TcInteract.lhs 95.1 KB
Newer Older
1 2 3
\begin{code}
module TcInteract ( 
     solveInteract, AtomicInert, 
4
     InertSet, emptyInert, updInertSet, extractUnsolved, solveOne 
5 6 7 8
  ) where  

#include "HsVersions.h"

9

10 11 12 13
import BasicTypes 
import TcCanonical
import VarSet
import Type
14
import TypeRep 
15 16

import Id 
17
import VarEnv
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
import Var

import TcType
import HsBinds 

import InstEnv 
import Class 
import TyCon 
import Name

import FunDeps

import Control.Monad ( when ) 

import Coercion
import Outputable

import TcRnTypes 
import TcErrors
import TcSMonad 
38
import Bag
39 40 41
import qualified Data.Map as Map 
import Maybes 

42 43 44 45 46
import Control.Monad( zipWithM, unless )
import FastString ( sLit ) 
import DynFlags
\end{code}

47
Note [InertSet invariants]
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
~~~~~~~~~~~~~~~~~~~~~~~~~~~

An InertSet is a bag of canonical constraints, with the following invariants:

  1 No two constraints react with each other. 
    
    A tricky case is when there exists a given (solved) dictionary 
    constraint and a wanted identical constraint in the inert set, but do 
    not react because reaction would create loopy dictionary evidence for 
    the wanted. See note [Recursive dictionaries]

  2 Given equalities form an idempotent substitution [none of the
    given LHS's occur in any of the given RHS's or reactant parts]

  3 Wanted equalities also form an idempotent substitution
  4 The entire set of equalities is acyclic.

  5 Wanted dictionaries are inert with the top-level axiom set 

  6 Equalities of the form tv1 ~ tv2 always have a touchable variable
    on the left (if possible).
  7 No wanted constraints tv1 ~ tv2 with tv1 touchable. Such constraints 
    will be marked as solved right before being pushed into the inert set. 
    See note [Touchables and givens].
 
Note that 6 and 7 are /not/ enforced by canonicalization but rather by 
insertion in the inert list, ie by TcInteract. 

During the process of solving, the inert set will contain some
previously given constraints, some wanted constraints, and some given
constraints which have arisen from solving wanted constraints. For
now we do not distinguish between given and solved constraints.

Note that we must switch wanted inert items to given when going under an
implication constraint (when in top-level inference mode).

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
Note [InertSet FlattenSkolemEqClass] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The inert_fsks field of the inert set contains an "inverse map" of all the 
flatten skolem equalities in the inert set. For instance, if inert_cts looks
like this: 
 
    fsk1 ~ fsk2 
    fsk3 ~ fsk2 
    fsk4 ~ fsk5 

Then, the inert_fsks fields holds the following map: 
    fsk2 |-> { fsk1, fsk3 } 
    fsk5 |-> { fsk4 } 
Along with the necessary coercions to convert fsk1 and fsk3 back to fsk2 
and fsk4 back to fsk5. Hence, the invariants of the inert_fsks field are: 
  
   (a) All TcTyVars in the domain and range of inert_fsks are flatten skolems
   (b) All TcTyVars in the domain of inert_fsk occur naked as rhs in some 
       equalities of inert_cts 
   (c) For every mapping  fsk1 |-> { (fsk2,co), ... } it must be: 
         co : fsk2 ~ fsk1 

The role of the inert_fsks is to make it easy to maintain the equivalence
class of each flatten skolem, which is much needed to correctly do spontaneous
solving. See Note [Loopy Spontaneous Solving] 
109 110 111
\begin{code}

-- See Note [InertSet invariants]
112
data InertSet 
113
