TcInteract.lhs 79.3 KB
Newer Older
1
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
2 3 4 5 6 7 8
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

9
module TcInteract ( 
10 11
     solveInteractGiven,  -- Solves [EvVar],GivenLoc
     solveInteractCts,    -- Solves [Cts]
12 13 14 15
  ) where  

#include "HsVersions.h"

16

17
import BasicTypes ()
18 19 20
import TcCanonical
import VarSet
import Type
dimitris's avatar
dimitris committed
21
import Unify
22 23
import FamInstEnv
import Coercion( mkAxInstRHS )
24 25 26 27 28 29

import Id 
import Var

import TcType

30 31
import Class
import TyCon
32
import Name
33
import IParam
34 35 36

import FunDeps

37
import TcEvidence
38 39
import Outputable

40 41
import TcMType ( zonkTcPredType )

42
import TcRnTypes
43
import TcErrors
44
import TcSMonad
45
import Maybes( orElse )
46
import Bag
47

48 49 50
import Control.Monad ( foldM )
import TrieMap

dimitris's avatar
dimitris committed
51 52 53
import VarEnv
import qualified Data.Traversable as Traversable

54
import Control.Monad( when )
55
import Pair ( pSnd )
56
import UniqFM
57 58 59
import FastString ( sLit ) 
import DynFlags
\end{code}
60 61
**********************************************************************
*                                                                    * 
62 63 64 65
*                      Main Interaction Solver                       *
*                                                                    *
**********************************************************************

66 67
Note [Basic Simplifier Plan] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
68

69 70
1. Pick an element from the WorkList if there exists one with depth 
   less thanour context-stack depth. 
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
2. Run it down the 'stage' pipeline. Stages are: 
      - canonicalization
      - inert reactions
      - spontaneous reactions
      - top-level intreactions
   Each stage returns a StopOrContinue and may have sideffected 
   the inerts or worklist.
  
   The threading of the stages is as follows: 
      - If (Stop) is returned by a stage then we start again from Step 1. 
      - If (ContinueWith ct) is returned by a stage, we feed 'ct' on to 
        the next stage in the pipeline. 
4. If the element has survived (i.e. ContinueWith x) the last stage 
   then we add him in the inerts and jump back to Step 1.

If in Step 1 no such element exists, we have exceeded our context-stack 
depth and will simply fail.
89 90
\begin{code}

91 92 93 94 95 96 97 98 99 100
solveInteractCts :: [Ct] -> TcS ()
solveInteractCts cts 
  = do { evvar_cache <- getTcSEvVarCacheMap
       ; (cts_thinner, new_evvar_cache) <- add_cts_in_cache evvar_cache cts
       ; traceTcS "solveInteractCts" (vcat [ text "cts_original =" <+> ppr cts, 
                                             text "cts_thinner  =" <+> ppr cts_thinner
                                           ])
       ; setTcSEvVarCacheMap new_evvar_cache 
       ; updWorkListTcS (appendWorkListCt cts_thinner) >> solveInteract }
 
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  where 
    add_cts_in_cache evvar_cache cts
      = do { ctxt <- getTcSContext
           ; foldM (solve_or_cache (simplEqsOnly ctxt)) ([],evvar_cache) cts }

    solve_or_cache :: Bool    -- Solve equalities only, not classes etc
                   -> ([Ct],TypeMap (EvVar,CtFlavor)) 
                   -> Ct
                   -> TcS ([Ct],TypeMap (EvVar,CtFlavor))
    solve_or_cache eqs_only (acc_cts,acc_cache) ct
      | dont_cache eqs_only (classifyPredType pred_ty)
      = return (ct:acc_cts,acc_cache) 

      | Just (ev',fl') <- lookupTM pred_ty acc_cache
      , fl' `canSolve` fl
      , isWanted fl
      = do { _ <- setEvBind ev (EvId ev') fl
           ; return (acc_cts,acc_cache) }

      | otherwise -- If it's a given keep it in the work list, even if it exists in the cache!
      = return (ct:acc_cts, alterTM pred_ty (\_ -> Just (ev,fl)) acc_cache)
      where fl = cc_flavor ct
            ev = cc_id ct
            pred_ty = ctPred ct

    dont_cache :: Bool -> PredTree -> Bool
    -- Do not use the cache, not update it, if this is true
    dont_cache _ (IPPred {}) = True    -- IPPreds have subtle shadowing
    dont_cache _ (EqPred ty1 ty2)      -- Report Int ~ Bool errors separately
      | Just tc1 <- tyConAppTyCon_maybe ty1
      , Just tc2 <- tyConAppTyCon_maybe ty2
      , tc1 /= tc2
      = isDecomposableTyCon tc1 && isDecomposableTyCon tc2
      | otherwise = False
    dont_cache eqs_only _ = eqs_only
            -- If we are simplifying equalities only, 
            -- do not cache non-equalities
            -- See Note [Simplifying RULE lhs constraints] in TcSimplify
139 140 141 142 143 144 145 146 147 148 149 150 151

solveInteractGiven :: GivenLoc -> [EvVar] -> TcS () 
solveInteractGiven gloc evs
  = solveInteractCts (map mk_noncan evs)
  where mk_noncan ev = CNonCanonical { cc_id = ev
                                     , cc_flavor = Given gloc GivenOrig 
                                     , cc_depth = 0 }

-- The main solver loop implements Note [Basic Simplifier Plan]
---------------------------------------------------------------
solveInteract :: TcS ()
-- Returns the final InertSet in TcS, WorkList will be eventually empty.
solveInteract
152 153
  = {-# SCC "solveInteract" #-}
    do { dyn_flags <- getDynFlags
154 155
       ; let max_depth = ctxtStkDepth dyn_flags
             solve_loop
156 157
              = {-# SCC "solve_loop" #-}
                do { sel <- selectNextWorkItem max_depth
158 159 160 161
                   ; case sel of 
                      NoWorkRemaining     -- Done, successfuly (modulo frozen)
                        -> return ()
                      MaxDepthExceeded ct -- Failure, depth exceeded
162
                        -> wrapErrTcS $ solverDepthErrorTcS (cc_depth ct) [ct]
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
                      NextWorkItem ct     -- More work, loop around!
                        -> runSolverPipeline thePipeline ct >> solve_loop }
       ; solve_loop }

type WorkItem = Ct
type SimplifierStage = WorkItem -> TcS StopOrContinue

continueWith :: WorkItem -> TcS StopOrContinue
continueWith work_item = return (ContinueWith work_item) 

data SelectWorkItem 
       = NoWorkRemaining      -- No more work left (effectively we're done!)
       | MaxDepthExceeded Ct  -- More work left to do but this constraint has exceeded
                              -- the max subgoal depth and we must stop 
       | NextWorkItem Ct      -- More work left, here's the next item to look at 

selectNextWorkItem :: SubGoalDepth -- Max depth allowed
                   -> TcS SelectWorkItem
selectNextWorkItem max_depth
  = updWorkListTcS_return pick_next
183
  where 
184
    pick_next :: WorkList -> (SelectWorkItem, WorkList)
dimitris's avatar
dimitris committed
185 186 187 188 189 190 191 192
    pick_next wl = case selectWorkItem wl of
                     (Nothing,_) 
                         -> (NoWorkRemaining,wl)           -- No more work
                     (Just ct, new_wl) 
                         | cc_depth ct > max_depth         -- Depth exceeded
                         -> (MaxDepthExceeded ct,new_wl)
                     (Just ct, new_wl) 
                         -> (NextWorkItem ct, new_wl)      -- New workitem and worklist
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

runSolverPipeline :: [(String,SimplifierStage)] -- The pipeline 
                  -> WorkItem                   -- The work item 
                  -> TcS () 
-- Run this item down the pipeline, leaving behind new work and inerts
runSolverPipeline pipeline workItem 
  = do { initial_is <- getTcSInerts 
       ; traceTcS "Start solver pipeline {" $ 
                  vcat [ ptext (sLit "work item = ") <+> ppr workItem 
                       , ptext (sLit "inerts    = ") <+> ppr initial_is]

       ; final_res  <- run_pipeline pipeline (ContinueWith workItem)

