TcSimplify.lhs 60.4 KB
Newer Older
1
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
2 3 4 5 6 7 8
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

9
module TcSimplify( 
10
       simplifyInfer, simplifyAmbiguityCheck,
11
       simplifyDefault, simplifyDeriv, 
12 13
       simplifyRule, simplifyTop, simplifyInteractive
  ) where
14

15
#include "HsVersions.h"
16

17
import TcRnMonad
18
import TcErrors
19
import TcMType
20 21
import TcType 
import TcSMonad 
22
import TcInteract 
23
import Inst
24
import Unify	( niFixTvSubst, niSubstTvSet )
25
import Var
26
import VarSet
27
import VarEnv 
28
import TcEvidence
29
import TypeRep
30 31
import Name
import NameEnv	( emptyNameEnv )
32
import Bag
33 34
import ListSetOps
import Util
35 36 37
import PrelInfo
import PrelNames
import Class		( classKey )
38
import BasicTypes       ( RuleName )
39
import Control.Monad    ( when )
40
import Outputable
41
import FastString
42
import TrieMap
43
import DynFlags
44

45 46 47
\end{code}


48 49 50 51 52
*********************************************************************************
*                                                                               * 
*                           External interface                                  *
*                                                                               *
*********************************************************************************
53

54 55 56
\begin{code}
simplifyTop :: WantedConstraints -> TcM (Bag EvBind)
-- Simplify top-level constraints
57 58 59
-- Usually these will be implications,
-- but when there is nothing to quantify we don't wrap
-- in a degenerate implication, so we do that here instead
60
simplifyTop wanteds 
61
  = simplifyCheck (SimplCheck (ptext (sLit "top level"))) wanteds
62

63 64 65 66
------------------
simplifyAmbiguityCheck :: Name -> WantedConstraints -> TcM (Bag EvBind)
simplifyAmbiguityCheck name wanteds
  = simplifyCheck (SimplCheck (ptext (sLit "ambiguity check for") <+> ppr name)) wanteds
67
 
68 69 70 71 72 73 74 75 76
------------------
simplifyInteractive :: WantedConstraints -> TcM (Bag EvBind)
simplifyInteractive wanteds 
  = simplifyCheck SimplInteractive wanteds

------------------
simplifyDefault :: ThetaType	-- Wanted; has no type variables in it
                -> TcM ()	-- Succeeds iff the constraint is soluble
simplifyDefault theta
77
  = do { wanted <- newFlatWanteds DefaultOrigin theta
78 79
       ; _ignored_ev_binds <- simplifyCheck (SimplCheck (ptext (sLit "defaults"))) 
                                            (mkFlatWC wanted)
80 81
       ; return () }
\end{code}
82

83

84
***********************************************************************************
85
*                                                                                 * 
86
*                            Deriving                                             *
87 88
*                                                                                 *
***********************************************************************************
89

90 91
\begin{code}
simplifyDeriv :: CtOrigin
92 93 94 95
              -> PredType
	      -> [TyVar]	
	      -> ThetaType		-- Wanted
	      -> TcM ThetaType	-- Needed
96 97
-- Given  instance (wanted) => C inst_ty 
-- Simplify 'wanted' as much as possibles
98
-- Fail if not possible
99
simplifyDeriv orig pred tvs theta 
100
  = do { (skol_subst, tvs_skols) <- tcInstSkolTyVars tvs -- Skolemize
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
101 102 103 104
      	 	-- The constraint solving machinery 
		-- expects *TcTyVars* not TyVars.  
		-- We use *non-overlappable* (vanilla) skolems
		-- See Note [Overlap and deriving]
105

106
       ; let subst_skol = zipTopTvSubst tvs_skols $ map mkTyVarTy tvs
107
             skol_set   = mkVarSet tvs_skols
108
	     doc = parens $ ptext (sLit "deriving") <+> parens (ppr pred)
109 110 111

       ; wanted <- newFlatWanteds orig (substTheta skol_subst theta)

112
       ; traceTc "simplifyDeriv" (pprTvBndrs tvs $$ ppr theta $$ ppr wanted)
113 114 115
       ; (residual_wanted, _ev_binds1)
             <- runTcS (SimplInfer doc) NoUntouchables emptyInert emptyWorkList $
                solveWanteds $ mkFlatWC wanted
116

117 118
       ; let (good, bad) = partitionBagWith get_good (wc_flat residual_wanted)
                         -- See Note [Exotic derived instance contexts]
119 120 121
             get_good :: Ct -> Either PredType Ct
             get_good ct | validDerivPred skol_set p = Left p
                         | otherwise                 = Right ct
122
                         where p = ctPred ct
123

124 125 126
       -- We never want to defer these errors because they are errors in the
       -- compiler! Hence the `False` below
       ; _ev_binds2 <- reportUnsolved False (residual_wanted { wc_flat = bad })
127

128 129
       ; let min_theta = mkMinimalBySCs (bagToList good)
       ; return (substTheta subst_skol min_theta) }
130
\end{code}
131

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
  data Show a => Show [a] where ..
  data Show [Char] where ...

Now a data type with deriving:
  data T a = MkT [a] deriving( Show )

We want to get the derived instance
  instance Show [a] => Show (T a) where...
and NOT
  instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing

It's very like the situation when we're inferring the type
of a function
   f x = show [x]
and we want to infer
   f :: Show [a] => a -> String

BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
             the context for the derived instance. 
	     Hence tcInstSkolTyVars not tcInstSuperSkolTyVars

157 158 159 160 161 162 163
Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context.  It's a
bit unclear what rules we should apply for this; the Haskell report is
silent.  Obviously, constraints like (Eq a) are fine, but what about
	data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint.  That's probably fine too.
164

165 166 167
One could go further: consider
	data T a b c = MkT (Foo a b c) deriving( Eq )
	instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)
168

169 170
Notice that this instance (just) satisfies the Paterson termination 
conditions.  Then we *could* derive an instance decl like this:
171

172 173 174 175
	instance (C Int a, Eq b, Eq c) => Eq (T a b c) 
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.  
176

177 178 179
However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.
180

181 182
So for now we simply require that the derived instance context
should have only type-variable constraints.
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
Here is another example:
	data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
	instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!