  = IS { inert_eqs  :: Bag.Bag CanonicalCt   -- Equalities only **CTyEqCan** 
114 115 116
       , inert_cts  :: Bag.Bag CanonicalCt   -- Other constraints 
       , inert_fds  :: FDImprovements        -- List of pairwise improvements that have kicked in already
                                             -- and reside either in the worklist or in the inerts 
117
       , inert_fsks :: Map.Map TcTyVar [(TcTyVar,Coercion)] }
118
       -- See Note [InertSet FlattenSkolemEqClass] 
119

120 121 122
type FDImprovement  = (PredType,PredType) 
type FDImprovements = [(PredType,PredType)] 

123
instance Outputable InertSet where
124 125
  ppr is = vcat [ vcat (map ppr (Bag.bagToList $ inert_eqs is))
                , vcat (map ppr (Bag.bagToList $ inert_cts is))
126 127 128 129 130
                , vcat (map (\(v,rest) -> ppr v <+> text "|->" <+> hsep (map (ppr.fst) rest)) 
                       (Map.toList $ inert_fsks is)
                       )
                ]
                       
131
emptyInert :: InertSet
132
emptyInert = IS { inert_eqs = Bag.emptyBag
133
                , inert_cts = Bag.emptyBag, inert_fsks = Map.empty, inert_fds = [] }
134 135 136

updInertSet :: InertSet -> AtomicInert -> InertSet 
-- Introduces an element in the inert set for the first time 
137
updInertSet (IS { inert_eqs = eqs, inert_cts = cts, inert_fsks = fsks, inert_fds = fdis })  
138 139 140 141 142 143
            item@(CTyEqCan { cc_id    = cv
                           , cc_tyvar = tv1 
                           , cc_rhs   = xi })
  | Just tv2 <- tcGetTyVar_maybe xi,
    FlatSkol {} <- tcTyVarDetails tv1, 
    FlatSkol {} <- tcTyVarDetails tv2 
144
  = let eqs'  = eqs `Bag.snocBag` item 
145
        fsks' = Map.insertWith (++) tv2 [(tv1, mkCoVarCoercion cv)] fsks
146
        -- See Note [InertSet FlattenSkolemEqClass] 
147
    in IS { inert_eqs = eqs', inert_cts = cts, inert_fsks = fsks', inert_fds = fdis }
148
updInertSet (IS { inert_eqs = eqs, inert_cts = cts
149
                , inert_fsks = fsks, inert_fds = fdis }) item 
150
  | isTyEqCCan item 
151
  = let eqs' = eqs `Bag.snocBag` item 
152
    in IS { inert_eqs = eqs', inert_cts = cts, inert_fsks = fsks, inert_fds = fdis } 
153
  | otherwise 
154
  = let cts' = cts `Bag.snocBag` item
155 156 157 158 159
    in IS { inert_eqs = eqs, inert_cts = cts', inert_fsks = fsks, inert_fds = fdis } 

updInertSetFDImprs :: InertSet -> Maybe FDImprovement -> InertSet 
updInertSetFDImprs is (Just fdi) = is { inert_fds = fdi : inert_fds is } 
updInertSetFDImprs is Nothing    = is 
160

161 162 163 164 165 166 167 168 169
foldISEqCtsM :: Monad m => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
-- Fold over the equalities of the inerts
foldISEqCtsM k z IS { inert_eqs = eqs } 
  = Bag.foldlBagM k z eqs 

foldISOtherCtsM :: Monad m => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
-- Fold over other constraints in the inerts 
foldISOtherCtsM k z IS { inert_cts = cts } 
  = Bag.foldlBagM k z cts 
170 171

extractUnsolved :: InertSet -> (InertSet, CanonicalCts)
172
extractUnsolved is@(IS {inert_eqs = eqs, inert_cts = cts, inert_fds = fdis }) 
173
  = let is_init  = is { inert_eqs = emptyCCan 
174
                      , inert_cts = solved_cts, inert_fsks = Map.empty, inert_fds = fdis }
175 176 177 178 179
        is_final = Bag.foldlBag updInertSet is_init solved_eqs -- Add equalities carefully
    in (is_final, unsolved) 
  where (unsolved_cts, solved_cts) = Bag.partitionBag isWantedCt cts
        (unsolved_eqs, solved_eqs) = Bag.partitionBag isWantedCt eqs
        unsolved                   = unsolved_cts `unionBags` unsolved_eqs
180

181 182

getFskEqClass :: InertSet -> TcTyVar -> [(TcTyVar,Coercion)] 
