TcSMonad.lhs 60.5 KB
Newer Older
1
\begin{code}
2
{-# OPTIONS -Wwarn -fno-warn-tabs #-}
Ian Lynagh's avatar
Ian Lynagh committed
3
4
5
6
7
8
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

9
10
11
-- Type definitions for the constraint solver
module TcSMonad ( 

12
       -- Canonical constraints, definition is now in TcRnTypes
13

14
15
16
    WorkList(..), isEmptyWorkList, emptyWorkList,
    workListFromEq, workListFromNonEq, workListFromCt, 
    extendWorkListEq, extendWorkListNonEq, extendWorkListCt, 
dimitris's avatar
dimitris committed
17
    appendWorkListCt, appendWorkListEqs, unionWorkList, selectWorkItem,
18

19
20
21
22
    getTcSWorkList, updWorkListTcS, updWorkListTcS_return, keepWanted,

    Ct(..), Xi, tyVarsOfCt, tyVarsOfCts, tyVarsOfCDicts, 
    emitFrozenError,
23

dimitris's avatar
dimitris committed
24
25
26
    isWanted, isGivenOrSolved, isDerived,
    isGivenOrSolvedCt, isGivenCt_maybe, 
    isWantedCt, isDerivedCt, pprFlavorArising,
27

28
29
    isFlexiTcsTv,

30
    canRewrite, canSolve,
dimitris's avatar
dimitris committed
31
32
    combineCtLoc, mkSolvedFlavor, mkGivenFlavor,
    mkWantedFlavor,
33
    getWantedLoc,
34

35
    TcS, runTcS, failTcS, panicTcS, traceTcS, -- Basic functionality 
36
37
38
39
    traceFireTcS, bumpStepCountTcS, doWithInert,
    tryTcS, nestImplicTcS, recoverTcS,
    wrapErrTcS, wrapWarnTcS,

40
41
    SimplContext(..), isInteractive, simplEqsOnly, performDefaulting,

42
       -- Creation of evidence variables
43
44
45
46
    newEvVar, forceNewEvVar, delCachedEvVar, updateFlatCache, flushFlatCache,
    newGivenEqVar,
    newEqVar, newKindConstraint,
    EvVarCreated (..), isNewEvVar, FlatEqOrigin ( .. ), origin_matches,
47
48

       -- Setting evidence variables 
batterseapower's avatar
batterseapower committed
49
50
    setEqBind,
    setEvBind,
51
52
53

    setWantedTyBind,

54
    getInstEnvs, getFamInstEnvs,                -- Getting the environments
55
    getTopEnv, getGblEnv, getTcEvBinds, getUntouchables,
56
57
    getTcEvBindsMap, getTcSContext, getTcSTyBinds, getTcSTyBindsMap,
    getTcSEvVarCacheMap, getTcSEvVarFlatCache, setTcSEvVarCacheMap, pprEvVarCache,
58
59

    newFlattenSkolemTy,                         -- Flatten skolems 
60

61
62
        -- Inerts 
    InertSet(..), 
63
    getInertEqs, liftInertEqsTy, getCtCoercion,
64
65
66
67
68
69
    emptyInert, getTcSInerts, updInertSet, extractUnsolved,
    extractUnsolvedTcS, modifyInertTcS,
    updInertSetTcS, partitionCCanMap, partitionEqMap,
    getRelevantCts, extractRelevantInerts,
    CCanMap (..), CtTypeMap, pprCtTypeMap, mkPredKeyForTypeMap, partitionCtTypeMap,

70
71

    instDFunTypes,                              -- Instantiation
72
    instDFunConstraints,          
73
    newFlexiTcSTy, instFlexiTcS,
74

dreixel's avatar
dreixel committed
75
    compatKind, compatKindTcS, isSubKindTcS, unifyKindTcS,
76

77
    TcsUntouchables,
78
    isTouchableMetaTyVar,
79
    isTouchableMetaTyVar_InRange, 
80
81
82
83
84
85

    getDefaultInfo, getDynFlags,

    matchClass, matchFam, MatchInstResult (..), 
    checkWellStagedDFun, 
    warnTcS,
86
    pprEq                                    -- Smaller utils, re-exported from TcM
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
                                             -- TODO (DV): these are only really used in the 
                                             -- instance matcher in TcSimplify. I am wondering
                                             -- if the whole instance matcher simply belongs
                                             -- here 
) where 

#include "HsVersions.h"

import HscTypes
import BasicTypes 

import Inst
import InstEnv 
import FamInst 
import FamInstEnv

import qualified TcRnMonad as TcM
import qualified TcMType as TcM
import qualified TcEnv as TcM 
106
       ( checkWellStaged, topIdLvl, tcGetDefaultTys )
dreixel's avatar
dreixel committed
107
import {-# SOURCE #-} qualified TcUnify as TcM ( unifyKindEq, mkKindErrorCtxt )
108
import Kind
109
110
import TcType
import DynFlags
111
import Type
112
113
114
115

import Coercion
import Class
import TyCon
116
117
import TypeRep 

118
119
import Name
import Var
120
import VarEnv
121
122
123
124
import Outputable
import Bag
import MonadUtils
import VarSet
125

126
-- import Pair ( pSnd )
127
import FastString
Ian Lynagh's avatar
Ian Lynagh committed
128
import Util
129
130
131

import HsBinds               -- for TcEvBinds stuff 
import Id 
Ian Lynagh's avatar
Ian Lynagh committed
132
import TcRnTypes
133

134
135
136
137
138
139
import Unique 
import UniqFM
import Maybes ( orElse )

import Control.Monad( when )
import StaticFlags( opt_PprStyle_Debug )
Ian Lynagh's avatar
Ian Lynagh committed
140
import Data.IORef
141

142
import TrieMap
143

144
\end{code}
145

146

147
\begin{code}
148
149
compatKind :: Kind -> Kind -> Bool
compatKind k1 k2 = k1 `isSubKind` k2 || k2 `isSubKind` k1 
150

dreixel's avatar
dreixel committed
151
152
153
154
155
156
157
158
159
160
compatKindTcS :: Kind -> Kind -> TcS Bool
-- Because kind unification happens during constraint solving, we have
-- to make sure that two kinds are zonked before we compare them.
compatKindTcS k1 k2 = wrapTcS (TcM.compatKindTcM k1 k2)

isSubKindTcS :: Kind -> Kind -> TcS Bool
isSubKindTcS k1 k2 = wrapTcS (TcM.isSubKindTcM k1 k2)

unifyKindTcS :: Type -> Type     -- Context
             -> Kind -> Kind     -- Corresponding kinds
161
             -> TcS Bool
dreixel's avatar
dreixel committed
162
unifyKindTcS ty1 ty2 ki1 ki2
163
164
165
  = wrapTcS $ TcM.addErrCtxtM ctxt $ do
      (_errs, mb_r) <- TcM.tryTc (TcM.unifyKindEq ki1 ki2)
      return (maybe False (const True) mb_r)
dreixel's avatar
dreixel committed
166
167
  where ctxt = TcM.mkKindErrorCtxt ty1 ki1 ty2 ki2

168
169
\end{code}

170
171
172
173
174
175
176
177
%************************************************************************
%*									*
%*                            Worklists                                *
%*  Canonical and non-canonical constraints that the simplifier has to  *
%*  work on. Including their simplification depths.                     *
%*                                                                      *
%*									*
%************************************************************************
178