NB: if you want to lift this condition, make sure you still meet the
termination conditions!  If not, the deriving mechanism generates
larger and larger constraints.  Example:
  data Succ a = S a
  data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show

Note the lack of a Show instance for Succ.  First we'll generate
  instance (Show (Succ a), Show a) => Show (Seq a)
and then
  instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on.  Instead we want to complain of no instance for (Show (Succ a)).

The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.

*********************************************************************************
*                                                                                 * 
*                            Inference
*                                                                                 *
***********************************************************************************
213

dreixel's avatar
dreixel committed
214 215 216 217 218 219 220 221 222 223 224 225
Note [Which variables to quantify]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose the inferred type of a function is
   T kappa (alpha:kappa) -> Int
where alpha is a type unification variable and 
      kappa is a kind unification variable
Then we want to quantify over *both* alpha and kappa.  But notice that
kappa appears "at top level" of the type, as well as inside the kind
of alpha.  So it should be fine to just look for the "top level"
kind/type variables of the type, without looking transitively into the
kinds of those type variables.

226
\begin{code}
227
simplifyInfer :: Bool
228 229 230
              -> Bool                  -- Apply monomorphism restriction
              -> [(Name, TcTauType)]   -- Variables to be generalised,
                                       -- and their tau-types
231 232 233
              -> WantedConstraints
              -> TcM ([TcTyVar],    -- Quantify over these type variables
                      [EvVar],      -- ... and these constraints
234 235 236
		      Bool,	    -- The monomorphism restriction did something
		      		    --   so the results type is not as general as
				    --   it could be
237
                      TcEvBinds)    -- ... binding these evidence variables
238
simplifyInfer _top_lvl apply_mr name_taus wanteds
239 240 241
  | isEmptyWC wanteds
  = do { gbl_tvs     <- tcGetGlobalTyVars            -- Already zonked
       ; zonked_taus <- zonkTcTypes (map snd name_taus)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
242
       ; let tvs_to_quantify = varSetElems (tyVarsOfTypes zonked_taus `minusVarSet` gbl_tvs)
dreixel's avatar
dreixel committed
243 244 245
       	     		       -- tvs_to_quantify can contain both kind and type vars
       	                       -- See Note [Which variables to quantify]
       ; qtvs <- zonkQuantifiedTyVars tvs_to_quantify
246
       ; return (qtvs, [], False, emptyTcEvBinds) }
247

248
  | otherwise
249 250
  = do { zonked_wanteds <- zonkWC wanteds
       ; gbl_tvs        <- tcGetGlobalTyVars
251
       ; zonked_tau_tvs <- zonkTyVarsAndFV (tyVarsOfTypes (map snd name_taus))
252
       ; runtimeCoercionErrors <- doptM Opt_DeferTypeErrors
253

254
       ; traceTc "simplifyInfer {"  $ vcat
255
             [ ptext (sLit "names =") <+> ppr (map fst name_taus)
256 257
             , ptext (sLit "taus =") <+> ppr (map snd name_taus)
             , ptext (sLit "tau_tvs (zonked) =") <+> ppr zonked_tau_tvs
258 259 260
             , ptext (sLit "gbl_tvs =") <+> ppr gbl_tvs
             , ptext (sLit "closed =") <+> ppr _top_lvl
             , ptext (sLit "apply_mr =") <+> ppr apply_mr
261
             , ptext (sLit "wanted =") <+> ppr zonked_wanteds
262 263
             ]

264 265
             -- Step 1
             -- Make a guess at the quantified type variables
266 267 268
	     -- Then split the constraints on the baisis of those tyvars
	     -- to avoid unnecessarily simplifying a class constraint
	     -- See Note [Avoid unecessary constraint simplification]
269
       ; let proto_qtvs = growWanteds gbl_tvs zonked_wanteds $
270
                          zonked_tau_tvs `minusVarSet` gbl_tvs
271 272 273 274 275 276 277 278 279
             (perhaps_bound, surely_free)
                        = partitionBag (quantifyMe proto_qtvs) (wc_flat zonked_wanteds)

       ; traceTc "simplifyInfer proto"  $ vcat
             [ ptext (sLit "zonked_tau_tvs =") <+> ppr zonked_tau_tvs
             , ptext (sLit "proto_qtvs =") <+> ppr proto_qtvs
             , ptext (sLit "surely_fref =") <+> ppr surely_free
             ]

280
       ; emitFlats surely_free
281 282 283 284
       ; traceTc "sinf"  $ vcat
             [ ptext (sLit "perhaps_bound =") <+> ppr perhaps_bound
             , ptext (sLit "surely_free   =") <+> ppr surely_free
             ]
285

286
            -- Step 2 
287 288 289 290 291 292 293 294 295 296 297
            -- Now simplify the possibly-bound constraints
       ; let ctxt = SimplInfer (ppr (map fst name_taus))
       ; (simpl_results, tc_binds)
             <- runTcS ctxt NoUntouchables emptyInert emptyWorkList $ 
                simplifyWithApprox (zonked_wanteds { wc_flat = perhaps_bound })

            -- Fail fast if there is an insoluble constraint,
            -- unless we are deferring errors to runtime
       ; when (not runtimeCoercionErrors && insolubleWC simpl_results) $ 
         do { _ev_binds <- reportUnsolved False simpl_results 
            ; failM }
298 299 300 301 302