       ; final_is <- getTcSInerts
       ; case final_res of 
           Stop            -> do { traceTcS "End solver pipeline (discharged) }" 
                                       (ptext (sLit "inerts    = ") <+> ppr final_is)
                                 ; return () }
           ContinueWith ct -> do { traceTcS "End solver pipeline (not discharged) }" $
                                       vcat [ ptext (sLit "final_item = ") <+> ppr ct
                                            , ptext (sLit "inerts     = ") <+> ppr final_is]
                                 ; updInertSetTcS ct }
       }
  where run_pipeline :: [(String,SimplifierStage)] -> StopOrContinue -> TcS StopOrContinue
        run_pipeline [] res = return res 
        run_pipeline _ Stop = return Stop 
        run_pipeline ((stg_name,stg):stgs) (ContinueWith ct)
          = do { traceTcS ("runStage " ++ stg_name ++ " {")
                          (text "workitem   = " <+> ppr ct) 
               ; res <- stg ct 
               ; traceTcS ("end stage " ++ stg_name ++ " }") empty
               ; run_pipeline stgs res 
               }
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
\end{code}

Example 1:
  Inert:   {c ~ d, F a ~ t, b ~ Int, a ~ ty} (all given)
  Reagent: a ~ [b] (given)

React with (c~d)     ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~ t) ==> IR (ContinueWith (a~[b]))  False   [F [b] ~ t]
React with (b ~ Int) ==> IR (ContinueWith (a~[Int]) True    []

Example 2:
  Inert:  {c ~w d, F a ~g t, b ~w Int, a ~w ty}
  Reagent: a ~w [b]

React with (c ~w d)   ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~g t) ==> IR (ContinueWith (a~[b]))  True    []    (can't rewrite given with wanted!)
etc.

Example 3:
  Inert:  {a ~ Int, F Int ~ b} (given)
  Reagent: F a ~ b (wanted)

React with (a ~ Int)   ==> IR (ContinueWith (F Int ~ b)) True []
React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canonicalize and get nothing

\begin{code}
252 253 254 255 256
thePipeline :: [(String,SimplifierStage)]
thePipeline = [ ("canonicalization",        canonicalizationStage)
              , ("spontaneous solve",       spontaneousSolveStage)
              , ("interact with inerts",    interactWithInertsStage)
              , ("top-level reactions",     topReactionsStage) ]
257 258 259 260
\end{code}


\begin{code}
261

262 263 264 265
-- The canonicalization stage, see TcCanonical for details
----------------------------------------------------------
canonicalizationStage :: SimplifierStage
canonicalizationStage = TcCanonical.canonicalize 
266

267 268 269 270 271 272 273 274
\end{code}

*********************************************************************************
*                                                                               * 
                       The spontaneous-solve Stage
*                                                                               *
*********************************************************************************

275 276 277 278 279 280
Note [Efficient Orientation] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two cases where we have to be careful about 
orienting equalities to get better efficiency. 

281
Case 1: In Rewriting Equalities (function rewriteEqLHS) 
282

283 284 285 286 287 288 289 290 291 292
    When rewriting two equalities with the same LHS:
          (a)  (tv ~ xi1) 
          (b)  (tv ~ xi2) 
    We have a choice of producing work (xi1 ~ xi2) (up-to the
    canonicalization invariants) However, to prevent the inert items
    from getting kicked out of the inerts first, we prefer to
    canonicalize (xi1 ~ xi2) if (b) comes from the inert set, or (xi2
    ~ xi1) if (a) comes from the inert set.
    
    This choice is implemented using the WhichComesFromInert flag. 
293

294 295 296 297 298
Case 2: Functional Dependencies 
    Again, we should prefer, if possible, the inert variables on the RHS

Case 3: IP improvement work
    We must always rewrite so that the inert type is on the right. 
299

300 301
\begin{code}
spontaneousSolveStage :: SimplifierStage 
302
spontaneousSolveStage workItem
303
  = do { mSolve <- trySpontaneousSolve workItem
304
       ; spont_solve mSolve } 
305 306 307 308 309 310 311
  where spont_solve SPCantSolve 
          | isCTyEqCan workItem                    -- Unsolved equality
          = do { kickOutRewritableInerts workItem  -- NB: will add workItem in inerts
               ; return Stop }
          | otherwise
          = continueWith workItem
        spont_solve (SPSolved workItem')           -- Post: workItem' must be equality
312 313 314 315
          = do { bumpStepCountTcS
               ; traceFireTcS (cc_depth workItem) $
                 ptext (sLit "Spontaneous") 
                           <+> parens (ppr (cc_flavor workItem)) <+> ppr workItem
316 317 318 319

                 -- NB: will add the item in the inerts
               ; kickOutRewritableInerts workItem'
               -- .. and Stop
320 321 322 323
               ; return Stop }

kickOutRewritableInerts :: Ct -> TcS () 
-- Pre:  ct is a CTyEqCan 
324 325 326
-- Post: The TcS monad is left with the thinner non-rewritable inerts; but which
--       contains the new constraint.
--       The rewritable end up in the worklist
dimitris's avatar
dimitris committed
327
kickOutRewritableInerts ct
328 329 330 331 332 333
  = {-# SCC "kickOutRewritableInerts" #-}
    do { (wl,ieqs) <- {-# SCC "kick_out_rewritable" #-}
                      modifyInertTcS (kick_out_rewritable ct)

       -- Step 1: Rewrite as many of the inert_eqs on the spot! 
       -- NB: if it is a solved constraint just use the cached evidence
334 335
       
       ; let ct_coercion = getCtCoercion ct 
336 337 338

       ; new_ieqs <- {-# SCC "rewriteInertEqsFromInertEq" #-}
                     rewriteInertEqsFromInertEq (cc_tyvar ct,ct_coercion, cc_flavor ct) ieqs
dimitris's avatar
dimitris committed
339 340
       ; modifyInertTcS (\is -> ((), is { inert_eqs = new_ieqs }))

341 342
       -- Step 2: Add the new guy in
       ; updInertSetTcS ct
343 344 345

       ; traceTcS "Kick out" (ppr ct $$ ppr wl)
       ; updWorkListTcS (unionWorkList wl) }
dimitris's avatar
dimitris committed
346

347 348 349 350
rewriteInertEqsFromInertEq :: (TcTyVar, TcCoercion, CtFlavor) -- A new substitution
                           -> TyVarEnv (Ct, TcCoercion)       -- All inert equalities
                           -> TcS (TyVarEnv (Ct,TcCoercion)) -- The new inert equalities
rewriteInertEqsFromInertEq (subst_tv, subst_co, subst_fl) ieqs
351 352 353 354 355 356 357 358 359 360
-- The goal: traverse the inert equalities and rewrite some of them, dropping some others
-- back to the worklist. This is delicate, see Note [Delicate equality kick-out]
 = do { mieqs <- Traversable.mapM do_one ieqs 
      ; traceTcS "Original inert equalities:" (ppr ieqs)
      ; let flatten_justs elem venv
              | Just (act,aco) <- elem = extendVarEnv venv (cc_tyvar act) (act,aco)
              | otherwise = venv                                     
            final_ieqs = foldVarEnv flatten_justs emptyVarEnv mieqs
      ; traceTcS "Remaining inert equalities:" (ppr final_ieqs)
      ; return final_ieqs }
361 362