179
180
Note [WorkList]
~~~~~~~~~~~~~~~
181

182
183
184
A WorkList contains canonical and non-canonical items (of all flavors). 
Notice that each Ct now has a simplification depth. We may 
consider using this depth for prioritization as well in the future. 
185

186
187
188
189
190
As a simple form of priority queue, our worklist separates out
equalities (wl_eqs) from the rest of the canonical constraints, 
so that it's easier to deal with them first, but the separation 
is not strictly necessary. Notice that non-canonical constraints 
are also parts of the worklist. 
191

192
193
194
195
196
197
Note [NonCanonical Semantics]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that canonical constraints involve a CNonCanonical constructor. In the worklist
we use this constructor for constraints that have not yet been canonicalized such as 
   [Int] ~ [a] 
In other words, all constraints start life as NonCanonicals. 
198

199
200
On the other hand, in the Inert Set (see below) the presence of a NonCanonical somewhere
means that we have a ``frozen error''. 
201

202
203
204
NonCanonical constraints never interact directly with other constraints -- but they can
be rewritten by equalities (for instance if a non canonical exists in the inert, we'd 
better rewrite it as much as possible before reporting it as an error to the user)
205

206
\begin{code}
207

208
-- See Note [WorkList]
dimitris's avatar
dimitris committed
209
data WorkList = WorkList { wl_eqs  :: [Ct], wl_funeqs :: [Ct], wl_rest :: [Ct] }
210

batterseapower's avatar
batterseapower committed
211

212
213
unionWorkList :: WorkList -> WorkList -> WorkList
unionWorkList new_wl orig_wl = 
dimitris's avatar
dimitris committed
214
215
216
   WorkList { wl_eqs    = wl_eqs new_wl ++ wl_eqs orig_wl
            , wl_funeqs = wl_funeqs new_wl ++ wl_funeqs orig_wl
            , wl_rest   = wl_rest new_wl ++ wl_rest orig_wl }
217

218
219
extendWorkListEq :: Ct -> WorkList -> WorkList
-- Extension by equality
dimitris's avatar
dimitris committed
220
221
222
223
224
extendWorkListEq ct wl 
  | Just {} <- isCFunEqCan_Maybe ct
  = wl { wl_funeqs = ct : wl_funeqs wl }
  | otherwise
  = wl { wl_eqs = ct : wl_eqs wl }
225

226
227
228
extendWorkListNonEq :: Ct -> WorkList -> WorkList
-- Extension by non equality
extendWorkListNonEq ct wl = wl { wl_rest = ct : wl_rest wl }
229

230
231
232
233
234
extendWorkListCt :: Ct -> WorkList -> WorkList
-- Agnostic
extendWorkListCt ct wl
 | isLCoVar (cc_id ct) = extendWorkListEq ct wl
 | otherwise = extendWorkListNonEq ct wl
235

236
237
238
appendWorkListCt :: [Ct] -> WorkList -> WorkList
-- Agnostic
appendWorkListCt cts wl = foldr extendWorkListCt wl cts
239

240
241
242
appendWorkListEqs :: [Ct] -> WorkList -> WorkList
-- Append a list of equalities
appendWorkListEqs cts wl = foldr extendWorkListEq wl cts
243
244

isEmptyWorkList :: WorkList -> Bool
dimitris's avatar
dimitris committed
245
246
isEmptyWorkList wl 
  = null (wl_eqs wl) &&  null (wl_rest wl) && null (wl_funeqs wl)
247
248

emptyWorkList :: WorkList
dimitris's avatar
dimitris committed
249
emptyWorkList = WorkList { wl_eqs  = [], wl_rest = [], wl_funeqs = []}
250

251
workListFromEq :: Ct -> WorkList
dimitris's avatar
dimitris committed
252
workListFromEq ct = extendWorkListEq ct emptyWorkList
253

254
workListFromNonEq :: Ct -> WorkList
dimitris's avatar
dimitris committed
255
workListFromNonEq ct = extendWorkListNonEq ct emptyWorkList
256

257
258
259
260
workListFromCt :: Ct -> WorkList
-- Agnostic 
workListFromCt ct | isLCoVar (cc_id ct) = workListFromEq ct 
                  | otherwise           = workListFromNonEq ct
261

dimitris's avatar
dimitris committed
262
263
264
265
266
267
268
269
270

selectWorkItem :: WorkList -> (Maybe Ct, WorkList)
selectWorkItem wl@(WorkList { wl_eqs = eqs, wl_funeqs = feqs, wl_rest = rest })
  = case (eqs,feqs,rest) of
      (ct:cts,_,_)     -> (Just ct, wl { wl_eqs    = cts })
      (_,(ct:cts),_)   -> (Just ct, wl { wl_funeqs = cts })
      (_,_,(ct:cts))   -> (Just ct, wl { wl_rest   = cts })
      (_,_,_)          -> (Nothing,wl)

271
272
273
-- Pretty printing 
instance Outputable WorkList where 
  ppr wl = vcat [ text "WorkList (eqs)   = " <+> ppr (wl_eqs wl)
dimitris's avatar
dimitris committed
274
                , text "WorkList (funeqs)= " <+> ppr (wl_funeqs wl)
275
276
                , text "WorkList (rest)  = " <+> ppr (wl_rest wl)
                ]
277

278
279
280
281
282
keepWanted :: Cts -> Cts
keepWanted = filterBag isWantedCt
    -- DV: there used to be a note here that read: 
    -- ``Important: use fold*r*Bag to preserve the order of the evidence variables'' 
    -- DV: Is this still relevant? 
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
\end{code}

%************************************************************************
%*									*
%*                            Inert sets                                *
%*                                                                      *
%*									*
%************************************************************************


Note [InertSet invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
An InertSet is a bag of canonical constraints, with the following invariants:

  1 No two constraints react with each other. 
    
    A tricky case is when there exists a given (solved) dictionary 
    constraint and a wanted identical constraint in the inert set, but do 
    not react because reaction would create loopy dictionary evidence for 
    the wanted. See note [Recursive dictionaries]
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
  2 Given equalities form an idempotent substitution [none of the
    given LHS's occur in any of the given RHS's or reactant parts]

  3 Wanted equalities also form an idempotent substitution

  4 The entire set of equalities is acyclic.

  5 Wanted dictionaries are inert with the top-level axiom set 

  6 Equalities of the form tv1 ~ tv2 always have a touchable variable
    on the left (if possible).

  7 No wanted constraints tv1 ~ tv2 with tv1 touchable. Such constraints
    will be marked as solved right before being pushed into the inert set. 
    See note [Touchables and givens].

  8 No Given constraint mentions a touchable unification variable, but 
    Given/Solved may do so. 

  9 Given constraints will also have their superclasses in the inert set, 
    but Given/Solved will not. 
 
Note that 6 and 7 are /not/ enforced by canonicalization but rather by 
insertion in the inert list, ie by TcInteract. 

During the process of solving, the inert set will contain some
previously given constraints, some wanted constraints, and some given
constraints which have arisen from solving wanted constraints. For
now we do not distinguish between given and solved constraints.

Note that we must switch wanted inert items to given when going under an
implication constraint (when in top-level inference mode).

\begin{code}

data CCanMap a = CCanMap { cts_given   :: UniqFM Cts
                                          -- Invariant: all Given
                         , cts_derived :: UniqFM Cts 
                                          -- Invariant: all Derived
                         , cts_wanted  :: UniqFM Cts } 
                                          -- Invariant: all Wanted

cCanMapToBag :: CCanMap a -> Cts 
cCanMapToBag cmap = foldUFM unionBags rest_wder (cts_given cmap)
  where rest_wder = foldUFM unionBags rest_der  (cts_wanted cmap) 
        rest_der  = foldUFM unionBags emptyCts  (cts_derived cmap)

emptyCCanMap :: CCanMap a 
emptyCCanMap = CCanMap { cts_given = emptyUFM, cts_derived = emptyUFM, cts_wanted = emptyUFM } 

updCCanMap:: Uniquable a => (a,Ct) -> CCanMap a -> CCanMap a 
updCCanMap (a,ct) cmap 
  = case cc_flavor ct of 
      Wanted {}  -> cmap { cts_wanted  = insert_into (cts_wanted cmap)  } 
      Given {}   -> cmap { cts_given   = insert_into (cts_given cmap)   }
      Derived {} -> cmap { cts_derived = insert_into (cts_derived cmap) }
  where 
    insert_into m = addToUFM_C unionBags m a (singleCt ct)

getRelevantCts :: Uniquable a => a -> CCanMap a -> (Cts, CCanMap a) 
-- Gets the relevant constraints and returns the rest of the CCanMap
getRelevantCts a cmap 
    = let relevant = lookup (cts_wanted cmap) `unionBags`
                     lookup (cts_given cmap)  `unionBags`
                     lookup (cts_derived cmap) 
          residual_map = cmap { cts_wanted  = delFromUFM (cts_wanted cmap) a
                              , cts_given   = delFromUFM (cts_given cmap) a
                              , cts_derived = delFromUFM (cts_derived cmap) a }
      in (relevant, residual_map) 
  where
    lookup map = lookupUFM map a `orElse` emptyCts


getCtTypeMapRelevants :: PredType -> TypeMap Ct -> (Cts, TypeMap Ct)
getCtTypeMapRelevants key_pty tmap
  = partitionCtTypeMap (\ct -> mkPredKeyForTypeMap ct `eqType` key_pty) tmap


partitionCCanMap :: (Ct -> Bool) -> CCanMap a -> (Cts,CCanMap a) 
-- All constraints that /match/ the predicate go in the bag, the rest remain in the map
partitionCCanMap pred cmap
  = let (ws_map,ws) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_wanted cmap) 
        (ds_map,ds) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_derived cmap)
        (gs_map,gs) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_given cmap) 
    in (ws `andCts` ds `andCts` gs, cmap { cts_wanted  = ws_map
                                         , cts_given   = gs_map
                                         , cts_derived = ds_map }) 
  where aux k this_cts (mp,acc_cts) = (new_mp, new_acc_cts)
                                    where new_mp      = addToUFM mp k cts_keep
                                          new_acc_cts = acc_cts `andCts` cts_out
                                          (cts_out, cts_keep) = partitionBag pred this_cts

partitionEqMap :: (Ct -> Bool) -> TyVarEnv (Ct,Coercion) -> ([Ct], TyVarEnv (Ct,Coercion))
partitionEqMap pred isubst 
  = let eqs_out = foldVarEnv extend_if_pred [] isubst
        eqs_in  = filterVarEnv_Directly (\_ (ct,_) -> not (pred ct)) isubst
    in (eqs_out, eqs_in)
  where extend_if_pred (ct,_) cts = if pred ct then ct : cts else cts


extractUnsolvedCMap :: CCanMap a -> (Cts, CCanMap a)
-- Gets the wanted or derived constraints and returns a residual
-- CCanMap with only givens.
extractUnsolvedCMap cmap =
  let wntd = foldUFM unionBags emptyCts (cts_wanted cmap)
      derd = foldUFM unionBags emptyCts (cts_derived cmap)
  in (wntd `unionBags` derd, 
      cmap { cts_wanted = emptyUFM, cts_derived = emptyUFM })

-- See Note [InertSet invariants]
data InertSet 
  = IS { inert_eqs     :: TyVarEnv (Ct,Coercion) 
         -- Must all be CTyEqCans! If an entry exists of the form: 
         --   a |-> ct,co
         -- Then ct = CTyEqCan { cc_tyvar = a, cc_rhs = xi } 
         -- And  co : a ~ xi
       , inert_eq_tvs  :: InScopeSet -- Invariant: superset of inert_eqs tvs

       , inert_dicts        :: CCanMap Class -- Dictionaries only, index is the class
       , inert_ips          :: CCanMap (IPName Name)      -- Implicit parameters 
         -- NB: We do not want to use TypeMaps here because functional dependencies
         -- will only match on the class but not the type. Similarly IPs match on the
         -- name but not on the whole datatype

       , inert_funeqs       :: CtTypeMap -- Map from family heads to CFunEqCan constraints

       , inert_irreds       :: Cts  -- Irreducible predicates
       , inert_frozen       :: Cts  -- All non-canonicals are kept here (as frozen errors)
       }


type CtTypeMap = TypeMap Ct

pprCtTypeMap :: TypeMap Ct -> SDoc 
pprCtTypeMap ctmap = ppr (foldTM (:) ctmap [])

ctTypeMapCts :: TypeMap Ct -> Cts
ctTypeMapCts ctmap = foldTM (\ct cts -> extendCts cts ct) ctmap emptyCts

mkPredKeyForTypeMap :: Ct -> PredType