            -- Step 3 
            -- Split again simplified_perhaps_bound, because some unifications 
            -- may have happened, and emit the free constraints. 
       ; gbl_tvs        <- tcGetGlobalTyVars
303
       ; zonked_tau_tvs <- zonkTyVarsAndFV zonked_tau_tvs
304
       ; zonked_flats <- zonkCts (wc_flat simpl_results)
305
       ; let init_tvs 	     = zonked_tau_tvs `minusVarSet` gbl_tvs
306 307
             poly_qtvs       = growWantedEVs gbl_tvs zonked_flats init_tvs
	     (pbound, pfree) = partitionBag (quantifyMe poly_qtvs) zonked_flats
308 309

	     -- Monomorphism restriction
310
             mr_qtvs  	     = init_tvs `minusVarSet` constrained_tvs
311
             constrained_tvs = tyVarsOfCts zonked_flats
312 313 314
	     mr_bites        = apply_mr && not (isEmptyBag pbound)

             (qtvs, (bound, free))
315
                | mr_bites  = (mr_qtvs,   (emptyBag, zonked_flats))
316
                | otherwise = (poly_qtvs, (pbound,   pfree))
317
       ; emitFlats free
318

319
       ; if isEmptyVarSet qtvs && isEmptyBag bound
320 321 322
         then ASSERT( isEmptyBag (wc_insol simpl_results) )
              do { traceTc "} simplifyInfer/no quantification" empty
                 ; emitImplications (wc_impl simpl_results)
323
                 ; return ([], [], mr_bites, EvBinds tc_binds) }
324 325 326
         else do

            -- Step 4, zonk quantified variables 
327
       { let minimal_flat_preds = mkMinimalBySCs $ 
328
                                  map ctPred $ bagToList bound
329 330
             skol_info = InferSkol [ (name, mkSigmaTy [] minimal_flat_preds ty)
                                   | (name, ty) <- name_taus ]
331 332 333 334
                        -- Don't add the quantified variables here, because
                        -- they are also bound in ic_skols and we want them to be
                        -- tidied uniformly

Simon Peyton Jones's avatar
Simon Peyton Jones committed
335
       ; qtvs_to_return <- zonkQuantifiedTyVars (varSetElems qtvs)
336 337 338 339 340

            -- Step 5
            -- Minimize `bound' and emit an implication
       ; minimal_bound_ev_vars <- mapM TcMType.newEvVar minimal_flat_preds
       ; ev_binds_var <- newTcEvBinds
341 342
       ; mapBagM_ (\(EvBind evar etrm) -> addTcEvBind ev_binds_var evar etrm) 
           tc_binds
343
       ; lcl_env <- getLclTypeEnv
dreixel's avatar
dreixel committed
344
       ; gloc <- getCtLoc skol_info
345 346
       ; let implic = Implic { ic_untch    = NoUntouchables
                             , ic_env      = lcl_env
347
                             , ic_skols    = qtvs_to_return
348 349 350 351 352 353 354 355 356
                             , ic_given    = minimal_bound_ev_vars
                             , ic_wanted   = simpl_results { wc_flat = bound }
                             , ic_insol    = False
                             , ic_binds    = ev_binds_var
                             , ic_loc      = gloc }
       ; emitImplication implic
       ; traceTc "} simplifyInfer/produced residual implication for quantification" $
             vcat [ ptext (sLit "implic =") <+> ppr implic
                       -- ic_skols, ic_given give rest of result
357
                  , ptext (sLit "qtvs =") <+> ppr qtvs_to_return
358
                  , ptext (sLit "spb =") <+> ppr zonked_flats
359 360 361 362
                  , ptext (sLit "bound =") <+> ppr bound ]



363 364
       ; return ( qtvs_to_return, minimal_bound_ev_vars
                , mr_bites,  TcEvBinds ev_binds_var) } }
365
\end{code}
366 367


368 369
Note [Minimize by Superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
370

371 372 373 374 375 376 377
When we quantify over a constraint, in simplifyInfer we need to
quantify over a constraint that is minimal in some sense: For
instance, if the final wanted constraint is (Eq alpha, Ord alpha),
we'd like to quantify over Ord alpha, because we can just get Eq alpha
from superclass selection from Ord alpha. This minimization is what
mkMinimalBySCs does. Then, simplifyInfer uses the minimal constraint
to check the original wanted.
378

379
\begin{code}
380

381
simplifyWithApprox :: WantedConstraints -> TcS WantedConstraints
382
-- Post: returns only wanteds (no deriveds)
383 384
simplifyWithApprox wanted
 = do { traceTcS "simplifyApproxLoop" (ppr wanted)
385

386 387 388 389 390 391 392 393 394
      ; let all_flats = wc_flat wanted `unionBags` keepWanted (wc_insol wanted) 
      ; solveInteractCts $ bagToList all_flats
      ; unsolved_implics <- simpl_loop 1 (wc_impl wanted)

      ; let (residual_implics,floats) = approximateImplications unsolved_implics

      -- Solve extra stuff for real: notice that all the extra unsolved constraints will 
      -- be in the inerts of the monad, so we are OK
      ; traceTcS "simplifyApproxLoop" $ text "Calling solve_wanteds!"
395 396 397 398 399
      ; wants_or_ders <- solve_wanteds (WC { wc_flat  = floats -- They are floated so they are not in the evvar cache
                                           , wc_impl  = residual_implics
                                           , wc_insol = emptyBag })
      ; return $ 
        wants_or_ders { wc_flat = keepWanted (wc_flat wants_or_ders) } }
400

401 402

approximateImplications :: Bag Implication -> (Bag Implication, Cts)
403 404 405
-- Extracts any nested constraints that don't mention the skolems
approximateImplications impls
  = do_bag (float_implic emptyVarSet) impls
406
  where 
407 408 409 410 411
    do_bag :: forall a b c. (a -> (Bag b, Bag c)) -> Bag a -> (Bag b, Bag c)
    do_bag f = foldrBag (plus . f) (emptyBag, emptyBag)
    plus :: forall b c. (Bag b, Bag c) -> (Bag b, Bag c) -> (Bag b, Bag c)
    plus (a1,b1) (a2,b2) = (a1 `unionBags` a2, b1 `unionBags` b2)

