Parser.y.pp 67.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
andy@galois.com's avatar
andy@galois.com committed
34
import StaticFlags	( opt_SccProfilingOn, opt_Hpc )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41
import HaddockParse
import {-# SOURCE #-} HaddockLex hiding ( Token )
import HaddockUtils
42 43 44 45

import FastString
import Maybes		( orElse )
import Outputable
46

47
import Control.Monad    ( unless )
Simon Marlow's avatar
Simon Marlow committed
48
import GHC.Exts
49 50
import Data.Char
import Control.Monad    ( mplus )
51 52 53
}

{-
54 55 56 57 58 59 60 61 62 63 64
-----------------------------------------------------------------------------
24 Februar 2006

Conflicts: 33 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

65 66 67 68 69 70 71 72 73 74 75
-----------------------------------------------------------------------------
31 December 2006

Conflicts: 34 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

76 77 78 79 80 81 82 83 84 85 86
-----------------------------------------------------------------------------
6 December 2006

Conflicts: 32 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

87 88 89 90 91 92 93 94 95 96 97
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

98
-----------------------------------------------------------------------------
99
Conflicts: 38 shift/reduce (1.25)
100

101
10 for abiguity in 'if x then y else z + 1'		[State 178]
102 103 104
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

105
1 for ambiguity in 'if x then y else z :: T'		[State 178]
106 107
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

108
4 for ambiguity in 'if x then y else z -< e'		[State 178]
ross's avatar
ross committed
109
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
110 111 112 113 114 115 116 117 118 119
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
ross's avatar
ross committed
120

121
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
122 123
	(e::a) `b` c, or 
	(e :: (a `b` c))
124
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
125
    Same duplication between states 11 and 253 as the previous case
126

127
1 for ambiguity in 'let ?x ...'				[State 329]
128 129 130 131
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

132
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
133 134 135 136
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

137
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
138 139 140 141 142 143 144
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

145 146 147 148
1 for ambiguity when the source file starts with "-- | doc". We need another
  token of lookahead to determine if a top declaration or the 'module' keyword
  follows. Shift parses as if the 'module' keyword follows.   

149 150 151 152 153 154 155 156 157 158 159
-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
160
     -- This doesn't seem to work anymore -=chak
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
203
 'derive' 	{ L _ ITderive }
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

224
 'forall'	{ L _ ITforall }		-- GHC extension keywords
225 226 227 228 229 230 231 232
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
233
 'family'	{ L _ ITfamily }
234 235 236 237 238 239
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

240 241 242
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
243 244 245 246
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
andy@galois.com's avatar
andy@galois.com committed
247
 '{-# GENERATED'   { L _ ITgenerated_prag }
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
313 314 315 316 317 318 319

 DOCNEXT	{ L _ (ITdocCommentNext _) }
 DOCPREV	{ L _ (ITdocCommentPrev _) }
 DOCNAMED	{ L _ (ITdocCommentNamed _) }
 DOCSECTION	{ L _ (ITdocSection _ _) }
 DOCOPTIONS	{ L _ (ITdocOptions _) }

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
336
%name parseType ctype
337
%partial parseHeader header
338
%tokentype { (Located Token) }
339 340
%%

341 342 343 344 345 346 347 348
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

349 350 351 352 353 354 355 356 357 358 359
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
360 361 362 363
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 (fst $7) (snd $7) $4 
                          opt info doc) )}}
364
        | body2
365 366
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
367
                          (fst $1) (snd $1) Nothing Nothing emptyHaddockModInfo 
368 369 370 371 372 373 374 375
                          Nothing)) }

optdoc :: { (Maybe String, HaddockModInfo RdrName, Maybe (HsDoc RdrName)) }                             
        : moduleheader            { (Nothing, fst $1, snd $1) }
        | docoptions              { (Just $1, emptyHaddockModInfo, Nothing)} 
        | docoptions moduleheader { (Just $1, fst $2, snd $2) } 
        | moduleheader docoptions { (Just $2, fst $1, snd $1) } 
        | {- empty -}             { (Nothing, emptyHaddockModInfo, Nothing) }  
376 377 378 379 380 381 382 383 384 385 386 387

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

388 389 390 391
body2 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{' top '}'          		{ $2 }
 	|  missing_module_keyword top close     { $2 }

392 393 394 395 396 397 398 399
top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