-- Create a key from a constraint to use in the inert CtTypeMap.
-- The only interesting case is for family applications, where the 
-- key is not the whole PredType of cc_id, but rather the family 
-- equality left hand side (head)
mkPredKeyForTypeMap (CFunEqCan { cc_fun = fn, cc_tyargs = xis }) 
  = mkTyConApp fn xis
mkPredKeyForTypeMap ct 
  = evVarPred (cc_id ct)

partitionCtTypeMap :: (Ct -> Bool)
                   -> TypeMap Ct -> (Cts, TypeMap Ct)
-- Kick out the ones that match the predicate and keep the rest in the typemap
partitionCtTypeMap f ctmap
  = foldTM upd_acc ctmap (emptyBag,ctmap)
  where upd_acc ct (cts,acc_map)
         | f ct      = (extendCts cts ct, alterTM ct_key (\_ -> Nothing) acc_map)
         | otherwise = (cts,acc_map)
         where ct_key = mkPredKeyForTypeMap ct


instance Outputable InertSet where
  ppr is = vcat [ vcat (map ppr (varEnvElts (inert_eqs is)))
                , vcat (map ppr (Bag.bagToList $ inert_irreds is)) 
                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_dicts is)))
                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_ips is))) 
                , vcat (map ppr (Bag.bagToList $ ctTypeMapCts (inert_funeqs is)))
                , text "Frozen errors =" <+> -- Clearly print frozen errors
                    braces (vcat (map ppr (Bag.bagToList $ inert_frozen is)))
                , text "Warning: Not displaying cached (solved) constraints"
                ]
                       
emptyInert :: InertSet
emptyInert = IS { inert_eqs     = emptyVarEnv
                , inert_eq_tvs  = emptyInScopeSet
                , inert_frozen  = emptyCts
                , inert_irreds  = emptyCts
                , inert_dicts   = emptyCCanMap
                , inert_ips     = emptyCCanMap
                , inert_funeqs  = emptyTM
                }


type AtomicInert = Ct 

updInertSet :: InertSet -> AtomicInert -> InertSet 
-- Add a new inert element to the inert set. 
updInertSet is item 
  | isCTyEqCan item                     
493
494
495
496
497
  = let upd_err a b = pprPanic "updInertSet" $
                      vcat [ text "Multiple inert equalities:"
                           , text "Old (already inert):" <+> ppr a
                           , text "Trying to insert   :" <+> ppr b
                           ]
498
499
                           
        -- If evidence is cached, pick it up from the flavor!
500
        coercion = getCtCoercion item
501

502
503
        eqs'     = extendVarEnv_C upd_err (inert_eqs is)
                                          (cc_tyvar item)
504
                                          (item, coercion)
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        inscope' = extendInScopeSetSet (inert_eq_tvs is) (tyVarsOfCt item)
    in is { inert_eqs = eqs', inert_eq_tvs = inscope' }

  | Just x  <- isCIPCan_Maybe item      -- IP 
  = is { inert_ips   = updCCanMap (x,item) (inert_ips is) }  
  | isCIrredEvCan item                  -- Presently-irreducible evidence
  = is { inert_irreds = inert_irreds is `Bag.snocBag` item }


  | Just cls <- isCDictCan_Maybe item   -- Dictionary 
  = is { inert_dicts = updCCanMap (cls,item) (inert_dicts is) }

  | Just _tc <- isCFunEqCan_Maybe item  -- Function equality
  = let pty = mkPredKeyForTypeMap item
        upd_funeqs Nothing = Just item
        upd_funeqs (Just _alredy_there) = panic "updInertSet: item already there!"
    in is { inert_funeqs = alterTM pty upd_funeqs (inert_funeqs is) }
     
  | otherwise 
  = is { inert_frozen = inert_frozen is `Bag.snocBag` item }

updInertSetTcS :: AtomicInert -> TcS ()
-- Add a new item in the inerts of the monad
updInertSetTcS item
  = do { traceTcS "updInertSetTcs {" $ 
         text "Trying to insert new inert item:" <+> ppr item

       ; modifyInertTcS (\is -> ((), updInertSet is item)) 
                        
       ; traceTcS "updInertSetTcs }" $ empty }


modifyInertTcS :: (InertSet -> (a,InertSet)) -> TcS a 
-- Modify the inert set with the supplied function
modifyInertTcS upd 
  = do { is_var <- getTcSInertsRef
       ; curr_inert <- wrapTcS (TcM.readTcRef is_var)
       ; let (a, new_inert) = upd curr_inert
       ; wrapTcS (TcM.writeTcRef is_var new_inert)
       ; return a }

extractUnsolvedTcS :: TcS (Cts,Cts) 
-- Extracts frozen errors and remaining unsolved and sets the 
-- inert set to be the remaining! 
extractUnsolvedTcS = 
  modifyInertTcS extractUnsolved 

extractUnsolved :: InertSet -> ((Cts,Cts), InertSet)
-- Postcondition
-- -------------
-- When: 
--   ((frozen,cts),is_solved) <- extractUnsolved inert
-- Then: 
-- -----------------------------------------------------------------------------
--  cts       |  The unsolved (Derived or Wanted only) residual 
--            |  canonical constraints, that is, no CNonCanonicals.
-- -----------|-----------------------------------------------------------------
--  frozen    | The CNonCanonicals of the original inert (frozen errors), 
--            | of all flavors
-- -----------|-----------------------------------------------------------------
--  is_solved | Whatever remains from the inert after removing the previous two. 
-- -----------------------------------------------------------------------------
extractUnsolved is@(IS {inert_eqs = eqs, inert_irreds = irreds}) 
  = let is_solved  = is { inert_eqs    = solved_eqs
                        , inert_eq_tvs = inert_eq_tvs is
                        , inert_dicts  = solved_dicts
                        , inert_ips    = solved_ips
                        , inert_irreds = solved_irreds
                        , inert_frozen = emptyCts
                        , inert_funeqs = solved_funeqs
                        }
    in ((inert_frozen is, unsolved), is_solved)

  where solved_eqs = filterVarEnv_Directly (\_ (ct,_) -> isGivenOrSolvedCt ct) eqs
        unsolved_eqs = foldVarEnv (\(ct,_co) cts -> cts `extendCts` ct) emptyCts $
                       eqs `minusVarEnv` solved_eqs

        (unsolved_irreds, solved_irreds) = Bag.partitionBag (not.isGivenOrSolvedCt) irreds
        (unsolved_ips, solved_ips)       = extractUnsolvedCMap (inert_ips is) 
        (unsolved_dicts, solved_dicts)   = extractUnsolvedCMap (inert_dicts is) 

        (unsolved_funeqs, solved_funeqs) = extractUnsolvedCtTypeMap (inert_funeqs is)

        unsolved = unsolved_eqs `unionBags` unsolved_irreds `unionBags`
                   unsolved_ips `unionBags` unsolved_dicts `unionBags` unsolved_funeqs

extractUnsolvedCtTypeMap :: TypeMap Ct -> (Cts,TypeMap Ct)
extractUnsolvedCtTypeMap
  = partitionCtTypeMap (not . isGivenOrSolved . cc_flavor)


extractRelevantInerts :: Ct -> TcS Cts
-- Returns the constraints from the inert set that are 'relevant' to react with 
-- this constraint. The monad is left with the 'thinner' inerts. 
-- NB: This function contains logic specific to the constraint solver, maybe move there?
extractRelevantInerts wi 
  = modifyInertTcS (extract_inert_relevants wi)
  where extract_inert_relevants (CDictCan {cc_class = cl}) is = 
            let (cts,dict_map) = getRelevantCts cl (inert_dicts is) 
            in (cts, is { inert_dicts = dict_map })
        extract_inert_relevants (CFunEqCan {cc_fun = tc, cc_tyargs = xis}) is = 
            let (cts,feqs_map)  = getCtTypeMapRelevants (mkTyConApp tc xis) (inert_funeqs is)
            in (cts, is { inert_funeqs = feqs_map })
        extract_inert_relevants (CIPCan { cc_ip_nm = nm } ) is = 
            let (cts, ips_map) = getRelevantCts nm (inert_ips is) 
            in (cts, is { inert_ips = ips_map })
        extract_inert_relevants (CIrredEvCan { }) is = 
            let cts = inert_irreds is 
            in (cts, is { inert_irreds = emptyCts })
        extract_inert_relevants _ is = (emptyCts,is)
615
616
\end{code}

617
618


619

620
621
622
623
624
625
626
627
%************************************************************************
%*									*
                    CtFlavor
         The "flavor" of a canonical constraint
%*									*
%************************************************************************

\begin{code}
628
getWantedLoc :: Ct -> WantedLoc
629
630
631
632
633
634
getWantedLoc ct 
  = ASSERT (isWanted (cc_flavor ct))
    case cc_flavor ct of 
      Wanted wl -> wl 
      _         -> pprPanic "Can't get WantedLoc of non-wanted constraint!" empty

635
isWantedCt :: Ct -> Bool
636
isWantedCt ct = isWanted (cc_flavor ct)
637
isDerivedCt :: Ct -> Bool
638
isDerivedCt ct = isDerived (cc_flavor ct)
639

640
isGivenCt_maybe :: Ct -> Maybe GivenKind
dimitris's avatar
dimitris committed
641
642
isGivenCt_maybe ct = isGiven_maybe (cc_flavor ct)

643
isGivenOrSolvedCt :: Ct -> Bool
dimitris's avatar
dimitris committed
644
645
646
isGivenOrSolvedCt ct = isGivenOrSolved (cc_flavor ct)


647
648
649
canSolve :: CtFlavor -> CtFlavor -> Bool 
-- canSolve ctid1 ctid2 
-- The constraint ctid1 can be used to solve ctid2 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
650
651
652
653
654
-- "to solve" means a reaction where the active parts of the two constraints match.
--  active(F xis ~ xi) = F xis 
--  active(tv ~ xi)    = tv 
--  active(D xis)      = D xis 
--  active(IP nm ty)   = nm 
655
656
--
-- NB:  either (a `canSolve` b) or (b `canSolve` a) must hold
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
657
-----------------------------------------
658
canSolve (Given {})   _            = True 
659
canSolve (Wanted {})  (Derived {}) = True
660
canSolve (Wanted {})  (Wanted {})  = True
661
662
canSolve (Derived {}) (Derived {}) = True  -- Important: derived can't solve wanted/given
canSolve _ _ = False  	       	     	   -- (There is no *evidence* for a derived.)
663

664
665
canRewrite :: CtFlavor -> CtFlavor -> Bool 
-- canRewrite ctid1 ctid2 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
666
-- The *equality_constraint* ctid1 can be used to rewrite inside ctid2 
667
canRewrite = canSolve 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
668

669
670
combineCtLoc :: CtFlavor -> CtFlavor -> WantedLoc
-- Precondition: At least one of them should be wanted 
dimitris's avatar
dimitris committed
671
672
673
674
combineCtLoc (Wanted loc) _    = loc
combineCtLoc _ (Wanted loc)    = loc
combineCtLoc (Derived loc ) _  = loc
combineCtLoc _ (Derived loc )  = loc
675
combineCtLoc _ _ = panic "combineCtLoc: both given"
676

677
mkSolvedFlavor :: CtFlavor -> SkolemInfo -> EvTerm -> CtFlavor
dimitris's avatar
dimitris committed
678
-- To be called when we actually solve a wanted/derived (perhaps leaving residual goals)
679
680
681
mkSolvedFlavor (Wanted  loc) sk  evterm  = Given (setCtLocOrigin loc sk) (GivenSolved (Just evterm))
mkSolvedFlavor (Derived loc) sk  evterm  = Given (setCtLocOrigin loc sk) (GivenSolved (Just evterm))
mkSolvedFlavor fl@(Given {}) _sk _evterm = pprPanic "Solving a given constraint!" $ ppr fl
682

dimitris's avatar
dimitris committed
683
684
685
686
mkGivenFlavor :: CtFlavor -> SkolemInfo -> CtFlavor
mkGivenFlavor (Wanted  loc) sk  = Given (setCtLocOrigin loc sk) GivenOrig
mkGivenFlavor (Derived loc) sk  = Given (setCtLocOrigin loc sk) GivenOrig
mkGivenFlavor fl@(Given {}) _sk = pprPanic "Solving a given constraint!" $ ppr fl
687
688

mkWantedFlavor :: CtFlavor -> CtFlavor
689
690
mkWantedFlavor (Wanted  loc) = Wanted loc
mkWantedFlavor (Derived loc) = Wanted loc
dimitris's avatar
dimitris committed
691
mkWantedFlavor fl@(Given {}) = pprPanic "mkWantedFlavor" (ppr fl)
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
\end{code}

%************************************************************************
%*									*
%*		The TcS solver monad                                    *
%*									*
%************************************************************************

Note [The TcS monad]
~~~~~~~~~~~~~~~~~~~~
The TcS monad is a weak form of the main Tc monad