 where do_one (ct,inert_co)
363 364 365 366 367 368 369 370 371 372 373 374 375 376
         | subst_fl `canRewrite` fl && (subst_tv `elemVarSet` tyVarsOfCt ct) 
                                      -- Annoyingly inefficient, but we can't simply check 
                                      -- that isReflCo co because of cached solved ReflCo evidence.
         = if fl `canRewrite` subst_fl then 
               -- If also the inert can rewrite the subst it's totally safe 
               -- to rewrite on the spot
               do { (ct',inert_co') <- rewrite_on_the_spot (ct,inert_co)
                  ; return $ Just (ct',inert_co') }
           else -- We have to throw inert back to worklist for occurs checks 
              do { updWorkListTcS (extendWorkListEq ct)
                 ; return Nothing }
         | otherwise -- Just keep it there
         = return $ Just (ct,inert_co)
         where 
377 378 379 380 381 382
	   -- We have new guy         co : tv ~ something
	   -- and old inert  {wanted} cv : tv' ~ rhs[tv]
	   -- We want to rewrite to
	   --  	      	     {wanted} cv' : tv' ~ rhs[something] 
           --                cv = cv' ; rhs[Sym co]
	   --                  
383
           rewrite_on_the_spot (ct,_inert_co)
384
             = do { let rhs' = pSnd (tcCoercionKind co)
385 386
                  ; delCachedEvVar ev fl
                  ; evc <- newEqVar fl (mkTyVarTy tv) rhs'
387 388
                  ; let ev'   = evc_the_evvar evc
                  ; let evco' = mkTcCoVarCo ev' 
389 390 391
                  ; fl' <- if isNewEvVar evc then
                               do { case fl of 
                                      Wanted {} 
392
                                        -> setEqBind ev (evco' `mkTcTransCo` mkTcSymCo co) fl
393
                                      Given {} 
394
                                        -> setEqBind ev' (mkTcCoVarCo ev `mkTcTransCo` co) fl
395 396 397 398
                                      Derived {}
                                        -> return fl }
                           else
                               if isWanted fl then 
399
                                   setEqBind ev (evco' `mkTcTransCo` mkTcSymCo co) fl
400 401 402 403 404 405 406
                               else return fl
                  ; let ct' = ct { cc_id = ev', cc_flavor = fl', cc_rhs = rhs' }
                  ; return (ct',evco') }
           ev  = cc_id ct
           fl  = cc_flavor ct
           tv  = cc_tyvar ct
           rhs = cc_rhs ct
407
           co  = liftTcCoSubstWith [subst_tv] [subst_co] rhs
408

409
kick_out_rewritable :: Ct -> InertSet -> ((WorkList,TyVarEnv (Ct,TcCoercion)), InertSet)
410
-- Returns ALL equalities, to be dealt with later
411 412 413 414 415 416 417 418
kick_out_rewritable ct (IS { inert_eqs    = eqmap
                           , inert_eq_tvs = inscope
                           , inert_dicts  = dictmap
                           , inert_ips    = ipmap
                           , inert_funeqs = funeqmap
                           , inert_irreds = irreds
                           , inert_frozen = frozen
                           } )
419
  = ((kicked_out, eqmap), remaining)
420
  where
421
    kicked_out = WorkList { wl_eqs    = []
dimitris's avatar
dimitris committed
422 423 424
                          , wl_funeqs = bagToList feqs_out
                          , wl_rest   = bagToList (fro_out `andCts` dicts_out 
                                          `andCts` ips_out `andCts` irs_out) }
425
  
426
    remaining = IS { inert_eqs = emptyVarEnv
427 428 429 430 431 432 433 434 435 436
                   , inert_eq_tvs = inscope -- keep the same, safe and cheap
                   , inert_dicts = dicts_in
                   , inert_ips = ips_in
                   , inert_funeqs = feqs_in
                   , inert_irreds = irs_in
                   , inert_frozen = fro_in 
                   }

    fl = cc_flavor ct
    tv = cc_tyvar ct
437 438
                               
    (ips_out,   ips_in)     = partitionCCanMap rewritable ipmap
439

440 441
    (feqs_out,  feqs_in)    = partitionCtTypeMap rewritable funeqmap
    (dicts_out, dicts_in)   = partitionCCanMap rewritable dictmap
442 443 444

    (irs_out,   irs_in)   = partitionBag rewritable irreds
    (fro_out,   fro_in)   = partitionBag rewritable frozen
dimitris's avatar
dimitris committed
445 446

    rewritable ct = (fl `canRewrite` cc_flavor ct)  &&
447 448 449 450 451 452 453 454 455 456
                    (tv `elemVarSet` tyVarsOfCt ct) 
                    -- NB: tyVarsOfCt will return the type 
                    --     variables /and the kind variables/ that are 
                    --     directly visible in the type. Hence we will
                    --     have exposed all the rewriting we care about
                    --     to make the most precise kinds visible for 
                    --     matching classes etc. No need to kick out 
                    --     constraints that mention type variables whose
                    --     kinds could contain this variable!

457
\end{code}
458

459 460
Note [Delicate equality kick-out]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
dimitris's avatar
dimitris committed
461

462 463 464 465 466
Delicate:
When kicking out rewritable constraints, it would be safe to simply
kick out all rewritable equalities, but instead we only kick out those
that, when rewritten, may result in occur-check errors. We rewrite the
rest on the spot. Example:
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
          WorkItem =   [S] a ~ b
          Inerts   = { [W] b ~ [a] }
Now at this point the work item cannot be further rewritten by the
inert (due to the weaker inert flavor), so we are examining if we can
instead rewrite the inert from the workitem. But if we rewrite it on
the spot we have to recanonicalize because of the danger of occurs
errors.  On the other hand if the inert flavor was just as powerful or
more powerful than the workitem flavor, the work-item could not have
reached this stage (because it would have already been rewritten by
the inert).

The coclusion is: we kick out the 'dangerous' equalities that may
require recanonicalization (occurs checks) and the rest we rewrite
unconditionally without further checks, on-the-spot with function
rewriteInertEqsFromInertEq.


\begin{code}
486 487
data SPSolveResult = SPCantSolve
                   | SPSolved WorkItem 
488

489 490 491
-- SPCantSolve means that we can't do the unification because e.g. the variable is untouchable
-- SPSolved workItem' gives us a new *given* to go on 

492
-- @trySpontaneousSolve wi@ solves equalities where one side is a
493
-- touchable unification variable.
494
--     	    See Note [Touchables and givens] 
495
trySpontaneousSolve :: WorkItem -> TcS SPSolveResult
496 497
trySpontaneousSolve workItem@(CTyEqCan { cc_id = eqv, cc_flavor = gw
                                       , cc_tyvar = tv1, cc_rhs = xi, cc_depth = d })
dimitris's avatar
dimitris committed
498
  | isGivenOrSolved gw
499
  = return SPCantSolve
500 501 502 503
  | Just tv2 <- tcGetTyVar_maybe xi
  = do { tch1 <- isTouchableMetaTyVar tv1
       ; tch2 <- isTouchableMetaTyVar tv2
       ; case (tch1, tch2) of
504 505 506
           (True,  True)  -> trySpontaneousEqTwoWay d eqv gw tv1 tv2
           (True,  False) -> trySpontaneousEqOneWay d eqv gw tv1 xi
           (False, True)  -> trySpontaneousEqOneWay d eqv gw tv2 (mkTyVarTy tv1)
507
	   _ -> return SPCantSolve }
508 509
  | otherwise
  = do { tch1 <- isTouchableMetaTyVar tv1
510 511 512
       ; if tch1 then trySpontaneousEqOneWay d eqv gw tv1 xi
                 else do { traceTcS "Untouchable LHS, can't spontaneously solve workitem:" $
                           ppr workItem 
513
                         ; return SPCantSolve }
514
       }
515 516 517 518

  -- No need for 
  --      trySpontaneousSolve (CFunEqCan ...) = ...
  -- See Note [No touchables as FunEq RHS] in TcSMonad
519
trySpontaneousSolve _ = return SPCantSolve
520 521

----------------
522 523
trySpontaneousEqOneWay :: SubGoalDepth 
                       -> EqVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
524
-- tv is a MetaTyVar, not untouchable
525 526 527
trySpontaneousEqOneWay d eqv gw tv xi
  | not (isSigTyVar tv) || isTyVarTy xi
  = solveWithIdentity d eqv gw tv xi
528
  | otherwise -- Still can't solve, sig tyvar and non-variable rhs
529
  = return SPCantSolve
530 531

----------------
532 533
trySpontaneousEqTwoWay :: SubGoalDepth 
                       -> EqVar -> CtFlavor -> TcTyVar -> TcTyVar -> TcS SPSolveResult
534
-- Both tyvars are *touchable* MetaTyvars so there is only a chance for kind error here
535 536

trySpontaneousEqTwoWay d eqv gw tv1 tv2
Simon Peyton Jones's avatar
Simon Peyton Jones committed
537
  = do { let k1_sub_k2 = k1 `tcIsSubKind` k2
dreixel's avatar
dreixel committed
538
       ; if k1_sub_k2 && nicer_to_update_tv2
539
         then solveWithIdentity d eqv gw tv2 (mkTyVarTy tv1)
540
         else solveWithIdentity d eqv gw tv1 (mkTyVarTy tv2) }
541 542 543 544 545 546
  where
    k1 = tyVarKind tv1
    k2 = tyVarKind tv2
    nicer_to_update_tv2 = isSigTyVar tv1 || isSystemName (Var.varName tv2)
\end{code}