400 401 402 403
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
404 405 406 407
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 $7 [] $4 
                   opt info doc))}}
408 409
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
410 411
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing 
                   Nothing emptyHaddockModInfo Nothing)) }
412 413 414 415 416

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

417 418 419 420 421 422 423
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

424 425
exportlist :: { [LIE RdrName] }
	: expdoclist ',' expdoclist		{ $1 ++ $3 }
426 427 428
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
429 430 431 432 433 434 435 436 437 438 439 440 441
        : expdoclist export expdoclist ',' exportlist  { $1 ++ ($2 : $3) ++ $5 }
 	| expdoclist export expdoclist	               { $1 ++ ($2 : $3) }
	| expdoclist				       { $1 }

expdoclist :: { [LIE RdrName] }
        : exp_doc expdoclist                           { $1 : $2 }
        | {- empty -}                                  { [] }

exp_doc :: { LIE RdrName }                                                   
        : docsection    { L1 (case (unLoc $1) of (n, doc) -> IEGroup n doc) }
        | docnamed      { L1 (IEDocNamed ((fst . unLoc) $1)) } 
        | docnext       { L1 (IEDoc (unLoc $1)) }       
                       
442 443 444 445 446 447 448 449 450 451 452
   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
453 454
	:  qcnames ',' qcname_ext	{ unLoc $3 : $1 }
	|  qcname_ext			{ [unLoc $1]  }
455

456 457 458 459 460 461 462 463
qcname_ext :: { Located RdrName }	-- Variable or data constructor
					-- or tagged type constructor
	:  qcname			{ $1 }
	|  'type' qcon			{ sL (comb2 $1 $2) 
					     (setRdrNameSpace (unLoc $2) 
							      tcClsName)  }

-- Cannot pull into qcname_ext, as qcname is also used in expression.
464
qcname 	:: { Located RdrName }	-- Variable or data constructor
465 466
	:  qvar				{ $1 }
	|  qcon				{ $1 }
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
492
maybeas :: { Located (Maybe ModuleName) }
493 494 495 496 497 498 499 500
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
501 502
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

523
topdecls :: { OrdList (LHsDecl RdrName) }
524 525 526
        : topdecls ';' topdecl		        { $1 `appOL` $3 }
        | topdecls ';'			        { $1 }
	| topdecl			        { $1 }
527

528
topdecl :: { OrdList (LHsDecl RdrName) }
529
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
530
  	| ty_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
531 532 533 534
	| 'instance' inst_type where_inst
	    { let (binds, sigs, ats, _) = cvBindsAndSigs (unLoc $3)
	      in 
	      unitOL (L (comb3 $1 $2 $3) (InstD (InstDecl $2 binds sigs ats)))}
535
        | stand_alone_deriving                  { unitOL (LL (DerivD (unLoc $1))) }
536 537 538 539
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
540 541
      	| decl					{ unLoc $1 }

542 543 544 545 546 547
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

548 549 550
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
551
	: 'class' tycl_hdr fds where_cls
552
		{% do { let { (binds, sigs, ats, docs)           = 
553
			        cvBindsAndSigs (unLoc $4)
554
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
555
                      ; checkTyVars tparms      -- only type vars allowed
556
		      ; checkKindSigs ats
557 558
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
559
					        (unLoc $3) sigs binds ats docs) } }
560

561
-- Type declarations (toplevel)
562 563
--
ty_decl :: { LTyClDecl RdrName }
564 565 566 567 568 569
           -- ordinary type synonyms
        : 'type' type '=' ctype
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
570 571
	        --
		-- Note the use of type for the head; this allows
572 573 574
		-- infix type constructors to be declared 
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb2 $1 $4) 
575
				  (TySynonym tc tvs Nothing $4))
576 577 578
                      } }

           -- type family declarations
579
        | 'type' 'family' type opt_kind_sig 
580 581
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
582
		--
583 584
 		{% do { (tc, tvs, _) <- checkSynHdr $3 False
		      ; return (L (comb3 $1 $3 $4) 
585
				  (TyFamily TypeFamily tc tvs (unLoc $4)))
586 587 588 589 590 591 592 593 594 595 596
		      } }

           -- type instance declarations
        | 'type' 'instance' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $3 True
		      ; return (L (comb2 $1 $5) 
				  (TySynonym tc tvs (Just typats) $5)) 
                      } }
597