All you can do is
    * fail
    * allocate new variables
    * fill in evidence variables

Filling in a dictionary evidence variable means to create a binding
for it, so TcS carries a mutable location where the binding can be
added.  This is initialised from the innermost implication constraint.

\begin{code}
data TcSEnv
  = TcSEnv { 
716
717
718
719
      tcs_ev_binds    :: EvBindsVar,
      tcs_evvar_cache :: IORef EvVarCache,
          -- Evidence bindings and a cache from predicate types to the created evidence 
          -- variables. The scope of the cache will be the same as the scope of tcs_ev_binds
720

721
      tcs_ty_binds :: IORef (TyVarEnv (TcTyVar, TcType)),
722
723
          -- Global type bindings

724
      tcs_context :: SimplContext,
725
                     
726
727
      tcs_untch :: TcsUntouchables,

dimitris's avatar
dimitris committed
728
729
730
      tcs_ic_depth   :: Int,       -- Implication nesting depth
      tcs_count      :: IORef Int, -- Global step count

731
732
      tcs_inerts   :: IORef InertSet, -- Current inert set
      tcs_worklist :: IORef WorkList  -- Current worklist
dimitris's avatar
dimitris committed
733
734


735
736
737
    -- TcSEnv invariant: the tcs_evvar_cache is a superset of tcs_inerts, tcs_worklist, tcs_ev_binds which must 
    --                   all be disjoint with each other.
    }
dimitris's avatar
dimitris committed
738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
data EvVarCache
  = EvVarCache { evc_cache     :: TypeMap (EvVar,CtFlavor)    
                     -- Map from PredTys to Evidence variables
                     -- used to avoid creating new goals
               , evc_flat_cache :: TypeMap (Coercion,(Xi,CtFlavor,FlatEqOrigin))
                     -- Map from family-free heads (F xi) to family-free types.
                     -- Useful during flattening to share flatten skolem generation
                     -- The boolean flag:
                     --   True  <-> This equation was generated originally during flattening
                     --   False <-> This equation was generated by having solved a goal
               }

data FlatEqOrigin = WhileFlattening  -- Was it generated during flattening?
                  | WhenSolved       -- Was it generated when a family equation was solved?
                  | Any

origin_matches :: FlatEqOrigin -> FlatEqOrigin -> Bool
origin_matches Any _                           = True
origin_matches WhenSolved WhenSolved           = True
origin_matches WhileFlattening WhileFlattening = True
origin_matches _ _ = False
dimitris's avatar
dimitris committed
760
761


762
763
764
765
type TcsUntouchables = (Untouchables,TcTyVarSet)
-- Like the TcM Untouchables, 
-- but records extra TcsTv variables generated during simplification
-- See Note [Extra TcsTv untouchables] in TcSimplify
766
767
768
\end{code}

\begin{code}
769
data SimplContext
770
771
772
773
  = SimplInfer SDoc	   -- Inferring type of a let-bound thing
  | SimplRuleLhs RuleName  -- Inferring type of a RULE lhs
  | SimplInteractive	   -- Inferring type at GHCi prompt
  | SimplCheck SDoc	   -- Checking a type signature or RULE rhs
774
775

instance Outputable SimplContext where
776
777
778
  ppr (SimplInfer d)   = ptext (sLit "SimplInfer") <+> d
  ppr (SimplCheck d)   = ptext (sLit "SimplCheck") <+> d
  ppr (SimplRuleLhs n) = ptext (sLit "SimplRuleLhs") <+> doubleQuotes (ftext n)
779
780
781
782
783
784
785
786
787
788
  ppr SimplInteractive = ptext (sLit "SimplInteractive")

isInteractive :: SimplContext -> Bool
isInteractive SimplInteractive = True
isInteractive _                = False

simplEqsOnly :: SimplContext -> Bool
-- Simplify equalities only, not dictionaries
-- This is used for the LHS of rules; ee
-- Note [Simplifying RULE lhs constraints] in TcSimplify
789
790
simplEqsOnly (SimplRuleLhs {}) = True
simplEqsOnly _                 = False
791
792

performDefaulting :: SimplContext -> Bool
793
794
795
796
performDefaulting (SimplInfer {})   = False
performDefaulting (SimplRuleLhs {}) = False
performDefaulting SimplInteractive  = True
performDefaulting (SimplCheck {})   = True
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