547 548 549 550
Note [Kind errors] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the wanted problem: 
      alpha ~ (# Int, Int #) 
551
where alpha :: ArgKind and (# Int, Int #) :: (#). We can't spontaneously solve this constraint, 
552
but we should rather reject the program that give rise to it. If 'trySpontaneousEqTwoWay' 
553
simply returns @CantSolve@ then that wanted constraint is going to propagate all the way and 
554
get quantified over in inference mode. That's bad because we do know at this point that the 
555
constraint is insoluble. Instead, we call 'recKindErrorTcS' here, which will fail later on.
556 557

The same applies in canonicalization code in case of kind errors in the givens. 
558

559
However, when we canonicalize givens we only check for compatibility (@compatKind@). 
560
If there were a kind error in the givens, this means some form of inconsistency or dead code.
561

562 563 564 565 566
You may think that when we spontaneously solve wanteds we may have to look through the 
bindings to determine the right kind of the RHS type. E.g one may be worried that xi is 
@alpha@ where alpha :: ? and a previous spontaneous solving has set (alpha := f) with (f :: *).
But we orient our constraints so that spontaneously solved ones can rewrite all other constraint
so this situation can't happen. 
567

568 569
Note [Spontaneous solving and kind compatibility] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
570 571 572
Note that our canonical constraints insist that *all* equalities (tv ~
xi) or (F xis ~ rhs) require the LHS and the RHS to have *compatible*
the same kinds.  ("compatible" means one is a subKind of the other.)
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587
  - It can't be *equal* kinds, because
     b) wanted constraints don't necessarily have identical kinds
               eg   alpha::? ~ Int
     b) a solved wanted constraint becomes a given

  - SPJ thinks that *given* constraints (tv ~ tau) always have that
    tau has a sub-kind of tv; and when solving wanted constraints
    in trySpontaneousEqTwoWay we re-orient to achieve this.

  - Note that the kind invariant is maintained by rewriting.
    Eg wanted1 rewrites wanted2; if both were compatible kinds before,
       wanted2 will be afterwards.  Similarly givens.

Caveat:
588 589 590 591 592 593 594 595 596
  - Givens from higher-rank, such as: 
          type family T b :: * -> * -> * 
          type instance T Bool = (->) 

          f :: forall a. ((T a ~ (->)) => ...) -> a -> ... 
          flop = f (...) True 
     Whereas we would be able to apply the type instance, we would not be able to 
     use the given (T Bool ~ (->)) in the body of 'flop' 

597 598 599 600 601 602 603

Note [Avoid double unifications] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The spontaneous solver has to return a given which mentions the unified unification
variable *on the left* of the equality. Here is what happens if not: 
  Original wanted:  (a ~ alpha),  (alpha ~ Int) 
We spontaneously solve the first wanted, without changing the order! 
604
      given : a ~ alpha      [having unified alpha := a] 
605 606 607
Now the second wanted comes along, but he cannot rewrite the given, so we simply continue.
At the end we spontaneously solve that guy, *reunifying*  [alpha := Int] 

608
We avoid this problem by orienting the resulting given so that the unification
609 610
variable is on the left.  [Note that alternatively we could attempt to
enforce this at canonicalization]
611

612 613 614
See also Note [No touchables as FunEq RHS] in TcSMonad; avoiding
double unifications is the main reason we disallow touchable
unification variables as RHS of type family equations: F xis ~ alpha.
615 616 617

\begin{code}
----------------
618

619 620
solveWithIdentity :: SubGoalDepth 
                  -> EqVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
621 622
-- Solve with the identity coercion 
-- Precondition: kind(xi) is a sub-kind of kind(tv)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
623 624 625
-- Precondition: CtFlavor is Wanted or Derived
-- See [New Wanted Superclass Work] to see why solveWithIdentity 
--     must work for Derived as well as Wanted
626
-- Returns: workItem where 
627
--        workItem = the new Given constraint
628
solveWithIdentity d eqv wd tv xi 
629
  = do { traceTcS "Sneaky unification:" $ 
630
                       vcat [text "Coercion variable:  " <+> ppr eqv <+> ppr wd, 
631 632 633
                             text "Coercion:           " <+> pprEq (mkTyVarTy tv) xi,
                             text "Left  Kind is     : " <+> ppr (typeKind (mkTyVarTy tv)),
                             text "Right Kind is     : " <+> ppr (typeKind xi)
634
                            ]
635

636 637 638 639 640 641 642
       ; let xi' = defaultKind xi      
               -- We only instantiate kind unification variables
               -- with simple kinds like *, not OpenKind or ArgKind
               -- cf TcUnify.uUnboundKVar

       ; setWantedTyBind tv xi'
       ; let refl_xi = mkTcReflCo xi'
643

644
       ; let solved_fl = mkSolvedFlavor wd UnkSkol (EvCoercion refl_xi) 
645
       ; (_,eqv_given) <- newGivenEqVar solved_fl (mkTyVarTy tv) xi' refl_xi
646

647
       ; when (isWanted wd) $ do { _ <- setEqBind eqv refl_xi wd; return () }
648
           -- We don't want to do this for Derived, that's why we use 'when (isWanted wd)'
649 650
       ; return $ SPSolved (CTyEqCan { cc_id     = eqv_given
                                     , cc_flavor = solved_fl
651
                                     , cc_tyvar  = tv, cc_rhs = xi', cc_depth = d }) }
652 653
\end{code}

654 655 656 657 658 659 660

*********************************************************************************
*                                                                               * 
                       The interact-with-inert Stage
*                                                                               *
*********************************************************************************

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
Note [The Solver Invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We always add Givens first.  So you might think that the solver has
the invariant

   If the work-item is Given, 
   then the inert item must Given

But this isn't quite true.  Suppose we have, 
    c1: [W] beta ~ [alpha], c2 : [W] blah, c3 :[W] alpha ~ Int
After processing the first two, we get
     c1: [G] beta ~ [alpha], c2 : [W] blah
Now, c3 does not interact with the the given c1, so when we spontaneously
solve c3, we must re-react it with the inert set.  So we can attempt a 
reaction between inert c2 [W] and work-item c3 [G].

It *is* true that [Solver Invariant]
   If the work-item is Given, 
   AND there is a reaction
   then the inert item must Given
or, equivalently,
   If the work-item is Given, 
   and the inert item is Wanted/Derived
   then there is no reaction

686 687 688
\begin{code}
-- Interaction result of  WorkItem <~> AtomicInert

689 690 691 692
data InteractResult 
    = IRWorkItemConsumed { ir_fire :: String } 
    | IRInertConsumed    { ir_fire :: String } 
    | IRKeepGoing        { ir_fire :: String }
693

694 695
irWorkItemConsumed :: String -> TcS InteractResult
irWorkItemConsumed str = return (IRWorkItemConsumed str) 
696

697 698
irInertConsumed :: String -> TcS InteractResult
irInertConsumed str = return (IRInertConsumed str) 
699

700 701 702 703
irKeepGoing :: String -> TcS InteractResult 
irKeepGoing str = return (IRKeepGoing str) 
-- You can't discard neither workitem or inert, but you must keep 
-- going. It's possible that new work is waiting in the TcS worklist. 
704 705


