. Num a => a -> a)
      is more polymorphic than
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
   Int -> Int
(for which we could use tcSubType, but see below), generating a HsWrapper
to connect the two, something like
      wrap = /\b. <hole> Int b dNumInt
This wrapper is put in the TcSpecPrag, in the ABExport record of
the AbsBinds.


        f :: (Eq a, Ix b) => a -> b -> Bool
        {-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
        f = <poly_rhs>

From this the typechecker generates

    AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds

    SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
                      -> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])

From these we generate:

    Rule:       forall p, q, (dp:Ix p), (dq:Ix q).
                    f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq

    Spec bind:  f_spec = wrap_fn <poly_rhs>

Note that

  * The LHS of the rule may mention dictionary *expressions* (eg
    $dfIxPair dp dq), and that is essential because the dp, dq are
    needed on the RHS.

  * The RHS of f_spec, <poly_rhs> has a *copy* of 'binds', so that it
    can fully specialise it.



From the TcSpecPrag, in DsBinds we generate a binding for f_spec and a RULE:

   f_spec :: Int -> b -> Int
   f_spec = wrap<f rhs>

   RULE: forall b (d:Num b). f b d = f_spec b

The RULE is generated by taking apart the HsWrapper, which is a little
Matthew Pickering's avatar
Matthew Pickering committed
1006
delicate, but works.
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

Some wrinkles

1. We don't use full-on tcSubType, because that does co and contra
   variance and that in turn will generate too complex a LHS for the
   RULE.  So we use a single invocation of deeplySkolemise /
   deeplyInstantiate in tcSpecWrapper.  (Actually I think that even
   the "deeply" stuff may be too much, because it introduces lambdas,
   though I think it can be made to work without too much trouble.)

2. We need to take care with type families (Trac #5821).  Consider
      type instance F Int = Bool
      f :: Num a => a -> F a
      {-# SPECIALISE foo :: Int -> Bool #-}

  We *could* try to generate an f_spec with precisely the declared type:
      f_spec :: Int -> Bool
      f_spec = <f rhs> Int dNumInt |> co

      RULE: forall d. f Int d = f_spec |> sym co

  but the 'co' and 'sym co' are (a) playing no useful role, and (b) are
  hard to generate.  At all costs we must avoid this:
      RULE: forall d. f Int d |> co = f_spec
  because the LHS will never match (indeed it's rejected in
  decomposeRuleLhs).