---------------
newtype TcS a = TcS { unTcS :: TcSEnv -> TcM a } 

instance Functor TcS where
  fmap f m = TcS $ fmap f . unTcS m

instance Monad TcS where 
  return x  = TcS (\_ -> return x) 
  fail err  = TcS (\_ -> fail err) 
  m >>= k   = TcS (\ebs -> unTcS m ebs >>= \r -> unTcS (k r) ebs)

-- Basic functionality 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wrapTcS :: TcM a -> TcS a 
-- Do not export wrapTcS, because it promotes an arbitrary TcM to TcS,
-- and TcS is supposed to have limited functionality
wrapTcS = TcS . const -- a TcM action will not use the TcEvBinds

wrapErrTcS :: TcM a -> TcS a 
-- The thing wrapped should just fail
-- There's no static check; it's up to the user
-- Having a variant for each error message is too painful
wrapErrTcS = wrapTcS

wrapWarnTcS :: TcM a -> TcS a 
-- The thing wrapped should just add a warning, or no-op
-- There's no static check; it's up to the user
wrapWarnTcS = wrapTcS

failTcS, panicTcS :: SDoc -> TcS a
failTcS      = wrapTcS . TcM.failWith
panicTcS doc = pprPanic "TcCanonical" doc

traceTcS :: String -> SDoc -> TcS ()
832
traceTcS herald doc = wrapTcS (TcM.traceTc herald doc)
833

834
835
836
837
838
bumpStepCountTcS :: TcS ()
bumpStepCountTcS = TcS $ \env -> do { let ref = tcs_count env
                                    ; n <- TcM.readTcRef ref
                                    ; TcM.writeTcRef ref (n+1) }

839
traceFireTcS :: SubGoalDepth -> SDoc -> TcS ()
840
841
842
843
844
845
846
847
848
-- Dump a rule-firing trace
traceFireTcS depth doc 
  = TcS $ \env -> 
    TcM.ifDOptM Opt_D_dump_cs_trace $ 
    do { n <- TcM.readTcRef (tcs_count env)
       ; let msg = int n 
                <> text (replicate (tcs_ic_depth env) '>')
                <> brackets (int depth) <+> doc
       ; TcM.dumpTcRn msg }
849
850

runTcS :: SimplContext
851
       -> Untouchables 	       -- Untouchables
852
853
       -> InertSet             -- Initial inert set
       -> WorkList             -- Initial work list
854
       -> TcS a		       -- What to run
855
       -> TcM (a, Bag EvBind)
856
runTcS context untouch is wl tcs 
857
  = do { ty_binds_var <- TcM.newTcRef emptyVarEnv
858
859
       ; ev_cache_var <- TcM.newTcRef $ 
                         EvVarCache { evc_cache = emptyTM, evc_flat_cache = emptyTM }
860
       ; ev_binds_var@(EvBindsVar evb_ref _) <- TcM.newTcEvBinds
861
       ; step_count <- TcM.newTcRef 0
862
863
864
865

       ; inert_var <- TcM.newTcRef is 
       ; wl_var <- TcM.newTcRef wl

866
       ; let env = TcSEnv { tcs_ev_binds = ev_binds_var
867
                          , tcs_evvar_cache = ev_cache_var
868
                          , tcs_ty_binds = ty_binds_var
869
                          , tcs_context  = context
870
                          , tcs_untch    = (untouch, emptyVarSet) -- No Tcs untouchables yet
871
872
			  , tcs_count    = step_count
			  , tcs_ic_depth = 0
873
874
                          , tcs_inerts   = inert_var
                          , tcs_worklist = wl_var }
875
876

	     -- Run the computation
877
       ; res <- unTcS tcs env
878
879
	     -- Perform the type unifications required
       ; ty_binds <- TcM.readTcRef ty_binds_var
880
       ; mapM_ do_unification (varEnvElts ty_binds)
881

Ian Lynagh's avatar
Ian Lynagh committed
882
883
884
885
886
887
       ; when debugIsOn $ do {
             count <- TcM.readTcRef step_count
           ; when (opt_PprStyle_Debug && count > 0) $
             TcM.debugDumpTcRn (ptext (sLit "Constraint solver steps =") 
                                <+> int count <+> ppr context)
         }
888
             -- And return
889
       ; ev_binds      <- TcM.readTcRef evb_ref
890
       ; return (res, evBindMapBinds ev_binds) }
891
892
  where
    do_unification (tv,ty) = TcM.writeMetaTyVar tv ty
893

894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913

doWithInert :: InertSet -> TcS a -> TcS a 
doWithInert inert (TcS action)
  = TcS $ \env -> do { new_inert_var <- TcM.newTcRef inert
                     ; orig_cache_var <- TcM.readTcRef (tcs_evvar_cache env)
                     ; new_cache_var <- TcM.newTcRef orig_cache_var
                     ; action (env { tcs_inerts = new_inert_var 
                                   , tcs_evvar_cache = new_cache_var }) }


nestImplicTcS :: EvBindsVar -> TcsUntouchables -> TcS a -> TcS a 
nestImplicTcS ref (inner_range, inner_tcs) (TcS thing_inside) 
  = TcS $ \ TcSEnv { tcs_ty_binds = ty_binds
                   , tcs_evvar_cache = orig_evvar_cache_var
                   , tcs_untch = (_outer_range, outer_tcs)
                   , tcs_count = count
                   , tcs_ic_depth = idepth
                   , tcs_context = ctxt
                   , tcs_inerts = inert_var
                   , tcs_worklist = wl_var } -> 
dimitris's avatar
dimitris committed
914
    do { let inner_untch = (inner_range, outer_tcs `unionVarSet` inner_tcs)
915
916
917
918
       		   -- The inner_range should be narrower than the outer one
		   -- (thus increasing the set of untouchables) but 
		   -- the inner Tcs-untouchables must be unioned with the
		   -- outer ones!
dimitris's avatar
dimitris committed
919

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
         -- Inherit the inerts from the outer scope
       ; orig_inerts <- TcM.readTcRef inert_var
       ; new_inert_var <- TcM.newTcRef orig_inerts
                          
         -- Inherit EvVar cache
       ; orig_evvar_cache <- TcM.readTcRef orig_evvar_cache_var
       ; evvar_cache <- TcM.newTcRef orig_evvar_cache
 
       ; let nest_env = TcSEnv { tcs_ev_binds    = ref
                               , tcs_evvar_cache = evvar_cache
                               , tcs_ty_binds    = ty_binds
                               , tcs_untch       = inner_untch
                               , tcs_count       = count
                               , tcs_ic_depth    = idepth+1
                               , tcs_context     = ctxtUnderImplic ctxt 
                               , tcs_inerts      = new_inert_var
                               , tcs_worklist    = wl_var 
                               -- NB: worklist is going to be empty anyway, 
                               -- so reuse the same ref cell
                               }
       ; thing_inside nest_env } 
941

942
943
944
945
946
recoverTcS :: TcS a -> TcS a -> TcS a
recoverTcS (TcS recovery_code) (TcS thing_inside)
  = TcS $ \ env ->
    TcM.recoverM (recovery_code env) (thing_inside env)

947
948
ctxtUnderImplic :: SimplContext -> SimplContext
-- See Note [Simplifying RULE lhs constraints] in TcSimplify
949
950
951
ctxtUnderImplic (SimplRuleLhs n) = SimplCheck (ptext (sLit "lhs of rule") 
                                               <+> doubleQuotes (ftext n))
ctxtUnderImplic ctxt              = ctxt
952

953
tryTcS :: TcS a -> TcS a
954
955
956
-- Like runTcS, but from within the TcS monad 
-- Completely afresh inerts and worklist, be careful! 
-- Moreover, we will simply throw away all the evidence generated. 
dimitris's avatar
dimitris committed
957
tryTcS tcs
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
  = TcS (\env -> 
             do { wl_var <- TcM.newTcRef emptyWorkList
                ; is_var <- TcM.newTcRef emptyInert

                ; ty_binds_var <- TcM.newTcRef emptyVarEnv
                ; ev_binds_var <- TcM.newTcEvBinds

                ; ev_binds_cache_var <- TcM.newTcRef (EvVarCache emptyTM emptyTM)
                    -- Empty cache: Don't inherit cache from above, see 
                    -- Note [tryTcS for defaulting] in TcSimplify

                ; let env1 = env { tcs_ev_binds = ev_binds_var
                                 , tcs_evvar_cache = ev_binds_cache_var
                                 , tcs_ty_binds = ty_binds_var
                                 , tcs_inerts   = is_var
                                 , tcs_worklist = wl_var } 
                ; unTcS tcs env1 })