183
-- Precondition: tv is a FlatSkol. See Note [InertSet FlattenSkolemEqClass] 
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
getFskEqClass (IS { inert_cts = cts, inert_fsks = fsks }) tv 
  = case lkpTyEqCanByLhs of
      Nothing  -> fromMaybe [] (Map.lookup tv fsks)  
      Just ceq -> 
        case tcGetTyVar_maybe (cc_rhs ceq) of 
          Just tv_rhs | FlatSkol {} <- tcTyVarDetails tv_rhs
            -> let ceq_co = mkSymCoercion $ mkCoVarCoercion (cc_id ceq)
                   mk_co (v,c) = (v, mkTransCoercion c ceq_co)
               in (tv_rhs, ceq_co): map mk_co (fromMaybe [] $ Map.lookup tv fsks) 
          _ -> []
  where lkpTyEqCanByLhs = Bag.foldlBag lkp Nothing cts 
        lkp :: Maybe CanonicalCt -> CanonicalCt -> Maybe CanonicalCt 
        lkp Nothing ct@(CTyEqCan {cc_tyvar = tv'}) | tv' == tv = Just ct 
        lkp other _ct = other 

199 200 201 202 203 204 205 206 207 208 209 210 211 212
haveBeenImproved :: FDImprovements -> PredType -> PredType -> Bool 
haveBeenImproved [] _ _ = False 
haveBeenImproved ((pty1,pty2):fdimprs) pty1' pty2' 
 | tcEqPred pty1 pty1' && tcEqPred pty2 pty2' 
 = True 
 | tcEqPred pty1 pty2' && tcEqPred pty2 pty1'
 = True 
 | otherwise 
 = haveBeenImproved fdimprs pty1' pty2' 

getFDImprovements :: InertSet -> FDImprovements 
-- Return a list of the improvements that have kicked in so far 
getFDImprovements = inert_fds 

213 214 215 216 217 218 219 220 221 222 223

{- TODO: Later ...
data Inert = IS { class_inerts :: FiniteMap Class Atomics
     	          ip_inerts    :: FiniteMap Class Atomics
     	          tyfun_inerts :: FiniteMap TyCon Atomics
		  tyvar_inerts :: FiniteMap TyVar Atomics
                }

Later should we also separate out givens and wanteds?
-}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
\end{code}

Note [Touchables and givens]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Touchable variables will never show up in givens which are inputs to
the solver.  However, touchables may show up in givens generated by the flattener.  
For example,

  axioms:
    G Int ~ Char
    F Char ~ Int

  wanted:
    F (G alpha) ~w Int
  
canonicalises to

  G alpha ~g b
  F b ~w Int

which can be put in the inert set.  Suppose we also have a wanted

  alpha ~w Int

We cannot rewrite the given G alpha ~g b using the wanted alpha ~w
Int.  Instead, after reacting alpha ~w Int with the whole inert set,
we observe that we can solve it by unifying alpha with Int, so we mark
it as solved and put it back in the *work list*. [We also immediately unify
alpha := Int, without telling anyone, see trySpontaneousSolve function, to 
avoid doing this in the end.]

Later, because it is solved (given, in effect), we can use it to rewrite 
G alpha ~g b to G Int ~g b, which gets put back in the work list. Eventually, 
we will dispatch the remaining wanted constraints using the top-level axioms.

Finally, note that after reacting a wanted equality with the entire inert set
we may end up with something like

  b ~w alpha

which we should flip around to generate the solved constraint alpha ~s b.

%*********************************************************************
%*                                                                   * 
*                      Main Interaction Solver                       *
*                                                                    *
**********************************************************************

Note [Basic plan] 
~~~~~~~~~~~~~~~~~
1. Canonicalise (unary)
2. Pairwise interaction (binary)
    * Take one from work list 
    * Try all pair-wise interactions with each constraint in inert
278 279 280 281
   