706 707 708 709
interactWithInertsStage :: WorkItem -> TcS StopOrContinue 
-- Precondition: if the workitem is a CTyEqCan then it will not be able to 
-- react with anything at this stage. 
interactWithInertsStage wi 
710
  = do { ctxt <- getTcSContext
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
       ; if simplEqsOnly ctxt then 
             return (ContinueWith wi)
         else 
             extractRelevantInerts wi >>= 
               foldlBagM interact_next (ContinueWith wi) }

  where interact_next Stop atomic_inert 
          = updInertSetTcS atomic_inert >> return Stop
        interact_next (ContinueWith wi) atomic_inert 
          = do { ir <- doInteractWithInert atomic_inert wi
               ; let mk_msg rule keep_doc 
                       = text rule <+> keep_doc
      	                 <+> vcat [ ptext (sLit "Inert =") <+> ppr atomic_inert
      	                          , ptext (sLit "Work =")  <+> ppr wi ]
               ; case ir of 
                   IRWorkItemConsumed { ir_fire = rule } 
                       -> do { bumpStepCountTcS
                             ; traceFireTcS (cc_depth wi) 
                                            (mk_msg rule (text "WorkItemConsumed"))
                             ; updInertSetTcS atomic_inert
                             ; return Stop } 
                   IRInertConsumed { ir_fire = rule }
                       -> do { bumpStepCountTcS
                             ; traceFireTcS (cc_depth atomic_inert) 
                                            (mk_msg rule (text "InertItemConsumed"))
                             ; return (ContinueWith wi) }
                   IRKeepGoing {} -- Should we do a bumpStepCountTcS? No for now.
                       -> do { updInertSetTcS atomic_inert
                             ; return (ContinueWith wi) }
               }
   
742
--------------------------------------------
743
data WhichComesFromInert = LeftComesFromInert | RightComesFromInert
744

745 746
doInteractWithInert :: Ct -> Ct -> TcS InteractResult
-- Identical class constraints.
747
doInteractWithInert
748
  inertItem@(CDictCan { cc_id = d1, cc_flavor = fl1, cc_class = cls1, cc_tyargs = tys1 }) 
749
   workItem@(CDictCan { cc_id = _d2, cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
750

751
  | cls1 == cls2  
batterseapower's avatar
batterseapower committed
752 753
  = do { let pty1 = mkClassPred cls1 tys1
             pty2 = mkClassPred cls2 tys2
754
             inert_pred_loc     = (pty1, pprFlavorArising fl1)
755
             work_item_pred_loc = (pty2, pprFlavorArising fl2)
756

757 758 759
       ; traceTcS "doInteractWithInert" (vcat [ text "inertItem = " <+> ppr inertItem
                                              , text "workItem  = " <+> ppr workItem ])

760 761 762 763 764 765
       ; any_fundeps 
           <- if isGivenOrSolved fl1 && isGivenOrSolved fl2 then return Nothing
              -- NB: We don't create fds for given (and even solved), have not seen a useful
              -- situation for these and even if we did we'd have to be very careful to only
              -- create Derived's and not Wanteds. 

766 767 768
              else do { let fd_eqns = improveFromAnother inert_pred_loc work_item_pred_loc
                      ; wloc  <- get_workitem_wloc fl2 
                      ; rewriteWithFunDeps fd_eqns tys2 wloc }
769 770 771 772 773 774
                      -- See Note [Efficient Orientation], [When improvement happens]

       ; case any_fundeps of
           -- No Functional Dependencies 
           Nothing             
               | eqTypes tys1 tys2 -> solveOneFromTheOther "Cls/Cls" (EvId d1,fl1) workItem
775
               | otherwise         -> irKeepGoing "NOP"
776 777

           -- Actual Functional Dependencies
778 779
           Just (_rewritten_tys2,_cos2,fd_work)
              -- Standard thing: create derived fds and keep on going. Importantly we don't
780
               -- throw workitem back in the worklist because this can cause loops. See #5236.
781 782
               -> do { emitFDWorkAsDerived fd_work (cc_depth workItem)
                     ; irKeepGoing "Cls/Cls (new fundeps)" } -- Just keep going without droping the inert 
783
       }
784 785 786 787 788 789
  where get_workitem_wloc (Wanted wl)  = return wl 
        get_workitem_wloc (Derived wl) = return wl 
        get_workitem_wloc (Given {})   = pprPanic "Unexpected given workitem!" $
                                         vcat [ text "Work item =" <+> ppr workItem
                                              , text "Inert item=" <+> ppr inertItem
                                              ]
790

791 792 793 794 795 796 797 798
-- Two pieces of irreducible evidence: if their types are *exactly identical* we can
-- rewrite them. We can never improve using this: if we want ty1 :: Constraint and have
-- ty2 :: Constraint it clearly does not mean that (ty1 ~ ty2)
doInteractWithInert (CIrredEvCan { cc_id = id1, cc_flavor = ifl, cc_ty = ty1 })
           workItem@(CIrredEvCan { cc_ty = ty2 })
  | ty1 `eqType` ty2
  = solveOneFromTheOther "Irred/Irred" (EvId id1,ifl) workItem

799 800 801 802 803
-- Two implicit parameter constraints.  If the names are the same,
-- but their types are not, we generate a wanted type equality 
-- that equates the type (this is "improvement").  
-- However, we don't actually need the coercion evidence,
-- so we just generate a fresh coercion variable that isn't used anywhere.
804
doInteractWithInert (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
805
           workItem@(CIPCan { cc_flavor = wfl, cc_ip_nm = nm2, cc_ip_ty = ty2 })
dimitris's avatar
dimitris committed
806
  | nm1 == nm2 && isGivenOrSolved wfl && isGivenOrSolved ifl
807 808 809
  = 	-- See Note [Overriding implicit parameters]
        -- Dump the inert item, override totally with the new one
	-- Do not require type equality
810 811
	-- For example, given let ?x::Int = 3 in let ?x::Bool = True in ...
	--              we must *override* the outer one with the inner one
812
    irInertConsumed "IP/IP (override inert)"
813

814
  | nm1 == nm2 && ty1 `eqType` ty2 
815
  = solveOneFromTheOther "IP/IP" (EvId id1,ifl) workItem 
816

817
  | nm1 == nm2
818
  =  	-- See Note [When improvement happens]
819 820 821 822 823 824 825 826
    do { let flav = Wanted (combineCtLoc ifl wfl)
       ; eqv <- newEqVar flav ty2 ty1 -- See Note [Efficient Orientation]
       ; when (isNewEvVar eqv) $
              (let ct = CNonCanonical { cc_id     = evc_the_evvar eqv 
                                      , cc_flavor = flav
                                      , cc_depth  = cc_depth workItem }
              in updWorkListTcS (extendWorkListEq ct))

827 828 829 830
       ; case wfl of
           Given   {} -> pprPanic "Unexpected given IP" (ppr workItem)
           Derived {} -> pprPanic "Unexpected derived IP" (ppr workItem)
           Wanted  {} ->
831
               do { _ <- setEvBind (cc_id workItem) 
832
                            (mkEvCast id1 (mkTcSymCo (mkTcTyConAppCo (ipTyCon nm1) [mkTcCoVarCo (evc_the_evvar eqv)]))) wfl
833
                  ; irWorkItemConsumed "IP/IP (solved by rewriting)" } }
834

batterseapower's avatar
batterseapower committed
835
doInteractWithInert (CFunEqCan { cc_id = eqv1, cc_flavor = fl1, cc_fun = tc1
836 837 838 839
                               , cc_tyargs = args1, cc_rhs = xi1, cc_depth = d1 }) 
                    (CFunEqCan { cc_id = eqv2, cc_flavor = fl2, cc_fun = tc2
                               , cc_tyargs = args2, cc_rhs = xi2, cc_depth = d2 })
  | lhss_match  
840
  , Just (GivenSolved {}) <- isGiven_maybe fl1 -- Inert is solved and we can simply ignore it
841 842 843 844
                                          -- when workitem is given/solved
  , isGivenOrSolved fl2
  = irInertConsumed "FunEq/FunEq"
  | lhss_match 
845 846
  , Just (GivenSolved {}) <- isGiven_maybe fl2 -- Workitem is solved and we can ignore it when
                                               -- the inert is given/solved
847 848
  , isGivenOrSolved fl1                 
  = irWorkItemConsumed "FunEq/FunEq" 
849
  | fl1 `canSolve` fl2 && lhss_match
850 851 852
  = do { rewriteEqLHS LeftComesFromInert  (eqv1,xi1) (eqv2,d2,fl2,xi2) 
       ; irWorkItemConsumed "FunEq/FunEq" }