-- Getters and setters of TcEnv fields
977
978
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
-- Getter of inerts and worklist
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = TcS (return . tcs_inerts)

getTcSWorkListRef :: TcS (IORef WorkList) 
getTcSWorkListRef = TcS (return . tcs_worklist) 

getTcSInerts :: TcS InertSet 
getTcSInerts = getTcSInertsRef >>= wrapTcS . (TcM.readTcRef) 

getTcSWorkList :: TcS WorkList
getTcSWorkList = getTcSWorkListRef >>= wrapTcS . (TcM.readTcRef) 

updWorkListTcS :: (WorkList -> WorkList) -> TcS () 
updWorkListTcS f 
  = updWorkListTcS_return (\w -> ((),f w))

updWorkListTcS_return :: (WorkList -> (a,WorkList)) -> TcS a
updWorkListTcS_return f
  = do { wl_var <- getTcSWorkListRef
       ; wl_curr <- wrapTcS (TcM.readTcRef wl_var)
       ; let (res,new_work) = f wl_curr
       ; wrapTcS (TcM.writeTcRef wl_var new_work)
       ; return res }

emitFrozenError :: CtFlavor -> EvVar -> SubGoalDepth -> TcS ()
-- Emits a non-canonical constraint that will stand for a frozen error in the inerts. 
emitFrozenError fl ev depth 
  = do { traceTcS "Emit frozen error" (ppr ev <+> dcolon <+> ppr (evVarPred ev))
       ; inert_ref <- getTcSInertsRef 
       ; inerts <- wrapTcS (TcM.readTcRef inert_ref)
       ; let ct = CNonCanonical { cc_id = ev
                                , cc_flavor = fl
                                , cc_depth = depth } 
             inerts_new = inerts { inert_frozen = extendCts (inert_frozen inerts) ct } 
       ; wrapTcS (TcM.writeTcRef inert_ref inerts_new) }

1016
1017
1018
1019
1020
1021
1022
1023
1024
getDynFlags :: TcS DynFlags
getDynFlags = wrapTcS TcM.getDOpts

getTcSContext :: TcS SimplContext
getTcSContext = TcS (return . tcs_context)

getTcEvBinds :: TcS EvBindsVar
getTcEvBinds = TcS (return . tcs_ev_binds) 

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
getTcSEvVarCache :: TcS (IORef EvVarCache)
getTcSEvVarCache = TcS (return . tcs_evvar_cache)

flushFlatCache :: TcS ()
flushFlatCache
  = do { cache_var <- getTcSEvVarCache
       ; the_cache <- wrapTcS $ TcM.readTcRef cache_var
       ; wrapTcS $ TcM.writeTcRef cache_var (the_cache { evc_flat_cache = emptyTM }) }


getTcSEvVarCacheMap :: TcS (TypeMap (EvVar,CtFlavor))
getTcSEvVarCacheMap = do { cache_var <- getTcSEvVarCache 
                         ; the_cache <- wrapTcS $ TcM.readTcRef cache_var 
                         ; return (evc_cache the_cache) }

getTcSEvVarFlatCache :: TcS (TypeMap (Coercion,(Type,CtFlavor,FlatEqOrigin)))
getTcSEvVarFlatCache = do { cache_var <- getTcSEvVarCache 
                          ; the_cache <- wrapTcS $ TcM.readTcRef cache_var 
                          ; return (evc_flat_cache the_cache) }

setTcSEvVarCacheMap :: TypeMap (EvVar,CtFlavor) -> TcS () 
setTcSEvVarCacheMap cache = do { cache_var <- getTcSEvVarCache 
                               ; orig_cache <- wrapTcS $ TcM.readTcRef cache_var
                               ; let new_cache = orig_cache { evc_cache = cache } 
                               ; wrapTcS $ TcM.writeTcRef cache_var new_cache }

1051
getUntouchables :: TcS TcsUntouchables
1052
1053
getUntouchables = TcS (return . tcs_untch)

1054
getTcSTyBinds :: TcS (IORef (TyVarEnv (TcTyVar, TcType)))
1055
1056
getTcSTyBinds = TcS (return . tcs_ty_binds)

1057
getTcSTyBindsMap :: TcS (TyVarEnv (TcTyVar, TcType))
1058
getTcSTyBindsMap = getTcSTyBinds >>= wrapTcS . (TcM.readTcRef) 
1059

1060
1061
1062

getTcEvBindsMap :: TcS EvBindMap
getTcEvBindsMap
1063
1064
1065
  = do { EvBindsVar ev_ref _ <- getTcEvBinds 
       ; wrapTcS $ TcM.readTcRef ev_ref }

1066

1067
1068
setEqBind :: EqVar -> LCoercion -> CtFlavor -> TcS CtFlavor
setEqBind eqv co fl = setEvBind eqv (EvCoercionBox co) fl
1069
1070
1071

setWantedTyBind :: TcTyVar -> TcType -> TcS () 
-- Add a type binding
1072
-- We never do this twice!
1073
1074
1075
1076
setWantedTyBind tv ty 
  = do { ref <- getTcSTyBinds
       ; wrapTcS $ 
         do { ty_binds <- TcM.readTcRef ref
Ian Lynagh's avatar
Ian Lynagh committed
1077
1078
1079
1080
1081
            ; when debugIsOn $
                  TcM.checkErr (not (tv `elemVarEnv` ty_binds)) $
                  vcat [ text "TERRIBLE ERROR: double set of meta type variable"
                       , ppr tv <+> text ":=" <+> ppr ty
                       , text "Old value =" <+> ppr (lookupVarEnv_NF ty_binds tv)]
1082
            ; TcM.writeTcRef ref (extendVarEnv ty_binds tv (tv,ty)) } }
1083
1084


1085
1086
setEvBind :: EvVar -> EvTerm -> CtFlavor -> TcS CtFlavor
-- If the flavor is Solved, we cache the new evidence term inside the returned flavor
1087
-- see Note [Optimizing Spontaneously Solved Coercions]
1088
setEvBind ev t fl
1089
  = do { tc_evbinds <- getTcEvBinds
1090
1091
1092
1093
1094
1095
1096
       ; wrapTcS $ TcM.addTcEvBind tc_evbinds ev t

#ifdef DEBUG
       ; binds <- getTcEvBindsMap
       ; let cycle = any (reaches binds) (evterm_evs t)
       ; when cycle (fail_if_co_loop binds)
#endif
1097
1098
1099
1100
1101
       ; return $ 
         case fl of 
           Given gl (GivenSolved _) 
               -> Given gl (GivenSolved (Just t))
           _   -> fl
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
       }

#ifdef DEBUG
  where fail_if_co_loop binds
          = pprTrace "setEvBind" (vcat [ text "Cycle in evidence binds, evvar =" <+> ppr ev
                                       , ppr (evBindMapBinds binds) ]) $
            when (isLCoVar ev) (pprPanic "setEvBind" (text "BUG: Coercion loop!"))

        reaches :: EvBindMap -> Var -> Bool 
        -- Does this evvar reach ev? 
        reaches ebm ev0 = go ev0
          where go ev0
                  | ev0 == ev = True
                  | Just (EvBind _ evtrm) <- lookupEvBind ebm ev0
                  = any go (evterm_evs evtrm)
                  | otherwise = False

        evterm_evs (EvId v) = [v]
        evterm_evs (EvCoercionBox lco) = varSetElems $ coVarsOfCo lco
        evterm_evs (EvDFunApp _ _ evs) = evs
        evterm_evs (EvTupleSel v _)    = [v]
        evterm_evs (EvSuperClass v _)  = [v]
        evterm_evs (EvCast v co)       = v : varSetElems (coVarsOfCo co)
        evterm_evs (EvTupleMk evs)     = evs
#endif

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
\end{code}
Note [Optimizing Spontaneously Solved Coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Spontaneously solved coercions such as alpha := tau used to be bound as everything else
in the evidence binds. Subsequently they were used for rewriting other wanted or solved
goals. For instance: 

WorkItem = [S] g1 : a ~ tau
Inerts   = [S] g2 : b ~ [a]
           [S] g3 : c ~ [(a,a)]

Would result, eventually, after the workitem rewrites the inerts, in the
following evidence bindings:

        g1 = ReflCo tau
        g2 = ReflCo [a]
        g3 = ReflCo [(a,a)]
        g2' = g2 ; [g1] 
        g3' = g3 ; [(g1,g1)]

This ia annoying because it puts way too much stress to the zonker and
desugarer, since we /know/ at the generation time (spontaneously
solving) that the evidence for a particular evidence variable is the
identity.

For this reason, our solution is to cache inside the GivenSolved
flavor of a constraint the term which is actually solving this
constraint. Whenever we perform a setEvBind, a new flavor is returned
so that if it was a GivenSolved to start with, it remains a
GivenSolved with a new evidence term inside. Then, when we use solved
goals to rewrite other constraints we simply use whatever is in the
GivenSolved flavor and not the constraint cc_id.