   As an optimisation, we prioritize the equalities both in the 
   worklist and in the inerts. 

282 283 284 285 286 287 288 289
3. Try to solve spontaneously for equalities involving touchables 
4. Top-level interaction (binary wrt top-level)
   Superclass decomposition belongs in (4), see note [Superclasses]

\begin{code}
type AtomicInert = CanonicalCt     -- constraint pulled from InertSet
type WorkItem    = CanonicalCt     -- constraint pulled from WorkList

290 291
-- A mixture of Given, Wanted, and Derived constraints. 
-- We split between equalities and the rest to process equalities first. 
292 293
type WorkList = CanonicalCts
type SWorkList = WorkList        -- A worklist of solved 
294 295

unionWorkLists :: WorkList -> WorkList -> WorkList 
296
unionWorkLists = andCCan
297 298

isEmptyWorkList :: WorkList -> Bool 
299
isEmptyWorkList = isEmptyCCan 
300 301

emptyWorkList :: WorkList
302
emptyWorkList = emptyCCan
303

304
workListFromCCan :: CanonicalCt -> WorkList 
305
workListFromCCan = singleCCan
306

307
------------------------
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
data StopOrContinue 
  = Stop			-- Work item is consumed
  | ContinueWith WorkItem	-- Not consumed

instance Outputable StopOrContinue where
  ppr Stop             = ptext (sLit "Stop")
  ppr (ContinueWith w) = ptext (sLit "ContinueWith") <+> ppr w

-- Results after interacting a WorkItem as far as possible with an InertSet
data StageResult
  = SR { sr_inerts     :: InertSet
           -- The new InertSet to use (REPLACES the old InertSet)
       , sr_new_work   :: WorkList
           -- Any new work items generated (should be ADDED to the old WorkList)
           -- Invariant: 
           --    sr_stop = Just workitem => workitem is *not* in sr_inerts and
           --                               workitem is inert wrt to sr_inerts
       , sr_stop       :: StopOrContinue
       }

instance Outputable StageResult where
  ppr (SR { sr_inerts = inerts, sr_new_work = work, sr_stop = stop })
    = ptext (sLit "SR") <+> 
      braces (sep [ ptext (sLit "inerts =") <+> ppr inerts <> comma
             	  , ptext (sLit "new work =") <+> ppr work <> comma
             	  , ptext (sLit "stop =") <+> ppr stop])

type SimplifierStage = WorkItem -> InertSet -> TcS StageResult 

-- Combine a sequence of simplifier 'stages' to create a pipeline 
runSolverPipeline :: [(String, SimplifierStage)]
                  -> InertSet -> WorkItem 
                  -> TcS (InertSet, WorkList)
-- Precondition: non-empty list of stages 
runSolverPipeline pipeline inerts workItem
  = do { traceTcS "Start solver pipeline" $ 
            vcat [ ptext (sLit "work item =") <+> ppr workItem
                 , ptext (sLit "inerts    =") <+> ppr inerts]

       ; let itr_in = SR { sr_inerts = inerts
                        , sr_new_work = emptyWorkList
                        , sr_stop = ContinueWith workItem }
       ; itr_out <- run_pipeline pipeline itr_in
       ; let new_inert 
              = case sr_stop itr_out of 
       	          Stop              -> sr_inerts itr_out
354
                  ContinueWith item -> sr_inerts itr_out `updInertSet` item
355 356 357 358 359 360 361 362 363 364 365 366 367
       ; return (new_inert, sr_new_work itr_out) }
  where 
    run_pipeline :: [(String, SimplifierStage)]
                 -> StageResult -> TcS StageResult
    run_pipeline [] itr                         = return itr
    run_pipeline _  itr@(SR { sr_stop = Stop }) = return itr

    run_pipeline ((name,stage):stages) 
                 (SR { sr_new_work = accum_work
                     , sr_inerts   = inerts
                     , sr_stop     = ContinueWith work_item })
      = do { itr <- stage work_item inerts 
           ; traceTcS ("Stage result (" ++ name ++ ")") (ppr itr)
368
           ; let itr' = itr { sr_new_work = accum_work `unionWorkLists` sr_new_work itr }
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
           ; run_pipeline stages itr' }
\end{code}

Example 1:
  Inert:   {c ~ d, F a ~ t, b ~ Int, a ~ ty} (all given)
  Reagent: a ~ [b] (given)

React with (c~d)     ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~ t) ==> IR (ContinueWith (a~[b]))  False   [F [b] ~ t]
React with (b ~ Int) ==> IR (ContinueWith (a~[Int]) True    []

Example 2:
  Inert:  {c ~w d, F a ~g t, b ~w Int, a ~w ty}
  Reagent: a ~w [b]

React with (c ~w d)   ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~g t) ==> IR (ContinueWith (a~[b]))  True    []    (can't rewrite given with wanted!)
etc.