412
    float_implic :: TyVarSet -> Implication -> (Bag Implication, Cts)
413 414 415
    float_implic skols imp
      = (unitBag (imp { ic_wanted = wanted' }), floats)
      where
416
        (wanted', floats) = float_wc (skols `extendVarSetList` ic_skols imp) (ic_wanted imp)
417 418 419 420 421 422 423

    float_wc skols wc@(WC { wc_flat = flat, wc_impl = implic })
      = (wc { wc_flat = flat', wc_impl = implic' }, floats1 `unionBags` floats2)
      where
        (flat',   floats1) = do_bag (float_flat   skols) flat
        (implic', floats2) = do_bag (float_implic skols) implic

424 425 426 427
    float_flat :: TcTyVarSet -> Ct -> (Cts, Cts)
    float_flat skols ct
      | tyVarsOfCt ct `disjointVarSet` skols = (emptyBag, unitBag ct)
      | otherwise                            = (unitBag ct, emptyBag)
428
\end{code}
429

430
\begin{code}
431 432
-- (growX gbls wanted tvs) grows a seed 'tvs' against the 
-- X-constraint 'wanted', nuking the 'gbls' at each stage
433 434
-- It's conservative in that if the seed could *possibly*
-- grow to include a type variable, then it does
435

436 437 438
growWanteds :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWanteds gbl_tvs wc = fixVarSet (growWC gbl_tvs wc)

439
growWantedEVs :: TyVarSet -> Cts -> TyVarSet -> TyVarSet
440 441
growWantedEVs gbl_tvs ws tvs
  | isEmptyBag ws = tvs
442
  | otherwise     = fixVarSet (growPreds gbl_tvs ctPred ws) tvs
443

444 445 446
--------  Helper functions, do not do fixpoint ------------------------
growWC :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWC gbl_tvs wc = growImplics gbl_tvs             (wc_impl wc) .
447 448
                    growPreds   gbl_tvs ctPred (wc_flat wc) .
                    growPreds   gbl_tvs ctPred (wc_insol wc)
449

450 451 452 453 454
growImplics :: TyVarSet -> Bag Implication -> TyVarSet -> TyVarSet
growImplics gbl_tvs implics tvs
  = foldrBag grow_implic tvs implics
  where
    grow_implic implic tvs
455
      = grow tvs `delVarSetList` ic_skols implic
456 457 458 459 460 461 462 463
      where
        grow = growWC gbl_tvs (ic_wanted implic) .
               growPreds gbl_tvs evVarPred (listToBag (ic_given implic))
               -- We must grow from givens too; see test IPRun

growPreds :: TyVarSet -> (a -> PredType) -> Bag a -> TyVarSet -> TyVarSet
growPreds gbl_tvs get_pred items tvs
  = foldrBag extend tvs items
464
  where
465 466
    extend item tvs = tvs `unionVarSet`
                      (growPredTyVars (get_pred item) tvs `minusVarSet` gbl_tvs)
467 468 469

--------------------
quantifyMe :: TyVarSet      -- Quantifying over these
470
	   -> Ct
471
	   -> Bool	    -- True <=> quantify over this wanted
472
quantifyMe qtvs ct
473
  | isIPPred pred = True  -- Note [Inheriting implicit parameters]
batterseapower's avatar
batterseapower committed
474
  | otherwise	  = tyVarsOfType pred `intersectsVarSet` qtvs
475
  where
476
    pred = ctPred ct
477
\end{code}
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Note [Avoid unecessary constraint simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When inferring the type of a let-binding, with simplifyInfer,
try to avoid unnecessariliy simplifying class constraints.
Doing so aids sharing, but it also helps with delicate 
situations like
   instance C t => C [t] where ..
   f :: C [t] => ....
   f x = let g y = ...(constraint C [t])... 
         in ...
When inferring a type for 'g', we don't want to apply the
instance decl, because then we can't satisfy (C t).  So we
just notice that g isn't quantified over 't' and partition
the contraints before simplifying.

This only half-works, but then let-generalisation only half-works.


497 498
Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
499 500 501
Consider this:

	f x = (x::Int) + ?y
502

503 504 505
where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:
506

507 508 509
	f :: Int -> Int

(so we get ?y from the context of f's definition), or
510 511 512

	f :: (?y::Int) => Int -> Int

513 514 515 516 517 518
At first you might think the first was better, becuase then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site.  But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.

519 520
BOTTOM LINE: when *inferring types* you *must* quantify 
over implicit parameters. See the predicate isFreeWhenInferring.
521

522

523 524 525 526 527
*********************************************************************************
*                                                                                 * 
*                             RULES                                               *
*                                                                                 *
***********************************************************************************
528

529 530
Note [Simplifying RULE lhs constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
531
On the LHS of transformation rules we only simplify only equalities,
532 533 534 535
but not dictionaries.  We want to keep dictionaries unsimplified, to
serve as the available stuff for the RHS of the rule.  We *do* want to
simplify equalities, however, to detect ill-typed rules that cannot be
applied.
536

537 538 539
Implementation: the TcSFlags carried by the TcSMonad controls the
amount of simplification, so simplifyRuleLhs just sets the flag
appropriately.
540

541 542 543 544 545 546 547 548 549 550
Example.  Consider the following left-hand side of a rule
	f (x == y) (y > z) = ...
If we typecheck this expression we get constraints
	d1 :: Ord a, d2 :: Eq a
We do NOT want to "simplify" to the LHS
	forall x::a, y::a, z::a, d1::Ord a.
	  f ((==) (eqFromOrd d1) x y) ((>) d1 y z) = ...
Instead we want	
	forall x::a, y::a, z::a, d1::Ord a, d2::Eq a.
	  f ((==) d2 x y) ((>) d1 y z) = ...
551