In our particular case we'd get the following evidence bindings, eventually: 

       g1 = ReflCo tau
       g2 = ReflCo [a]
       g3 = ReflCo [(a,a)]
       g2'= ReflCo [a]
       g3'= ReflCo [(a,a)]

Since we use smart constructors to get rid of g;ReflCo t ~~> g etc.

\begin{code}
1173

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

warnTcS :: CtLoc orig -> Bool -> SDoc -> TcS ()
warnTcS loc warn_if doc 
  | warn_if   = wrapTcS $ TcM.setCtLoc loc $ TcM.addWarnTc doc
  | otherwise = return ()

getDefaultInfo ::  TcS (SimplContext, [Type], (Bool, Bool))
getDefaultInfo 
  = do { ctxt <- getTcSContext
       ; (tys, flags) <- wrapTcS (TcM.tcGetDefaultTys (isInteractive ctxt))
       ; return (ctxt, tys, flags) }

-- Just get some environments needed for instance looking up and matching
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

getInstEnvs :: TcS (InstEnv, InstEnv) 
getInstEnvs = wrapTcS $ Inst.tcGetInstEnvs 

getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv) 
getFamInstEnvs = wrapTcS $ FamInst.tcGetFamInstEnvs

getTopEnv :: TcS HscEnv 
getTopEnv = wrapTcS $ TcM.getTopEnv 

getGblEnv :: TcS TcGblEnv 
getGblEnv = wrapTcS $ TcM.getGblEnv 

-- Various smaller utilities [TODO, maybe will be absorbed in the instance matcher]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

checkWellStagedDFun :: PredType -> DFunId -> WantedLoc -> TcS () 
checkWellStagedDFun pred dfun_id loc 
  = wrapTcS $ TcM.setCtLoc loc $ 
    do { use_stage <- TcM.getStage
       ; TcM.checkWellStaged pp_thing bind_lvl (thLevel use_stage) }
  where
    pp_thing = ptext (sLit "instance for") <+> quotes (ppr pred)
    bind_lvl = TcM.topIdLvl dfun_id

pprEq :: TcType -> TcType -> SDoc
batterseapower's avatar
batterseapower committed
1214
pprEq ty1 ty2 = pprType $ mkEqPred (ty1,ty2)
1215
1216

isTouchableMetaTyVar :: TcTyVar -> TcS Bool
1217
isTouchableMetaTyVar tv 
1218
1219
1220
  = do { untch <- getUntouchables
       ; return $ isTouchableMetaTyVar_InRange untch tv } 

1221
1222
isTouchableMetaTyVar_InRange :: TcsUntouchables -> TcTyVar -> Bool 
isTouchableMetaTyVar_InRange (untch,untch_tcs) tv 
1223
  = case tcTyVarDetails tv of 
1224
1225
      MetaTv TcsTv _ -> not (tv `elemVarSet` untch_tcs)
                        -- See Note [Touchable meta type variables] 
1226
1227
1228
1229
      MetaTv {}      -> inTouchableRange untch tv 
      _              -> False 


1230
1231
\end{code}

1232

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
Note [Touchable meta type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Meta type variables allocated *by the constraint solver itself* are always
touchable.  Example: 
   instance C a b => D [a] where...
if we use this instance declaration we "make up" a fresh meta type
variable for 'b', which we must later guess.  (Perhaps C has a
functional dependency.)  But since we aren't in the constraint *generator*
we can't allocate a Unique in the touchable range for this implication
constraint.  Instead, we mark it as a "TcsTv", which makes it always-touchable.
1243
1244


1245
\begin{code}
1246
1247
1248
1249
1250
-- Flatten skolems
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

newFlattenSkolemTy :: TcType -> TcS TcType
newFlattenSkolemTy ty = mkTyVarTy <$> newFlattenSkolemTyVar ty
1251
1252
1253

newFlattenSkolemTyVar :: TcType -> TcS TcTyVar
newFlattenSkolemTyVar ty
1254
  = do { tv <- wrapTcS $ do { uniq <- TcM.newUnique
1255
                            ; let name = TcM.mkTcTyVarName uniq (fsLit "f")
1256
1257
1258
1259
                            ; return $ mkTcTyVar name (typeKind ty) (FlatSkol ty) } 
       ; traceTcS "New Flatten Skolem Born" $ 
           (ppr tv <+> text "[:= " <+> ppr ty <+> text "]")
       ; return tv }
1260
1261
1262
1263
1264

-- Instantiations 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

instDFunTypes :: [Either TyVar TcType] -> TcS [TcType] 
1265
1266
1267
1268
instDFunTypes mb_inst_tys 
  = mapM inst_tv mb_inst_tys
  where
    inst_tv :: Either TyVar TcType -> TcS Type
1269
    inst_tv (Left tv)  = mkTyVarTy <$> instFlexiTcS tv
1270
    inst_tv (Right ty) = return ty 
1271

1272
1273
1274
instDFunConstraints :: TcThetaType -> CtFlavor -> TcS [EvVarCreated] 
instDFunConstraints preds fl
  = mapM (newEvVar fl) preds
1275

1276
instFlexiTcS :: TyVar -> TcS TcTyVar 
1277
1278
1279
-- Like TcM.instMetaTyVar but the variable that is created is always
-- touchable; we are supposed to guess its instantiation. 
-- See Note [Touchable meta type variables] 
1280
instFlexiTcS tv = instFlexiTcSHelper (tyVarName tv) (tyVarKind tv) 
1281

1282
1283
1284
1285
1286
newFlexiTcSTy :: Kind -> TcS TcType  
newFlexiTcSTy knd 
  = wrapTcS $
    do { uniq <- TcM.newUnique 
       ; ref  <- TcM.newMutVar  Flexi 
1287
       ; let name = TcM.mkTcTyVarName uniq (fsLit "uf")
1288
1289
       ; return $ mkTyVarTy (mkTcTyVar name knd (MetaTv TcsTv ref)) }

1290
1291
1292
1293
1294
1295
isFlexiTcsTv :: TyVar -> Bool
isFlexiTcsTv tv
  | not (isTcTyVar tv)                  = False
  | MetaTv TcsTv _ <- tcTyVarDetails tv = True
  | otherwise                           = False

1296
newKindConstraint :: TcTyVar -> Kind -> CtFlavor -> TcS EvVarCreated
1297
-- Create new wanted CoVar that constrains the type to have the specified kind. 
1298
newKindConstraint tv knd fl
1299
  = do { tv_k <- instFlexiTcSHelper (tyVarName tv) knd 
1300
       ; let ty_k = mkTyVarTy tv_k
1301
       ; eqv <- newEqVar fl (mkTyVarTy tv) ty_k
batterseapower's avatar
batterseapower committed
1302
       ; return eqv }
1303

1304
1305
instFlexiTcSHelper :: Name -> Kind -> TcS TcTyVar
instFlexiTcSHelper tvname tvkind
1306
1307
1308
1309
1310
1311
  = wrapTcS $ 
    do { uniq <- TcM.newUnique 
       ; ref  <- TcM.newMutVar  Flexi 
       ; let name = setNameUnique tvname uniq 
             kind = tvkind 
       ; return (mkTcTyVar name kind (MetaTv TcsTv ref)) }
1312
1313
1314
1315

-- Superclasses and recursive dictionaries 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
data EvVarCreated 
  = EvVarCreated { evc_is_new    :: Bool    -- True iff the variable was just created
                 , evc_the_evvar :: EvVar } -- The actual evidence variable could be cached or new

isNewEvVar :: EvVarCreated -> Bool
isNewEvVar = evc_is_new

newEvVar :: CtFlavor -> TcPredType -> TcS EvVarCreated
-- Post: If Given then evc_is_new is True
-- Hence it is safe to do a setEvBind right after a newEvVar with a Given flavor
-- NB: newEvVar may temporarily break the TcSEnv invariant but it is expected in 
--     the call sites for this invariant to be quickly restored.
newEvVar fl pty
  | isGivenOrSolved fl    -- Create new variable and update the cache
1330
1331
1332
  = do { 
{- We lose a lot of time if we enable this check:
         eref <- getTcSEvVarCache
dimitris's avatar
dimitris committed
1333
1334
1335
1336
1337
1338
1339
       ; ecache <- wrapTcS (TcM.readTcRef eref)
       ; case lookupTM pty (evc_cache ecache) of
           Just (_,cached_fl) 
               | cached_fl `canSolve` fl 
               -> pprTrace "Interesting: given newEvVar, missed caching opportunity!" empty $
                  return ()
           _ -> return ()
1340
1341
-}
         new <- forceNewEvVar fl pty
1342
1343
1344
       ; return (EvVarCreated True new) }

  | otherwise             -- Otherwise lookup first
1345
1346
  = {-# SCC "newEvVarWanted" #-}
    do { eref <- getTcSEvVarCache
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
       ; ecache <- wrapTcS (TcM.readTcRef eref)
       ; case lookupTM pty (evc_cache ecache) of
           Just (cached_evvar, cached_flavor)
             | cached_flavor `canSolve` fl -- NB: 
                                           -- We want to use the cache /only/ if he can solve
                                           -- the workitem. If cached_flavor is Derived
                                           -- but we have a real Wanted, we want to create
                                           -- new evidence, otherwise we are in danger to
                                           -- have unsolved goals in the end. 
                                           -- (Remember: Derived's are just unification hints
                                           --            but they don't come with guarantees
                                           --            that they can be solved and we don't 
                                           --            quantify over them.
             -> do { traceTcS "newEvVar"  $  text "already cached, doing nothing"
                   ; return (EvVarCreated False cached_evvar) }
           _   -- Not cached or cached with worse flavor
             -> do { new <- force_new_ev_var eref ecache fl pty
                   ; return (EvVarCreated True new) } }

forceNewEvVar :: CtFlavor -> TcPredType -> TcS EvVar
-- Create a new EvVar, regardless of whether or not the
-- cache already contains one like it, and update the cache
forceNewEvVar fl pty 
  = do { eref   <- getTcSEvVarCache
       ; ecache <- wrapTcS (TcM.readTcRef eref)
       ; force_new_ev_var eref ecache fl pty }

force_new_ev_var :: IORef EvVarCache -> EvVarCache -> CtFlavor -> TcPredType -> TcS EvVar
-- Create a new EvVar, and update the cache with it
force_new_ev_var eref ecache fl pty
  = wrapTcS $
    do { TcM.traceTc "newEvVar" $ text "updating cache"