Example 3:
  Inert:  {a ~ Int, F Int ~ b} (given)
  Reagent: F a ~ b (wanted)

React with (a ~ Int)   ==> IR (ContinueWith (F Int ~ b)) True []
React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canonicalize and get nothing

\begin{code}
-- Main interaction solver: we fully solve the worklist 'in one go', 
-- returning an extended inert set.
--
-- See Note [Touchables and givens].
400
solveInteract :: InertSet -> CanonicalCts -> TcS InertSet
401 402
solveInteract inert ws 
  = do { dyn_flags <- getDynFlags
403
       ; solveInteractWithDepth (ctxtStkDepth dyn_flags,0,[]) inert ws
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
       }
solveOne :: InertSet -> WorkItem -> TcS InertSet 
solveOne inerts workItem 
  = do { dyn_flags <- getDynFlags
       ; solveOneWithDepth (ctxtStkDepth dyn_flags,0,[]) inerts workItem
       }

-----------------
solveInteractWithDepth :: (Int, Int, [WorkItem])
                       -> InertSet -> WorkList -> TcS InertSet
solveInteractWithDepth ctxt@(max_depth,n,stack) inert ws 
  | isEmptyWorkList ws
  = return inert

  | n > max_depth 
  = solverDepthErrorTcS n stack

  | otherwise 
  = do { traceTcS "solveInteractWithDepth" $ 
423 424 425 426 427 428 429
              vcat [ text "Current depth =" <+> ppr n
                   , text "Max depth =" <+> ppr max_depth ]

	      -- Solve equalities first
       ; let (eqs, non_eqs) = Bag.partitionBag isTyEqCCan ws
       ; is_from_eqs <- Bag.foldlBagM (solveOneWithDepth ctxt) inert eqs
       ; Bag.foldlBagM (solveOneWithDepth ctxt) is_from_eqs non_eqs }
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

------------------
-- Fully interact the given work item with an inert set, and return a
-- new inert set which has assimilated the new information.
solveOneWithDepth :: (Int, Int, [WorkItem])
                  -> InertSet -> WorkItem -> TcS InertSet
solveOneWithDepth (max_depth, n, stack) inert work
  = do { traceTcS0 (indent ++ "Solving {") (ppr work)
       ; (new_inert, new_work) <- runSolverPipeline thePipeline inert work
         
       ; traceTcS0 (indent ++ "Subgoals:") (ppr new_work)

	 -- Recursively solve the new work generated 
         -- from workItem, with a greater depth
       ; res_inert <- solveInteractWithDepth (max_depth, n+1, work:stack)
                                new_inert new_work 

       ; traceTcS0 (indent ++ "Done }") (ppr work) 
       ; return res_inert }
  where
    indent = replicate (2*n) ' '

thePipeline :: [(String,SimplifierStage)]
453 454 455 456
thePipeline = [ ("interact with inert eqs", interactWithInertEqsStage)
              , ("interact with inerts",    interactWithInertsStage)
              , ("spontaneous solve",       spontaneousSolveStage)
              , ("top-level reactions",     topReactionsStage) ]
457 458 459 460 461 462 463 464
\end{code}

*********************************************************************************
*                                                                               * 
                       The spontaneous-solve Stage
*                                                                               *
*********************************************************************************

465 466 467 468 469 470
Note [Efficient Orientation] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two cases where we have to be careful about 
orienting equalities to get better efficiency. 

471
Case 2: In Rewriting Equalities (function rewriteEqLHS) 
472

473 474 475 476 477 478 479 480 481 482
    When rewriting two equalities with the same LHS:
          (a)  (tv ~ xi1) 
          (b)  (tv ~ xi2) 
    We have a choice of producing work (xi1 ~ xi2) (up-to the
    canonicalization invariants) However, to prevent the inert items
    from getting kicked out of the inerts first, we prefer to
    canonicalize (xi1 ~ xi2) if (b) comes from the inert set, or (xi2
    ~ xi1) if (a) comes from the inert set.
    
    This choice is implemented using the WhichComesFromInert flag. 
483

484 485
Case 2: In Spontaneous Solving 
     Example 2a:
486 487 488 489 490 491 492 493 494 495 496 497 498
     Inerts:   [w1] : D alpha 
               [w2] : C beta 
               [w3] : F alpha ~ Int 
               [w4] : H beta  ~ Int 
     Untouchables = [beta] 
     Then a wanted (beta ~ alpha) comes along. 
        1) While interacting with the inerts it is going to kick w2,w4
           out of the inerts
        2) Then, it will spontaneoulsy be solved by (alpha := beta)
        3) Now (and here is the tricky part), to add him back as
           solved (alpha ~ beta) is no good because, in the next
           iteration, it will kick out w1,w3 as well so we will end up
           with *all* the inert equalities back in the worklist!
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
      
      So it is tempting to just add (beta ~ alpha) instead, that is, 
      maintain the original orietnation of the constraint. 