598
          -- ordinary data type or newtype declaration
599
	| data_or_newtype tycl_hdr constrs deriving
600
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
601
                      ; checkTyVars tparms    -- no type pattern
602 603 604 605
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
606 607
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			       Nothing (reverse (unLoc $3)) (unLoc $4)) } }
608

609
          -- ordinary GADT declaration
610
        | data_or_newtype tycl_hdr opt_kind_sig 
611
		 'where' gadt_constrlist
612
		 deriving
613
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
614
                      ; checkTyVars tparms    -- can have type pats
615 616
		      ; return $
			  L (comb4 $1 $2 $4 $5)
617 618
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
619

620
          -- data/newtype family
621
        | data_or_newtype 'family' tycl_hdr opt_kind_sig
622
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
623 624 625 626
                      ; checkTyVars tparms            -- no type pattern
		      ; unless (null (unLoc ctxt)) $  -- and no context
			  parseError (getLoc ctxt) 
			    "A family declaration cannot have a context"
627
		      ; return $
628
			  L (comb3 $1 $2 $4)
629 630
			    (TyFamily (DataFamily (unLoc $1)) tc tvs 
				      (unLoc $4)) } }
631

632
          -- data/newtype instance declaration
633 634 635 636 637 638 639 640 641 642
	| data_or_newtype 'instance' tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $4 $5)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $4)) (unLoc $5)) } }

643
          -- GADT instance declaration
644 645 646 647 648 649 650 651
        | data_or_newtype 'instance' tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $6 $7)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
652
			       (unLoc $4) (reverse (unLoc $6)) (unLoc $7)) } }
653

654 655 656 657 658 659 660 661
-- Associate type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
--   identifier).
--
-- * They also need to be separate from instances; otherwise, data family
--   declarations without a kind signature cause parsing conflicts with empty
--   data declarations. 
662
--
663
at_decl_cls :: { LTyClDecl RdrName }
664
           -- type family declarations
665
        : 'type' type opt_kind_sig
666 667 668
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
		--
669 670
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb3 $1 $2 $3) 
671
				  (TyFamily TypeFamily tc tvs (unLoc $3)))
672 673
		      } }

674
           -- default type instance
675
        | 'type' type '=' ctype
676 677 678
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
679 680 681
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
682 683
                      } }

684 685
          -- data/newtype family declaration
        | data_or_newtype tycl_hdr opt_kind_sig
686
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
687 688 689 690
                      ; checkTyVars tparms            -- no type pattern
		      ; unless (null (unLoc ctxt)) $  -- and no context
			  parseError (getLoc ctxt) 
			    "A family declaration cannot have a context"
691
		      ; return $
692
			  L (comb3 $1 $2 $3)
693 694 695
			    (TyFamily (DataFamily (unLoc $1)) tc tvs
				      (unLoc $3)) 
                      } }
696 697 698 699 700 701 702 703 704 705 706 707 708

-- Associate type instances
--
at_decl_inst :: { LTyClDecl RdrName }
           -- type instance declarations
        : 'type' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
                      } }
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

        -- data/newtype instance declaration
	| data_or_newtype tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $3)) (unLoc $4)) } }

        -- GADT instance declaration
        | data_or_newtype tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $5 $6)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
730
			     (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
731

732 733 734 735
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

736 737 738
opt_kind_sig :: { Located (Maybe Kind) }
	: 				{ noLoc Nothing }
	| '::' kind			{ LL (Just (unLoc $2)) }
739

740
-- tycl_hdr parses the header of a class or data type decl,
741 742 743 744
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
745
--      T Int [a]			-- for associated types
746
-- Rather a lot of inlining here, else we get reduce/reduce errors
747 748 749
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
750
		       [LHsType RdrName]) }
751
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
752 753
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

754 755 756 757 758
-----------------------------------------------------------------------------
-- Stand-alone deriving

-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
759
  	: 'derive' 'instance' inst_type {% checkDerivDecl (LL (DerivDecl $3)) }
760

761 762 763
-----------------------------------------------------------------------------
-- Nested declarations