552
Here is another example:
553 554
	fromIntegral :: (Integral a, Num b) => a -> b
	{-# RULES "foo"  fromIntegral = id :: Int -> Int #-}
555 556
In the rule, a=b=Int, and Num Int is a superclass of Integral Int. But
we *dont* want to get
557
	forall dIntegralInt.
558
	   fromIntegral Int Int dIntegralInt (scsel dIntegralInt) = id Int
559
because the scsel will mess up RULE matching.  Instead we want
560
	forall dIntegralInt, dNumInt.
561
	  fromIntegral Int Int dIntegralInt dNumInt = id Int
562

563 564 565 566 567 568 569
Even if we have 
	g (x == y) (y == z) = ..
where the two dictionaries are *identical*, we do NOT WANT
	forall x::a, y::a, z::a, d1::Eq a
	  f ((==) d1 x y) ((>) d1 y z) = ...
because that will only match if the dict args are (visibly) equal.
Instead we want to quantify over the dictionaries separately.
570

571 572
In short, simplifyRuleLhs must *only* squash equalities, leaving
all dicts unchanged, with absolutely no sharing.  
573

574 575 576 577 578
HOWEVER, under a nested implication things are different
Consider
  f :: (forall a. Eq a => a->a) -> Bool -> ...
  {-# RULES "foo" forall (v::forall b. Eq b => b->b).
       f b True = ...
579
    #-}
580 581 582
Here we *must* solve the wanted (Eq a) from the given (Eq a)
resulting from skolemising the agument type of g.  So we 
revert to SimplCheck when going under an implication.  
583 584

\begin{code}
585 586 587 588 589 590 591 592 593
simplifyRule :: RuleName 
             -> [TcTyVar]		-- Explicit skolems
             -> WantedConstraints	-- Constraints from LHS
             -> WantedConstraints	-- Constraints from RHS
             -> TcM ([EvVar], 		-- LHS dicts
                     TcEvBinds,		-- Evidence for LHS
                     TcEvBinds)		-- Evidence for RHS
-- See Note [Simplifying RULE lhs constraints]
simplifyRule name tv_bndrs lhs_wanted rhs_wanted
594 595 596 597 598 599 600
  = do { loc        <- getCtLoc (RuleSkol name)
       ; zonked_lhs <- zonkWC lhs_wanted
       ; let untch = NoUntouchables
	     	 -- We allow ourselves to unify environment 
		 -- variables; hence *no untouchables*

       ; (lhs_results, lhs_binds)
601 602
              <- runTcS (SimplRuleLhs name) untch emptyInert emptyWorkList $
                 solveWanteds zonked_lhs
603 604 605 606 607 608 609

       ; traceTc "simplifyRule" $
         vcat [ text "zonked_lhs"   <+> ppr zonked_lhs 
              , text "lhs_results" <+> ppr lhs_results
              , text "lhs_binds"    <+> ppr lhs_binds 
              , text "rhs_wanted"   <+> ppr rhs_wanted ]

610 611

       -- Don't quantify over equalities (judgement call here)
612
       ; let (eqs, dicts) = partitionBag (isEqPred . ctPred)
613
                                         (wc_flat lhs_results)
614
             lhs_dicts    = map cc_id (bagToList dicts)
615 616 617 618 619 620
                                 -- Dicts and implicit parameters

           -- Fail if we have not got down to unsolved flats
       ; ev_binds_var <- newTcEvBinds
       ; emitImplication $ Implic { ic_untch  = untch
                                  , ic_env    = emptyNameEnv
621
                                  , ic_skols  = tv_bndrs
622 623 624 625 626
                                  , ic_given  = lhs_dicts
                                  , ic_wanted = lhs_results { wc_flat = eqs }
                                  , ic_insol  = insolubleWC lhs_results
                                  , ic_binds  = ev_binds_var
                                  , ic_loc    = loc }
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

	     -- Notice that we simplify the RHS with only the explicitly
	     -- introduced skolems, allowing the RHS to constrain any 
	     -- unification variables.
	     -- Then, and only then, we call zonkQuantifiedTypeVariables
	     -- Example   foo :: Ord a => a -> a
	     --		  foo_spec :: Int -> Int
	     --		  {-# RULE "foo"  foo = foo_spec #-}
	     --	    Here, it's the RHS that fixes the type variable

	     -- So we don't want to make untouchable the type
	     -- variables in the envt of the RHS, because they include
	     -- the template variables of the RULE

	     -- Hence the rather painful ad-hoc treatement here
       ; rhs_binds_var@(EvBindsVar evb_ref _)  <- newTcEvBinds
643 644
       ; let doc = ptext (sLit "rhs of rule") <+> doubleQuotes (ftext name)
       ; rhs_binds1 <- simplifyCheck (SimplCheck doc) $
645 646 647 648 649
            WC { wc_flat = emptyBag
               , wc_insol = emptyBag
               , wc_impl = unitBag $
                    Implic { ic_untch   = NoUntouchables
                            , ic_env    = emptyNameEnv
650
                            , ic_skols  = tv_bndrs
651 652 653 654 655
                            , ic_given  = lhs_dicts
                            , ic_wanted = rhs_wanted
                            , ic_insol  = insolubleWC rhs_wanted
                            , ic_binds  = rhs_binds_var
                            , ic_loc    = loc } }
656 657 658 659 660
       ; rhs_binds2 <- readTcRef evb_ref

       ; return ( lhs_dicts
                , EvBinds lhs_binds 
                , EvBinds (rhs_binds1 `unionBags` evBindMapBinds rhs_binds2)) }
661 662 663
\end{code}