853
  | fl2 `canSolve` fl1 && lhss_match
854 855
  = do { rewriteEqLHS RightComesFromInert (eqv2,xi2) (eqv1,d1,fl1,xi1) 
       ; irInertConsumed "FunEq/FunEq"}
856
  where
857
    lhss_match = tc1 == tc2 && eqTypes args1 args2 
858 859


860 861 862 863
doInteractWithInert _ _ = irKeepGoing "NOP"


rewriteEqLHS :: WhichComesFromInert -> (EqVar,Xi) -> (EqVar,SubGoalDepth,CtFlavor,Xi) -> TcS ()
864
-- Used to ineract two equalities of the following form: 
865 866
-- First Equality:   co1: (XXX ~ xi1)  
-- Second Equality:  cv2: (XXX ~ xi2) 
867
-- Where the cv1 `canRewrite` cv2 equality 
868 869
-- We have an option of creating new work (xi1 ~ xi2) OR (xi2 ~ xi1), 
--    See Note [Efficient Orientation] for that 
870
rewriteEqLHS LeftComesFromInert (eqv1,xi1) (eqv2,d,gw,xi2) 
871
  = do { delCachedEvVar eqv2 gw -- Similarly to canonicalization!
872 873
       ; evc <- newEqVar gw xi2 xi1
       ; let eqv2' = evc_the_evvar evc
874
       ; gw' <- case gw of 
875
           Wanted {} 
876
               -> setEqBind eqv2 
877
                    (mkTcCoVarCo eqv1 `mkTcTransCo` mkTcSymCo (mkTcCoVarCo eqv2')) gw
878 879
           Given {}
               -> setEqBind eqv2'
880
                    (mkTcSymCo (mkTcCoVarCo eqv2) `mkTcTransCo` mkTcCoVarCo eqv1) gw
881
           Derived {} 
882
               -> return gw
883 884
       ; when (isNewEvVar evc) $ 
              updWorkListTcS (extendWorkListEq (CNonCanonical { cc_id     = eqv2'
885
                                                              , cc_flavor = gw'
886 887 888
                                                              , cc_depth  = d } ) ) }

rewriteEqLHS RightComesFromInert (eqv1,xi1) (eqv2,d,gw,xi2) 
889
  = do { delCachedEvVar eqv2 gw -- Similarly to canonicalization!
890 891
       ; evc <- newEqVar gw xi1 xi2
       ; let eqv2' = evc_the_evvar evc
892
       ; gw' <- case gw of
893
           Wanted {} 
894
               -> setEqBind eqv2
895
                    (mkTcCoVarCo eqv1 `mkTcTransCo` mkTcCoVarCo eqv2') gw
896
           Given {}  
897
               -> setEqBind eqv2'
898
                    (mkTcSymCo (mkTcCoVarCo eqv1) `mkTcTransCo` mkTcCoVarCo eqv2) gw
899
           Derived {} 
900
               -> return gw
901 902 903

       ; when (isNewEvVar evc) $
              updWorkListTcS (extendWorkListEq (CNonCanonical { cc_id = eqv2'
904
                                                              , cc_flavor = gw'
905 906 907 908 909 910 911 912 913 914
                                                              , cc_depth  = d } ) ) }

solveOneFromTheOther :: String             -- Info 
                     -> (EvTerm, CtFlavor) -- Inert 
                     -> Ct        -- WorkItem 
                     -> TcS InteractResult
-- Preconditions: 
-- 1) inert and work item represent evidence for the /same/ predicate
-- 2) ip/class/irred evidence (no coercions) only
solveOneFromTheOther info (ev_term,ifl) workItem
915
  | isDerived wfl
916
  = irWorkItemConsumed ("Solved[DW] " ++ info)
917

918 919 920
  | isDerived ifl -- The inert item is Derived, we can just throw it away, 
    	      	  -- The workItem is inert wrt earlier inert-set items, 
		  -- so it's safe to continue on from this point
921
  = irInertConsumed ("Solved[DI] " ++ info)
922
  
923
  | Just (GivenSolved {}) <- isGiven_maybe ifl, isGivenOrSolved wfl
dimitris's avatar
dimitris committed
924
    -- Same if the inert is a GivenSolved -- just get rid of it
925
  = irInertConsumed ("Solved[SI] " ++ info)
dimitris's avatar
dimitris committed
926

927 928 929
  | otherwise
  = ASSERT( ifl `canSolve` wfl )
      -- Because of Note [The Solver Invariant], plus Derived dealt with
930
    do { when (isWanted wfl) $ do { _ <- setEvBind wid ev_term wfl; return () }
931 932
           -- Overwrite the binding, if one exists
	   -- If both are Given, we already have evidence; no need to duplicate
933
       ; irWorkItemConsumed ("Solved " ++ info) }
934 935 936
  where 
     wfl = cc_flavor workItem
     wid = cc_id workItem
937

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
\end{code}

Note [Superclasses and recursive dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    Overlaps with Note [SUPERCLASS-LOOP 1]
                  Note [SUPERCLASS-LOOP 2]
                  Note [Recursive instances and superclases]
    ToDo: check overlap and delete redundant stuff

Right before adding a given into the inert set, we must
produce some more work, that will bring the superclasses 
of the given into scope. The superclass constraints go into 
our worklist. 

When we simplify a wanted constraint, if we first see a matching
instance, we may produce new wanted work. To (1) avoid doing this work 
twice in the future and (2) to handle recursive dictionaries we may ``cache'' 
955 956 957
this item as given into our inert set WITHOUT adding its superclass constraints, 
otherwise we'd be in danger of creating a loop [In fact this was the exact reason
for doing the isGoodRecEv check in an older version of the type checker]. 
958 959 960 961 962 963 964 965 966 967

But now we have added partially solved constraints to the worklist which may 
interact with other wanteds. Consider the example: 

Example 1: 

    class Eq b => Foo a b        --- 0-th selector
    instance Eq a => Foo [a] a   --- fooDFun

and wanted (Foo [t] t). We are first going to see that the instance matches 
968
and create an inert set that includes the solved (Foo [t] t) but not its superclasses:
969 970 971 972
       d1 :_g Foo [t] t                 d1 := EvDFunApp fooDFun d3 
Our work list is going to contain a new *wanted* goal
       d3 :_w Eq t 

973
Ok, so how do we get recursive dictionaries, at all: 
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

Example 2:

    data D r = ZeroD | SuccD (r (D r));
    
    instance (Eq (r (D r))) => Eq (D r) where
        ZeroD     == ZeroD     = True
        (SuccD a) == (SuccD b) = a == b
        _         == _         = False;
    
    equalDC :: D [] -> D [] -> Bool;
    equalDC = (==);

We need to prove (Eq (D [])). Here's how we go:

	d1 :_w Eq (D [])

by instance decl, holds if
	d2 :_w Eq [D []]
	where 	d1 = dfEqD d2

*BUT* we have an inert set which gives us (no superclasses): 
        d1 :_g Eq (D []) 
By the instance declaration of Eq we can show the 'd2' goal if 
	d3 :_w Eq (D [])
	where	d2 = dfEqList d3
		d1 = dfEqD d2
Now, however this wanted can interact with our inert d1 to set: 
        d3 := d1 
and solve the goal. Why was this interaction OK? Because, if we chase the 
evidence of d1 ~~> dfEqD d2 ~~-> dfEqList d3, so by setting d3 := d1 we 
are really setting
        d3 := dfEqD2 (dfEqList d3) 
which is FINE because the use of d3 is protected by the instance function 
applications. 

So, our strategy is to try to put solved wanted dictionaries into the
inert set along with their superclasses (when this is meaningful,
i.e. when new wanted goals are generated) but solve a wanted dictionary
from a given only in the case where the evidence variable of the
wanted is mentioned in the evidence of the given (recursively through
the evidence binds) in a protected way: more instance function applications 
than superclass selectors.