764
-- Declaration in class bodies
765
--
766 767 768 769 770 771 772 773 774
decl_cls  :: { Located (OrdList (LHsDecl RdrName)) }
decl_cls  : at_decl_cls		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	  | decl                        { $1 }

decls_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	  : decls_cls ';' decl_cls	{ LL (unLoc $1 `appOL` unLoc $3) }
	  | decls_cls ';'		{ LL (unLoc $1) }
	  | decl_cls			{ $1 }
	  | {- empty -}			{ noLoc nilOL }
775 776


777
decllist_cls
778
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
779 780
	: '{'         decls_cls '}'	{ LL (unLoc $2) }
	|     vocurly decls_cls close	{ $2 }
781

782
-- Class body
783
--
784
where_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
785 786
				-- No implicit parameters
				-- May have type declarations
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	: 'where' decllist_cls	        { LL (unLoc $2) }
	| {- empty -}		        { noLoc nilOL }

-- Declarations in instance bodies
--
decl_inst  :: { Located (OrdList (LHsDecl RdrName)) }
decl_inst  : at_decl_inst	        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	   | decl                       { $1 }

decls_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	   : decls_inst ';' decl_inst	{ LL (unLoc $1 `appOL` unLoc $3) }
	   | decls_inst ';'		{ LL (unLoc $1) }
	   | decl_inst			{ $1 }
	   | {- empty -}		{ noLoc nilOL }

decllist_inst 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'         decls_inst '}'	{ LL (unLoc $2) }
	|     vocurly decls_inst close	{ $2 }

-- Instance body
--
where_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' decllist_inst		{ LL (unLoc $2) }
813 814
	| {- empty -}			{ noLoc nilOL }

815 816
-- Declarations in binding groups other than classes and instances
--
817
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
818
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
819
	| decls ';'			{ LL (unLoc $1) }
820
	| decl				{ $1 }
821
	| {- empty -}			{ noLoc nilOL }
822

823
decllist :: { Located (OrdList (LHsDecl RdrName)) }
824 825 826
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

827 828
-- Binding groups other than those of class and instance declarations
--
829
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
830
						-- No type declarations
831 832 833
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
834

835
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
836
						-- No type declarations
837
	: 'where' binds			{ LL (unLoc $2) }
838
	| {- empty -}			{ noLoc emptyLocalBinds }
839 840 841 842 843


-----------------------------------------------------------------------------
-- Transformation Rules

844
rules	:: { OrdList (LHsDecl RdrName) }
845
	:  rules ';' rule			{ $1 `snocOL` $3 }
846
        |  rules ';'				{ $1 }
847 848
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
849

850
rule  	:: { LHsDecl RdrName }
851
	: STRING activation rule_forall infixexp '=' exp
852 853
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
854
				  $3 $4 placeHolderNames $6 placeHolderNames) }
855

856 857 858
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

879
deprecations :: { OrdList (LHsDecl RdrName) }
880
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
881
	| deprecations ';' 			{ $1 }
882 883
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
884 885

-- SUP: TEMPORARY HACK, not checking for `module Foo'
886
deprecation :: { OrdList (LHsDecl RdrName) }
887
	: depreclist STRING
888 889
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
890 891 892 893 894 895


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
896
fdecl : 'import' callconv safety fspec
897
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
898
      | 'import' callconv        fspec		
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
915 916
       : STRING var '::' sigtypedoc     { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtypedoc     { LL (noLoc nilFS, $1, $3) }
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

932
sigtypes1 :: { [LHsType RdrName] }
933
	: sigtype			{ [ $1 ] }
934
	| sigtype ',' sigtypes1		{ $1 : $3 }
935 936 937 938 939

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

940 941 942 943
sigtypedoc :: { LHsType RdrName }
	: ctypedoc			{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

944 945 946 947 948 949 950
sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
infixtype :: { LHsType RdrName }
	: btype qtyconop gentype         { LL $ HsOpTy $1 $2 $3 }
        | btype tyvarop  gentype  	 { LL $ HsOpTy $1 $2 $3 }

infixtypedoc :: { LHsType RdrName }
        : infixtype                      { $1 }
	| infixtype docprev              { LL $ HsDocTy $1 $2 }

gentypedoc :: { LHsType RdrName }
        : btype                          { $1 }
        | btypedoc                       { $1 }
        | infixtypedoc                   { $1 }
        | btype '->' ctypedoc            { LL $ HsFunTy $1 $3 }
        | btypedoc '->' ctypedoc         { LL $ HsFunTy $1 $3 }

ctypedoc  :: { LHsType RdrName }
        : 'forall' tv_bndrs '.' ctypedoc { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
        | context '=>' gentypedoc        { LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| gentypedoc			 { $1 }
	