664 665 666 667 668
*********************************************************************************
*                                                                                 * 
*                                 Main Simplifier                                 *
*                                                                                 *
***********************************************************************************
669 670

\begin{code}
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
simplifyCheck :: SimplContext
	      -> WantedConstraints	-- Wanted
              -> TcM (Bag EvBind)
-- Solve a single, top-level implication constraint
-- e.g. typically one created from a top-level type signature
-- 	    f :: forall a. [a] -> [a]
--          f x = rhs
-- We do this even if the function has no polymorphism:
--    	    g :: Int -> Int

--          g y = rhs
-- (whereas for *nested* bindings we would not create
--  an implication constraint for g at all.)
--
-- Fails if can't solve something in the input wanteds
simplifyCheck ctxt wanteds
687
  = do { wanteds <- zonkWC wanteds
688 689 690 691

       ; traceTc "simplifyCheck {" (vcat
             [ ptext (sLit "wanted =") <+> ppr wanteds ])

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
       ; (unsolved, eb1)
           <- runTcS ctxt NoUntouchables emptyInert emptyWorkList $ 
              solveWanteds wanteds

       ; traceTc "simplifyCheck }" $ ptext (sLit "unsolved =") <+> ppr unsolved

       -- See Note [Deferring coercion errors to runtime]
       ; runtimeCoercionErrors <- doptM Opt_DeferTypeErrors
       ; eb2 <- reportUnsolved runtimeCoercionErrors unsolved 
       
       ; return (eb1 `unionBags` eb2) }
\end{code}

Note [Deferring coercion errors to runtime]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

While developing, sometimes it is desirable to allow compilation to succeed even
if there are type errors in the code. Consider the following case:

  module Main where
712

713 714
  a :: Int
  a = 'a'
715

716
  main = print "b"
717

718 719
Even though `a` is ill-typed, it is not used in the end, so if all that we're
interested in is `main` it is handy to be able to ignore the problems in `a`.
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
Since we treat type equalities as evidence, this is relatively simple. Whenever
we run into a type mismatch in TcUnify, we normally just emit an error. But it
is always safe to defer the mismatch to the main constraint solver. If we do
that, `a` will get transformed into

  co :: Int ~ Char
  co = ...

  a :: Int
  a = 'a' `cast` co

The constraint solver would realize that `co` is an insoluble constraint, and
emit an error with `reportUnsolved`. But we can also replace the right-hand side
of `co` with `error "Deferred type error: Int ~ Char"`. This allows the program
to compile, and it will run fine unless we evaluate `a`. This is what
`deferErrorsToRuntime` does.

It does this by keeping track of which errors correspond to which coercion
in TcErrors (with ErrEnv). TcErrors.reportTidyWanteds does not print the errors
and does not fail if -fwarn-type-errors is on, so that we can continue
compilation. The errors are turned into warnings in `reportUnsolved`.

\begin{code}
solveWanteds :: WantedConstraints -> TcS WantedConstraints
745 746
-- Returns: residual constraints, plus evidence bindings 
-- NB: When we are called from TcM there are no inerts to pass down to TcS
747 748
solveWanteds wanted
  = do { wc_out <- solve_wanteds wanted
749 750
       ; let wc_ret = wc_out { wc_flat = keepWanted (wc_flat wc_out) } 
                      -- Discard Derived
751
       ; return wc_ret }
752 753 754 755

solve_wanteds :: WantedConstraints
              -> TcS WantedConstraints  -- NB: wc_flats may be wanted *or* derived now
solve_wanteds wanted@(WC { wc_flat = flats, wc_impl = implics, wc_insol = insols }) 
756 757 758
  = do { traceTcS "solveWanteds {" (ppr wanted)

                 -- Try the flat bit
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
759 760 761 762 763
                 -- Discard from insols all the derived/given constraints
                 -- because they will show up again when we try to solve
                 -- everything else.  Solving them a second time is a bit
                 -- of a waste, but the code is simple, and the program is
                 -- wrong anyway!
764

765
       ; let all_flats = flats `unionBags` keepWanted insols
766
       ; solveInteractCts $ bagToList all_flats
767

768 769 770
       -- solve_wanteds iterates when it is able to float equalities 
       -- out of one or more of the implications. 
       ; unsolved_implics <- simpl_loop 1 implics
771

772 773 774
       ; (insoluble_flats,unsolved_flats) <- extractUnsolvedTcS 

       ; bb <- getTcEvBindsMap
775
       ; tb <- getTcSTyBindsMap
776

777
       ; traceTcS "solveWanteds }" $
778
                 vcat [ text "unsolved_flats   =" <+> ppr unsolved_flats
779
                      , text "unsolved_implics =" <+> ppr unsolved_implics
780
                      , text "current evbinds  =" <+> ppr (evBindMapBinds bb)
781 782 783
                      , text "current tybinds  =" <+> vcat (map ppr (varEnvElts tb))
                      ]

784
       ; (subst, remaining_unsolved_flats) <- solveCTyFunEqs unsolved_flats
785
                -- See Note [Solving Family Equations]
786 787
                -- NB: remaining_flats has already had subst applied

788 789 790 791 792
       ; traceTcS "solveWanteds finished with" $
                 vcat [ text "remaining_unsolved_flats =" <+> ppr remaining_unsolved_flats
                      , text "subst =" <+> ppr subst
                      ]

793 794 795 796 797 798 799 800 801 802 803 804 805 806
       ; return $ 
         WC { wc_flat  = mapBag (substCt subst) remaining_unsolved_flats
            , wc_impl  = mapBag (substImplication subst) unsolved_implics
            , wc_insol = mapBag (substCt subst) insoluble_flats }
       }

simpl_loop :: Int
           -> Bag Implication
           -> TcS (Bag Implication)
simpl_loop n implics
  | n > 10 
  = traceTcS "solveWanteds: loop!" empty >> return implics
  | otherwise 
  = do { (implic_eqs, unsolved_implics) <- solveNestedImplications implics
807