       ; new_evvar <-TcM.newEvVar pty
            -- This is THE PLACE where we finally call TcM.newEvVar

       ; let new_cache = updateCache ecache (new_evvar,fl,pty)
       ; TcM.writeTcRef eref new_cache 
       ; return new_evvar }

updateCache :: EvVarCache -> (EvVar,CtFlavor,Type) -> EvVarCache
updateCache ecache (ev,fl,pty)
  | IPPred {} <- classifier
  = ecache
  | otherwise
  = ecache { evc_cache = ecache' }
  where classifier = classifyPredType pty
        ecache'    = alterTM pty (\_ -> Just (ev,fl)) $
                     evc_cache ecache

1397
1398
1399
1400
delCachedEvVar :: EvVar -> CtFlavor -> TcS ()
delCachedEvVar ev _fl
  = {-# SCC "delCachedEvVarOther" #-}
    do { eref   <- getTcSEvVarCache
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
       ; ecache <- wrapTcS (TcM.readTcRef eref)
       ; wrapTcS $ TcM.writeTcRef eref (delFromCache ecache ev) }

delFromCache :: EvVarCache -> EvVar -> EvVarCache 
delFromCache (EvVarCache { evc_cache      = ecache
                         , evc_flat_cache = flat_cache }) ev
  = EvVarCache { evc_cache = ecache', evc_flat_cache = flat_cache }
  where ecache' = alterTM pty x_del ecache
        x_del Nothing = Nothing
        x_del r@(Just (ev0,_))
           | ev0 == ev = Nothing
           | otherwise = r
        pty = evVarPred ev



updateFlatCache :: EvVar -> CtFlavor 
                -> TyCon -> [Xi] -> TcType 
                -> FlatEqOrigin
                -> TcS () 
updateFlatCache ev fl fn xis rhs_ty feq_origin
  = do { eref <- getTcSEvVarCache
       ; ecache <- wrapTcS (TcM.readTcRef eref)
       ; let flat_cache     = evc_flat_cache ecache
             new_flat_cache = alterTM fun_ty x_flat_cache flat_cache
             new_evc = ecache { evc_flat_cache = new_flat_cache }
       ; wrapTcS $ TcM.writeTcRef eref new_evc }
  where x_flat_cache _ = Just (mkEqVarLCo ev,(rhs_ty,fl,feq_origin))
        fun_ty = mkTyConApp fn xis


pprEvVarCache :: TypeMap (Coercion,a) -> SDoc
pprEvVarCache tm = ppr (foldTM mk_pair tm [])
 where mk_pair (co,_) cos = (co, liftedCoercionKind co) : cos


1437
newGivenEqVar :: CtFlavor -> TcType -> TcType -> Coercion -> TcS (CtFlavor,EvVar)
1438
1439
1440
1441
-- Pre: fl is Given
newGivenEqVar fl ty1 ty2 co 
  = do { ecv <- newEqVar fl ty1 ty2
       ; let v = evc_the_evvar ecv -- Will be a new EvVar by post of newEvVar
1442
1443
       ; fl' <- setEvBind v (EvCoercionBox co) fl
       ; return (fl',v) }
1444
1445
1446
1447

newEqVar :: CtFlavor -> TcType -> TcType -> TcS EvVarCreated
newEqVar fl ty1 ty2 
  = newEvVar fl (mkEqPred (ty1,ty2))
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467


\end{code} 


\begin{code} 
-- Matching and looking up classes and family instances
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data MatchInstResult mi
  = MatchInstNo         -- No matching instance 
  | MatchInstSingle mi  -- Single matching instance
  | MatchInstMany       -- Multiple matching instances


matchClass :: Class -> [Type] -> TcS (MatchInstResult (DFunId, [Either TyVar TcType])) 
-- Look up a class constraint in the instance environment
matchClass clas tys
  = do	{ let pred = mkClassPred clas tys 
        ; instEnvs <- getInstEnvs
1468
        ; case lookupInstEnv instEnvs clas tys of {
1469
            ([], unifs, _)               -- Nothing matches  
1470
1471
1472
1473
1474
                -> do { traceTcS "matchClass not matching"
                                 (vcat [ text "dict" <+> ppr pred, 
                                         text "unifs" <+> ppr unifs ]) 
                      ; return MatchInstNo  
                      } ;  
1475
	    ([(ispec, inst_tys)], [], _) -- A single match 
1476
1477
1478
1479
		-> do	{ let dfun_id = is_dfun ispec
			; traceTcS "matchClass success"
				   (vcat [text "dict" <+> ppr pred, 
				          text "witness" <+> ppr dfun_id
1480
                                           <+> ppr (idType dfun_id) ])
1481
				  -- Record that this dfun is needed
1482
                        ; return $ MatchInstSingle (dfun_id, inst_tys)
1483
                        } ;
1484
     	    (matches, unifs, _)          -- More than one matches 
1485
1486
1487
1488
1489
1490
1491
1492
		-> do	{ traceTcS "matchClass multiple matches, deferring choice"
			           (vcat [text "dict" <+> ppr pred,
				   	  text "matches" <+> ppr matches,
				   	  text "unifs" <+> ppr unifs])
                        ; return MatchInstMany 
		        }
	}
        }
1493

1494
matchFam :: TyCon -> [Type] -> TcS (Maybe (TyCon, [Type]))
1495
matchFam tycon args = wrapTcS $ tcLookupFamInst tycon args
1496
\end{code}
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506


-- Rewriting with respect to the inert equalities 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}

getInertEqs :: TcS (TyVarEnv (Ct,Coercion), InScopeSet)
getInertEqs = do { inert <- getTcSInerts
                 ; return (inert_eqs inert, inert_eq_tvs inert) }

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
getCtCoercion :: Ct -> Coercion
-- Precondition: A CTyEqCan.
getCtCoercion ct 
  | Just (GivenSolved (Just (EvCoercionBox co))) <- maybe_given
  = co
  | otherwise
  = mkEqVarLCo (setVarType (cc_id ct) (ctPred ct))
                -- NB: The variable could be rewritten by a spontaneously
                -- solved, so it is not safe to simply do a mkEqVarLCo (cc_id ct)
                -- Instead we use the most accurate type, given by ctPred c
  where maybe_given = isGiven_maybe (cc_flavor ct)
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572

-- See Note [LiftInertEqs]
liftInertEqsTy :: (TyVarEnv (Ct,Coercion),InScopeSet)
                 -> CtFlavor
                 -> PredType -> Coercion
liftInertEqsTy (subst,inscope) fl pty
  = ty_cts_subst subst inscope fl pty


ty_cts_subst :: TyVarEnv (Ct,Coercion)
             -> InScopeSet -> CtFlavor -> Type -> Coercion
ty_cts_subst subst inscope fl ty 
  = go ty 
  where 
        go ty = go' ty

        go' (TyVarTy tv)      = tyvar_cts_subst tv `orElse` Refl (TyVarTy tv)
        go' (AppTy ty1 ty2)   = mkAppCo (go ty1) (go ty2) 
        go' (TyConApp tc tys) = mkTyConAppCo tc (map go tys)  

        go' (ForAllTy v ty)   = mkForAllCo v' $! co
                             where 
                               (subst',inscope',v') = upd_tyvar_bndr subst inscope v
                               co = ty_cts_subst subst' inscope' fl ty 

        go' (FunTy ty1 ty2)   = mkFunCo (go ty1) (go ty2)


        tyvar_cts_subst tv  
          | Just (ct,co) <- lookupVarEnv subst tv, cc_flavor ct `canRewrite` fl  
          = Just co -- Warn: use cached, not cc_id directly, because of alpha-renamings!
          | otherwise = Nothing 

        upd_tyvar_bndr subst inscope v 
          = (new_subst, (inscope `extendInScopeSet` new_v), new_v)
          where new_subst 
                    | no_change = delVarEnv subst v
                        -- Otherwise we have to extend the environment with /something/. 
                        -- But we do not want to monadically create a new EvVar. So, we
                        -- create an 'unused_ct' but we cache reflexivity as the 
                        -- associated coercion. 
                    | otherwise = extendVarEnv subst v (unused_ct, Refl (TyVarTy new_v))

                no_change = new_v == v 
                new_v     = uniqAway inscope v 

                unused_ct = CTyEqCan { cc_id     = unused_evvar
                                     , cc_flavor = fl -- canRewrite is reflexive.
                                     , cc_tyvar  = v 
                                     , cc_rhs    = mkTyVarTy new_v 
                                     , cc_depth  = unused_depth }
                unused_depth = panic "ty_cts_subst: This depth should not be accessed!"
                unused_evvar = panic "ty_cts_subst: This var is just an alpha-renaming!"
\end{code}

1573
Note [LiftInertEqsTy]
1574
1575
1576
1577
1578
1579
1580
1581
1582
~~~~~~~~~~~~~~~~~~~~~~~ 
The function liftInertEqPred behaves almost like liftCoSubst (in
Coercion), but accepts a map TyVarEnv (Ct,Coercion) instead of a
LiftCoSubst. This data structure is more convenient to use since we
must apply the inert substitution /only/ if the inert equality 
`canRewrite` the work item. There's admittedly some duplication of 
functionality but it would be more tedious to cache and maintain 
different flavors of LiftCoSubst structures in the inerts.