Here are some more examples from GHC's previous type checker


Example 3: 
This code arises in the context of "Scrap Your Boilerplate with Class"

    class Sat a
    class Data ctx a
    instance  Sat (ctx Char)             => Data ctx Char       -- dfunData1
    instance (Sat (ctx [a]), Data ctx a) => Data ctx [a]        -- dfunData2

    class Data Maybe a => Foo a    

    instance Foo t => Sat (Maybe t)                             -- dfunSat

    instance Data Maybe a => Foo a                              -- dfunFoo1
    instance Foo a        => Foo [a]                            -- dfunFoo2
    instance                 Foo [Char]                         -- dfunFoo3

Consider generating the superclasses of the instance declaration
	 instance Foo a => Foo [a]

So our problem is this
    d0 :_g Foo t
    d1 :_w Data Maybe [t] 

We may add the given in the inert set, along with its superclasses
[assuming we don't fail because there is a matching instance, see 
 tryTopReact, given case ]
  Inert:
    d0 :_g Foo t 
  WorkList 
    d01 :_g Data Maybe t  -- d2 := EvDictSuperClass d0 0 
    d1 :_w Data Maybe [t] 
Then d2 can readily enter the inert, and we also do solving of the wanted
  Inert: 
    d0 :_g Foo t 
    d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
  WorkList
    d2 :_w Sat (Maybe [t])          
    d3 :_w Data Maybe t
    d01 :_g Data Maybe t 
Now, we may simplify d2 more: 
  Inert:
      d0 :_g Foo t 
      d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
      d1 :_g Data Maybe [t] 
      d2 :_g Sat (Maybe [t])          d2 := dfunSat d4 
  WorkList: 
      d3 :_w Data Maybe t 
      d4 :_w Foo [t] 
      d01 :_g Data Maybe t 

Now, we can just solve d3.
  Inert
      d0 :_g Foo t 
      d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
      d2 :_g Sat (Maybe [t])          d2 := dfunSat d4 
  WorkList
      d4 :_w Foo [t] 
      d01 :_g Data Maybe t 
And now we can simplify d4 again, but since it has superclasses we *add* them to the worklist:
  Inert
      d0 :_g Foo t 
      d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
      d2 :_g Sat (Maybe [t])          d2 := dfunSat d4 
      d4 :_g Foo [t]                  d4 := dfunFoo2 d5 
  WorkList:
      d5 :_w Foo t 
      d6 :_g Data Maybe [t]           d6 := EvDictSuperClass d4 0
      d01 :_g Data Maybe t 
Now, d5 can be solved! (and its superclass enter scope) 
  Inert
      d0 :_g Foo t 
      d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
      d2 :_g Sat (Maybe [t])          d2 := dfunSat d4 
      d4 :_g Foo [t]                  d4 := dfunFoo2 d5 
      d5 :_g Foo t                    d5 := dfunFoo1 d7
  WorkList:
      d7 :_w Data Maybe t
      d6 :_g Data Maybe [t]
      d8 :_g Data Maybe t            d8 := EvDictSuperClass d5 0
      d01 :_g Data Maybe t 

Now, two problems: 
   [1] Suppose we pick d8 and we react him with d01. Which of the two givens should 
       we keep? Well, we *MUST NOT* drop d01 because d8 contains recursive evidence 
       that must not be used (look at case interactInert where both inert and workitem
       are givens). So we have several options: 
       - Drop the workitem always (this will drop d8)
              This feels very unsafe -- what if the work item was the "good" one
              that should be used later to solve another wanted?
       - Don't drop anyone: the inert set may contain multiple givens! 
              [This is currently implemented] 

The "don't drop anyone" seems the most safe thing to do, so now we come to problem 2: 
  [2] We have added both d6 and d01 in the inert set, and we are interacting our wanted
      d7. Now the [isRecDictEv] function in the ineration solver 
      [case inert-given workitem-wanted] will prevent us from interacting d7 := d8 
      precisely because chasing the evidence of d8 leads us to an unguarded use of d7. 

      So, no interaction happens there. Then we meet d01 and there is no recursion 
      problem there [isRectDictEv] gives us the OK to interact and we do solve d7 := d01! 
             
Note [SUPERCLASS-LOOP 1]
~~~~~~~~~~~~~~~~~~~~~~~~
We have to be very, very careful when generating superclasses, lest we
accidentally build a loop. Here's an example:

  class S a

  class S a => C a where { opc :: a -> a }
  class S b => D b where { opd :: b -> b }
  
  instance C Int where
     opc = opd
  
  instance D Int where
     opd = opc

From (instance C Int) we get the constraint set {ds1:S Int, dd:D Int}
Simplifying, we may well get:
	$dfCInt = :C ds1 (opd dd)
	dd  = $dfDInt
	ds1 = $p1 dd
Notice that we spot that we can extract ds1 from dd.  

Alas!  Alack! We can do the same for (instance D Int):

	$dfDInt = :D ds2 (opc dc)
	dc  = $dfCInt
	ds2 = $p1 dc

And now we've defined the superclass in terms of itself.
Two more nasty cases are in
	tcrun021
	tcrun033

Solution: 
  - Satisfy the superclass context *all by itself* 
    (tcSimplifySuperClasses)
  - And do so completely; i.e. no left-over constraints
    to mix with the constraints arising from method declarations


Note [SUPERCLASS-LOOP 2]
~~~~~~~~~~~~~~~~~~~~~~~~
We need to be careful when adding "the constaint we are trying to prove".
Suppose we are *given* d1:Ord a, and want to deduce (d2:C [a]) where

	class Ord a => C a where
	instance Ord [a] => C [a] where ...

Then we'll use the instance decl to deduce C [a] from Ord [a], and then add the
superclasses of C [a] to avails.  But we must not overwrite the binding
for Ord [a] (which is obtained from Ord a) with a superclass selection or we'll just
build a loop! 

Here's another variant, immortalised in tcrun020
	class Monad m => C1 m
	class C1 m => C2 m x
	instance C2 Maybe Bool
For the instance decl we need to build (C1 Maybe), and it's no good if
we run around and add (C2 Maybe Bool) and its superclasses to the avails 
before we search for C1 Maybe.

Here's another example 
 	class Eq b => Foo a b
	instance Eq a => Foo [a] a
If we are reducing
	(Foo [t] t)

we'll first deduce that it holds (via the instance decl).  We must not
then overwrite the Eq t constraint with a superclass selection!

At first I had a gross hack, whereby I simply did not add superclass constraints
in addWanted, though I did for addGiven and addIrred.  This was sub-optimal,
becuase it lost legitimate superclass sharing, and it still didn't do the job:
I found a very obscure program (now tcrun021) in which improvement meant the
simplifier got two bites a the cherry... so something seemed to be an Stop
first time, but reducible next time.

Now we implement the Right Solution, which is to check for loops directly 
when adding superclasses.  It's a bit like the occurs check in unification.

Note [Recursive instances and superclases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this code, which arises in the context of "Scrap Your 
Boilerplate with Class".  

    class Sat a
    class Data ctx a
    instance  Sat (ctx Char)             => Data ctx Char
    instance (Sat (ctx [a]), Data ctx a) => Data ctx [a]

    class Data Maybe a => Foo a

    instance Foo t => Sat (Maybe t)

    instance Data Maybe a => Foo a
    instance Foo a        => Foo [a]
    instance                 Foo [Char]

In the instance for Foo [a], when generating evidence for the superclasses
(ie in tcSimplifySuperClasses) we need a superclass (Data Maybe [a]).
Using the instance for Data, we therefore need
        (Sat (Maybe [a], Data Maybe a)
But we are given (Foo a), and hence its superclass (Data Maybe a).
So that leaves (Sat (Maybe [a])).  Using the instance for Sat means
we need (Foo [a]).  And that is the very dictionary we are bulding
an instance for!  So we must put that in the "givens".  So in this
case we have
	Given:  Foo a, Foo [a]
	Wanted: Data Maybe [a]

BUT we must *not not not* put the *superclasses* of (Foo [a]) in
the givens, which is what 'addGiven' would normally do. Why? Because
(Data Maybe [a]) is the superclass, so we'd "satisfy" the wanted 
by selecting a superclass from Foo [a], which simply makes a loop.

On the other hand we *must* put the superclasses of (Foo a) in
the givens, as you can see from the derivation described above.

Conclusion: in the very special case of tcSimplifySuperClasses
we have one 'given' (namely the "this" dictionary) whose superclasses
must not be added to 'givens' by addGiven.  