808 809
       ; inerts <- getTcSInerts
       ; let ((_,unsolved_flats),_) = extractUnsolved inerts
810

811 812 813
       ; ecache_pre <- getTcSEvVarCacheMap
       ; let pr = ppr ((\k z m -> foldTM k m z) (:) [] ecache_pre)
       ; traceTcS "ecache_pre"  $ pr
dimitris's avatar
dimitris committed
814

815 816 817
       ; improve_eqs <- if not (isEmptyBag implic_eqs)
                        then return implic_eqs
                        else applyDefaultingRules unsolved_flats
818

819 820 821
       ; ecache_post <- getTcSEvVarCacheMap
       ; let po = ppr ((\k z m -> foldTM k m z) (:) [] ecache_post)
       ; traceTcS "ecache_po"  $ po
dimitris's avatar
dimitris committed
822

823 824 825 826
       ; traceTcS "solveWanteds: simpl_loop end" $
             vcat [ text "improve_eqs      =" <+> ppr improve_eqs
                  , text "unsolved_flats   =" <+> ppr unsolved_flats
                  , text "unsolved_implics =" <+> ppr unsolved_implics ]
827

828 829 830
       ; if isEmptyBag improve_eqs then return unsolved_implics 
         else do { solveInteractCts $ bagToList improve_eqs
                 ; simpl_loop (n+1) unsolved_implics } }
831

832 833 834 835 836 837 838 839 840 841
solveNestedImplications :: Bag Implication
                        -> TcS (Cts, Bag Implication)
-- Precondition: the TcS inerts may contain unsolved flats which have 
-- to be converted to givens before we go inside a nested implication.
solveNestedImplications implics
  | isEmptyBag implics
  = return (emptyBag, emptyBag)
  | otherwise 
  = do { inerts <- getTcSInerts
       ; let ((_insoluble_flats, unsolved_flats),thinner_inerts) = extractUnsolved inerts 
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
       ; (implic_eqs, unsolved_implics)
           <- doWithInert thinner_inerts $ 
              do { let pushed_givens = givens_from_wanteds unsolved_flats
                       tcs_untouchables = filterVarSet isFlexiTcsTv $ 
                                          tyVarsOfCts unsolved_flats
                 -- See Note [Preparing inert set for implications]
	         -- Push the unsolved wanteds inwards, but as givens
                 ; traceTcS "solveWanteds: preparing inerts for implications {" $ 
                   vcat [ppr tcs_untouchables, ppr pushed_givens]
                 ; solveInteractCts pushed_givens 
                 ; traceTcS "solveWanteds: } now doing nested implications {" empty
                 ; flatMapBagPairM (solveImplication tcs_untouchables) implics }

       -- ... and we are back in the original TcS inerts 
       -- Notice that the original includes the _insoluble_flats so it was safe to ignore
       -- them in the beginning of this function.
859 860 861 862 863 864
       ; traceTcS "solveWanteds: done nested implications }" $
                  vcat [ text "implic_eqs ="       <+> ppr implic_eqs
                       , text "unsolved_implics =" <+> ppr unsolved_implics ]

       ; return (implic_eqs, unsolved_implics) }

865 866 867 868 869 870 871 872 873 874
  where givens_from_wanteds = foldrBag get_wanted []
        get_wanted cc rest_givens
            | pushable_wanted cc
            = let this_given = cc { cc_flavor = mkGivenFlavor (cc_flavor cc) UnkSkol }
              in this_given : rest_givens
            | otherwise = rest_givens 

        pushable_wanted :: Ct -> Bool 
        pushable_wanted cc 
         | isWantedCt cc 
875
         = isEqPred (ctPred cc) -- see Note [Preparing inert set for implications]
876 877 878 879 880 881 882 883 884 885
         | otherwise = False 

solveImplication :: TcTyVarSet     -- Untouchable TcS unification variables
                 -> Implication    -- Wanted
                 -> TcS (Cts,      -- All wanted or derived floated equalities: var = type
                         Bag Implication) -- Unsolved rest (always empty or singleton)
-- Precondition: The TcS monad contains an empty worklist and given-only inerts 
-- which after trying to solve this implication we must restore to their original value
solveImplication tcs_untouchables
     imp@(Implic { ic_untch  = untch
886 887 888
                 , ic_binds  = ev_binds
                 , ic_skols  = skols 
                 , ic_given  = givens
889
                 , ic_wanted = wanteds
890
                 , ic_loc    = loc })
891
  = nestImplicTcS ev_binds (untch, tcs_untouchables) $
892 893
    recoverTcS (return (emptyBag, emptyBag)) $
       -- Recover from nested failures.  Even the top level is
894
       -- just a bunch of implications, so failing at the first one is bad
895 896 897
    do { traceTcS "solveImplication {" (ppr imp) 

         -- Solve flat givens
898
       ; solveInteractGiven loc givens 
899 900

         -- Simplify the wanteds
901 902 903
       ; WC { wc_flat = unsolved_flats
            , wc_impl = unsolved_implics
            , wc_insol = insols } <- solve_wanteds wanteds
904 905 906 907

       ; let (res_flat_free, res_flat_bound)
                 = floatEqualities skols givens unsolved_flats
             final_flat = keepWanted res_flat_bound
908

909 910
       ; let res_wanted = WC { wc_flat  = final_flat
                             , wc_impl  = unsolved_implics
911
                             , wc_insol = insols }
912

913 914 915
             res_implic = unitImplication $
                          imp { ic_wanted = res_wanted
                              , ic_insol  = insolubleWC res_wanted }
916

917 918
       ; evbinds <- getTcEvBindsMap

919 920
       ; traceTcS "solveImplication end }" $ vcat
             [ text "res_flat_free =" <+> ppr res_flat_free
921
             , text "implication evbinds = " <+> ppr (evBindMapBinds evbinds)
922
             , text "res_implic =" <+> ppr res_implic ]
923