972 973 974 975
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

976 977 978 979 980 981 982 983 984 985 986
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
987 988 989
--
-- We have the t1 ~ t2 form here and in gentype, to permit an individual
-- equational constraint without parenthesis.
990
context :: { LHsContext RdrName }
991 992 993
        : btype '~'      btype  	{% checkContext
					     (LL $ HsPredTy (HsEqualP $1 $3)) }
	| btype 			{% checkContext $1 }
994 995

type :: { LHsType RdrName }
996
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
997 998 999 1000 1001
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
1002
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
1003
 	| btype '->'     ctype		{ LL $ HsFunTy $1 $3 }
1004
        | btype '~'      btype  	{ LL $ HsPredTy (HsEqualP $1 $3) }
1005 1006 1007 1008 1009

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

1010 1011 1012 1013
btypedoc :: { LHsType RdrName }
	: btype atype docprev		{ LL $ HsDocTy (L (comb2 $1 $2) (HsAppTy $1 $2)) $3 }
        | atype docprev                 { LL $ HsDocTy $1 $2 }

1014 1015
atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
1016
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
1017
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
1018
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
1019
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
1020 1021
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
1022
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
1023
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
1024 1025 1026 1027 1028 1029 1030 1031
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
1032
	: sigtype			{% checkInstType $1 }
1033

1034 1035 1036 1037
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

1038 1039 1040 1041 1042
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
1043 1044
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
1045 1046 1047 1048 1049 1050 1051

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
1052 1053
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

1074
kind	:: { Located Kind }
1075
	: akind			{ $1 }
1076
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
1077

1078 1079 1080 1081
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
1082 1083 1084 1085 1086


-----------------------------------------------------------------------------
-- Datatype declarations

1087 1088 1089 1090 1091 1092
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
1093
        | gadt_constrs ';' 		{ $1 }
1094 1095
        | gadt_constr                   { L1 [$1] } 

1096 1097 1098 1099 1100 1101
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

1102
gadt_constr :: { LConDecl RdrName }
1103
        : con '::' sigtype
1104 1105 1106
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
1107
        -- XXX revisit audreyt
1108 1109
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
1110
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3) Nothing) }
1111 1112 1113
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
1114
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6) Nothing ) }
1115 1116
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
1117
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4) Nothing) }
1118 1119
-}

1120 1121 1122

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
1123
        | maybe_docnext '=' constrs1    { L (comb2 $2 $3) (addConDocs (unLoc $3) $1) }
1124 1125

constrs1 :: { Located [LConDecl RdrName] }
1126 1127
	: constrs1 maybe_docnext '|' maybe_docprev constr { LL (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4) }
	| constr			                  { L1 [$1] }
1128 1129

constr :: { LConDecl RdrName }
1130 1131 1132 1133 1134 1135
	: maybe_docnext forall context '=>' constr_stuff maybe_docprev	
		{ let (con,details) = unLoc $5 in 
		  L (comb4 $2 $3 $4 $5) (ConDecl con Explicit (unLoc $2) $3 details ResTyH98 ($1 `mplus` $6)) }
	| maybe_docnext forall constr_stuff maybe_docprev
		{ let (con,details) = unLoc $3 in 
		  L (comb2 $2 $3) (ConDecl con Explicit (unLoc $2) (noLoc []) details ResTyH98 ($1 `mplus` $4)) }
1136 1137 1138 1139 1140 1141

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
1142 1143 1144 1145 1146 1147 1148
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
1149 1150 1151
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
1152
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
1153

1154 1155 1156 1157
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

1158 1159 1160
fielddecls :: { [([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName))] }
	: fielddecl maybe_docnext ',' maybe_docprev fielddecls { addFieldDoc (unLoc $1) $4 : addFieldDocs $5 $2 }
	| fielddecl			                       { [unLoc $1] }
1161

1162 1163
fielddecl :: { Located ([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName)) }
	: maybe_docnext sig_vars '::' ctype maybe_docprev      { L (comb3 $2 $3 $4) (reverse (unLoc $2), $4, $1 `mplus` $5) }
1164

1165 1166 1167 1168
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
1169 1170
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
1171 1172 1173
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
1174 1175
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194