There is a complication though.  Suppose there are equalities
      instance (Eq a, a~b) => Num (a,b)
Then we normalise the 'givens' wrt the equalities, so the original
given "this" dictionary is cast to one of a different type.  So it's a
bit trickier than before to identify the "special" dictionary whose
superclasses must not be added. See test
   indexed-types/should_run/EqInInstance

We need a persistent property of the dictionary to record this
special-ness.  Current I'm using the InstLocOrigin (a bit of a hack,
but cool), which is maintained by dictionary normalisation.
Specifically, the InstLocOrigin is
	     NoScOrigin
then the no-superclass thing kicks in.  WATCH OUT if you fiddle
with InstLocOrigin!

Note [MATCHING-SYNONYMS]
~~~~~~~~~~~~~~~~~~~~~~~~
When trying to match a dictionary (D tau) to a top-level instance, or a 
type family equation (F taus_1 ~ tau_2) to a top-level family instance, 
we do *not* need to expand type synonyms because the matcher will do that for us.


Note [RHS-FAMILY-SYNONYMS] 
~~~~~~~~~~~~~~~~~~~~~~~~~~
The RHS of a family instance is represented as yet another constructor which is 
like a type synonym for the real RHS the programmer declared. Eg: 
    type instance F (a,a) = [a] 
Becomes: 
    :R32 a = [a]      -- internal type synonym introduced
    F (a,a) ~ :R32 a  -- instance 

When we react a family instance with a type family equation in the work list 
we keep the synonym-using RHS without expansion. 


1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
%************************************************************************
%*                                                                      *
%*          Functional dependencies, instantiation of equations
%*                                                                      *
%************************************************************************

When we spot an equality arising from a functional dependency,
we now use that equality (a "wanted") to rewrite the work-item
constraint right away.  This avoids two dangers

 Danger 1: If we send the original constraint on down the pipeline
           it may react with an instance declaration, and in delicate
	   situations (when a Given overlaps with an instance) that
	   may produce new insoluble goals: see Trac #4952

 Danger 2: If we don't rewrite the constraint, it may re-react
           with the same thing later, and produce the same equality
           again --> termination worries.

To achieve this required some refactoring of FunDeps.lhs (nicer
now!).  

\begin{code}
rewriteWithFunDeps :: [Equation]
                   -> [Xi] 
                   -> WantedLoc 
                   -> TcS (Maybe ([Xi], [TcCoercion], [(EvVar,WantedLoc)])) 
                                           -- Not quite a WantedEvVar unfortunately
                                           -- Because our intention could be to make 
                                           -- it derived at the end of the day
-- NB: The flavor of the returned EvVars will be decided by the caller
-- Post: returns no trivial equalities (identities) and all EvVars returned are fresh
rewriteWithFunDeps eqn_pred_locs xis wloc
 = do { fd_ev_poss <- mapM (instFunDepEqn wloc) eqn_pred_locs
      ; let fd_ev_pos :: [(Int,(EqVar,WantedLoc))]
            fd_ev_pos = concat fd_ev_poss
            (rewritten_xis, cos) = unzip (rewriteDictParams fd_ev_pos xis)
      ; if null fd_ev_pos then return Nothing
        else return (Just (rewritten_xis, cos, map snd fd_ev_pos)) }

instFunDepEqn :: WantedLoc -> Equation -> TcS [(Int,(EvVar,WantedLoc))]
-- Post: Returns the position index as well as the corresponding FunDep equality
instFunDepEqn wl (FDEqn { fd_qtvs = qtvs, fd_eqs = eqs
                        , fd_pred1 = d1, fd_pred2 = d2 })
  = do { let tvs = varSetElems qtvs
       ; tvs' <- mapM instFlexiTcS tvs  -- IA0_TODO: we might need to do kind substitution
       ; let subst = zipTopTvSubst tvs (mkTyVarTys tvs')
       ; foldM (do_one subst) [] eqs }
  where 
    do_one subst ievs (FDEq { fd_pos = i, fd_ty_left = ty1, fd_ty_right = ty2 })
       = let sty1 = Type.substTy subst ty1 
             sty2 = Type.substTy subst ty2 
         in if eqType sty1 sty2 then return ievs -- Return no trivial equalities
            else do { eqv <- newEqVar (Derived wl) sty1 sty2 -- Create derived or cached by deriveds
                    ; let wl' = push_ctx wl 
                    ; if isNewEvVar eqv then 
                          return $ (i,(evc_the_evvar eqv,wl')):ievs 
                      else -- We are eventually going to emit FD work back in the work list so 
                           -- it is important that we only return the /freshly created/ and not 
                           -- some existing equality!
                          return ievs }

    push_ctx :: WantedLoc -> WantedLoc 
    push_ctx loc = pushErrCtxt FunDepOrigin (False, mkEqnMsg d1 d2) loc

mkEqnMsg :: (TcPredType, SDoc) 
         -> (TcPredType, SDoc) -> TidyEnv -> TcM (TidyEnv, SDoc)
mkEqnMsg (pred1,from1) (pred2,from2) tidy_env
  = do  { zpred1 <- zonkTcPredType pred1
        ; zpred2 <- zonkTcPredType pred2
	; let { tpred1 = tidyType tidy_env zpred1
              ; tpred2 = tidyType tidy_env zpred2 }
	; let msg = vcat [ptext (sLit "When using functional dependencies to combine"),
			  nest 2 (sep [ppr tpred1 <> comma, nest 2 from1]), 
			  nest 2 (sep [ppr tpred2 <> comma, nest 2 from2])]
	; return (tidy_env, msg) }

rewriteDictParams :: [(Int,(EqVar,WantedLoc))] -- A set of coercions : (pos, ty' ~ ty)
                  -> [Type]                    -- A sequence of types: tys
                  -> [(Type, TcCoercion)]      -- Returns: [(ty', co : ty' ~ ty)]
rewriteDictParams param_eqs tys
  = zipWith do_one tys [0..]
  where
    do_one :: Type -> Int -> (Type, TcCoercion)
    do_one ty n = case lookup n param_eqs of
                    Just wev -> (get_fst_ty wev, mkTcCoVarCo (fst wev))
                    Nothing  -> (ty,             mkTcReflCo ty)	-- Identity

    get_fst_ty (wev,_wloc) 
      | Just (ty1, _) <- getEqPredTys_maybe (evVarPred wev )
      = ty1
      | otherwise 
      = panic "rewriteDictParams: non equality fundep!?"

        
emitFDWorkAsDerived :: [(EvVar,WantedLoc)] 
                    -> SubGoalDepth -> TcS () 
emitFDWorkAsDerived evlocs d 
  = updWorkListTcS $ appendWorkListEqs fd_cts
  where fd_cts = map mk_fd_ct evlocs 
        mk_fd_ct (v,wl) = CNonCanonical { cc_id = v
                                        , cc_flavor = Derived wl 
                                        , cc_depth = d }


\end{code}




1391 1392 1393 1394 1395 1396 1397
*********************************************************************************
*                                                                               * 
                       The top-reaction Stage
*                                                                               *
*********************************************************************************

\begin{code}
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

topReactionsStage :: SimplifierStage 
topReactionsStage workItem 
 = tryTopReact workItem 
   

tryTopReact :: WorkItem -> TcS StopOrContinue
tryTopReact wi 
 = do { inerts <- getTcSInerts
      ; ctxt   <- getTcSContext
      ; if simplEqsOnly ctxt then return (ContinueWith wi) -- or Stop?
        else 
            do { tir <- doTopReact inerts wi
               ; case tir of 
                   NoTopInt 
                       -> return (ContinueWith wi)
                   SomeTopInt rule what_next 
                       -> do { bumpStepCountTcS 
                             ; traceFireTcS (cc_depth wi) $
                               ptext (sLit "Top react:") <+> text rule
                             ; return what_next }
               } }

1421
data TopInteractResult 
1422 1423
 = NoTopInt
 | SomeTopInt { tir_rule :: String, tir_new_item :: StopOrContinue }
1424 1425


dimitris's avatar
dimitris committed
1426
doTopReact :: InertSet -> WorkItem -> TcS TopInteractResult
1427