924
       ; return (res_flat_free, res_implic) }
925
    -- and we are back to the original inerts
926 927


928
floatEqualities :: [TcTyVar] -> [EvVar] -> Cts -> (Cts, Cts)
929 930 931 932
-- Post: The returned FlavoredEvVar's are only Wanted or Derived
-- and come from the input wanted ev vars or deriveds 
floatEqualities skols can_given wantders
  | hasEqualities can_given = (emptyBag, wantders)
933
          -- Note [Float Equalities out of Implications]
934 935
  | otherwise = partitionBag is_floatable wantders
  
936 937
  where skol_set = mkVarSet skols
        is_floatable :: Ct -> Bool
938
        is_floatable ct
939
          | ct_predty <- ctPred ct
940
          , isEqPred ct_predty
941
          = skol_set `disjointVarSet` tvs_under_fsks ct_predty
942
        is_floatable _ct = False
943 944 945 946 947 948 949 950 951 952 953

        tvs_under_fsks :: Type -> TyVarSet
        -- ^ NB: for type synonyms tvs_under_fsks does /not/ expand the synonym
        tvs_under_fsks (TyVarTy tv)     
          | not (isTcTyVar tv)               = unitVarSet tv
          | FlatSkol ty <- tcTyVarDetails tv = tvs_under_fsks ty
          | otherwise                        = unitVarSet tv
        tvs_under_fsks (TyConApp _ tys) = unionVarSets (map tvs_under_fsks tys)
        tvs_under_fsks (FunTy arg res)  = tvs_under_fsks arg `unionVarSet` tvs_under_fsks res
        tvs_under_fsks (AppTy fun arg)  = tvs_under_fsks fun `unionVarSet` tvs_under_fsks arg
        tvs_under_fsks (ForAllTy tv ty) -- The kind of a coercion binder 
954
        	     	       	        -- can mention type variables!
955 956 957 958 959
          | isTyVar tv		      = inner_tvs `delVarSet` tv
          | otherwise  {- Coercion -} = -- ASSERT( not (tv `elemVarSet` inner_tvs) )
                                        inner_tvs `unionVarSet` tvs_under_fsks (tyVarKind tv)
          where
            inner_tvs = tvs_under_fsks ty
960
\end{code}
961

962 963 964 965
Note [Preparing inert set for implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before solving the nested implications, we convert any unsolved flat wanteds
to givens, and add them to the inert set.  Reasons:
966 967

  a) In checking mode, suppresses unnecessary errors.  We already have
968
     on unsolved-wanted error; adding it to the givens prevents any 
969
     consequential errors from showing up
970

971 972 973 974
  b) More importantly, in inference mode, we are going to quantify over this
     constraint, and we *don't* want to quantify over any constraints that
     are deducible from it.

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
  c) Flattened type-family equalities must be exposed to the nested
     constraints.  Consider
	F b ~ alpha, (forall c.  F b ~ alpha)
     Obviously this is soluble with [alpha := F b].  But the
     unification is only done by solveCTyFunEqs, right at the end of
     solveWanteds, and if we aren't careful we'll end up with an
     unsolved goal inside the implication.  We need to "push" the
     as-yes-unsolved (F b ~ alpha) inwards, as a *given*, so that it
     can be used to solve the inner (F b
     ~ alpha).  See Trac #4935.

  d) There are other cases where interactions between wanteds that can help
     to solve a constraint. For example

  	class C a b | a -> b

  	(C Int alpha), (forall d. C d blah => C Int a)

     If we push the (C Int alpha) inwards, as a given, it can produce
     a fundep (alpha~a) and this can float out again and be used to
     fix alpha.  (In general we can't float class constraints out just
     in case (C d blah) might help to solve (C Int a).)

998 999 1000 1001 1002 1003 1004 1005
The unsolved wanteds are *canonical* but they may not be *inert*,
because when made into a given they might interact with other givens.
Hence the call to solveInteract.  Example:

 Original inert set = (d :_g D a) /\ (co :_w  a ~ [beta]) 

We were not able to solve (a ~w [beta]) but we can't just assume it as
given because the resulting set is not inert. Hence we have to do a
1006 1007
'solveInteract' step first. 

dimitris's avatar
dimitris committed
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
Finally, note that we convert them to [Given] and NOT [Given/Solved].
The reason is that Given/Solved are weaker than Givens and may be discarded.
As an example consider the inference case, where we may have, the following 
original constraints: 
     [Wanted] F Int ~ Int
             (F Int ~ a => F Int ~ a)
If we convert F Int ~ Int to [Given/Solved] instead of Given, then the next 
given (F Int ~ a) is going to cause the Given/Solved to be ignored, casting 
the (F Int ~ a) insoluble. Hence we should really convert the residual 
wanteds to plain old Given. 

We need only push in unsolved equalities both in checking mode and inference mode: 

  (1) In checking mode we should not push given dictionaries in because of
example LongWayOverlapping.hs, where we might get strange overlap
errors between far-away constraints in the program.  But even in
checking mode, we must still push type family equations. Consider:

   type instance F True a b = a 
   type instance F False a b = b

   [w] F c a b ~ gamma 
   (c ~ True) => a ~ gamma 
   (c ~ False) => b ~ gamma

Since solveCTyFunEqs happens at the very end of solving, the only way to solve
the two implications is temporarily consider (F c a b ~ gamma) as Given (NB: not 
merely Given/Solved because it has to interact with the top-level instance 
environment) and push it inside the implications. Now, when we come out again at
the end, having solved the implications solveCTyFunEqs will solve this equality.

  (2) In inference mode, we recheck the final constraint in checking mode and
hence we will be able to solve inner implications from top-level quantified
constraints nonetheless.


1044 1045
Note [Extra TcsTv untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~