      But that does not work very well, because it may cause the 
      "double unification problem" (See Note [Avoid double unifications]). 
      For instance: 

      Example 2b: 
           [w1] : fsk1 ~ alpha 
           [w2] : fsk2 ~ alpha 
           ---
      At the end of the interaction suppose we spontaneously solve alpha := fsk1 
      but keep [Given] fsk1 ~ alpha. Then, the second time around we see the 
      constraint (fsk2 ~ alpha), and we unify *again* alpha := fsk2, which is wrong.

      Our conclusion is that, while in some cases (Example 2a), it makes sense to 
      preserve the original orientation, it is hard to do this in a sound way. 
      So we *don't* do this for now, @solveWithIdentity@ outputs a constraint that 
      is oriented with the unified variable on the left. 
519 520 521 522

Case 3: Functional Dependencies and IP improvement work
    TODO. Optimisation not yet implemented there. 

523 524 525
\begin{code}
spontaneousSolveStage :: SimplifierStage 
spontaneousSolveStage workItem inerts 
526
  = do { mSolve <- trySpontaneousSolve workItem inerts
527 528
       ; case mSolve of 
           Nothing -> -- no spontaneous solution for him, keep going
529 530
               return $ SR { sr_new_work   = emptyWorkList
                           , sr_inerts     = inerts
531 532
                           , sr_stop       = ContinueWith workItem }

533
           Just (workItem', workList')
534 535 536 537 538 539 540 541 542 543 544
               | not (isGivenCt workItem) 
	       	 -- Original was wanted or derived but we have now made him 
                 -- given so we have to interact him with the inerts due to
                 -- its status change. This in turn may produce more work.
		 -- We do this *right now* (rather than just putting workItem'
		 -- back into the work-list) because we've solved 
               -> do { (new_inert, new_work) <- runSolverPipeline 
                             [ ("recursive interact with inert eqs", interactWithInertEqsStage)
                             , ("recursive interact with inerts", interactWithInertsStage)
                             ] inerts workItem'
                     ; return $ SR { sr_new_work = new_work `unionWorkLists` workList'
545 546
                                       , sr_inerts   = new_inert -- will include workItem' 
                                       , sr_stop     = Stop }
547
                     }
548 549 550 551 552 553
               | otherwise 
                   -> -- Original was given; he must then be inert all right, and
                      -- workList' are all givens from flattening
                      return $ SR { sr_new_work = workList' 
                                  , sr_inerts   = inerts `updInertSet` workItem' 
                                  , sr_stop     = Stop }
554
       }
555

556 557 558 559 560
-- @trySpontaneousSolve wi@ solves equalities where one side is a
-- touchable unification variable. Returns:
--   * Nothing if we were not able to solve it
--   * Just wi' if we solved it, wi' (now a "given") should be put in the work list.
--     	    See Note [Touchables and givens] 
561
-- NB: just passing the inerts through for the skolem equivalence classes
562
trySpontaneousSolve :: WorkItem -> InertSet -> TcS (Maybe (WorkItem, SWorkList)) 
563
trySpontaneousSolve workItem@(CTyEqCan { cc_id = cv, cc_flavor = gw, cc_tyvar = tv1, cc_rhs = xi }) inerts 
564 565
  | isGiven gw
  = return Nothing
566 567 568 569
  | Just tv2 <- tcGetTyVar_maybe xi
  = do { tch1 <- isTouchableMetaTyVar tv1
       ; tch2 <- isTouchableMetaTyVar tv2
       ; case (tch1, tch2) of
570
           (True,  True)  -> trySpontaneousEqTwoWay inerts cv gw tv1 tv2
571 572
           (True,  False) -> trySpontaneousEqOneWay inerts cv gw tv1 xi
           (False, True)  -> trySpontaneousEqOneWay inerts cv gw tv2 (mkTyVarTy tv1)
573 574 575
	   _ -> return Nothing }
  | otherwise
  = do { tch1 <- isTouchableMetaTyVar tv1
576
       ; if tch1 then trySpontaneousEqOneWay inerts cv gw tv1 xi
577 578 579
                 else do { traceTcS "Untouchable LHS, can't spontaneously solve workitem:" (ppr workItem) 
                         ; return Nothing }
       }
580 581 582 583

  -- No need for 
  --      trySpontaneousSolve (CFunEqCan ...) = ...
  -- See Note [No touchables as FunEq RHS] in TcSMonad
584
trySpontaneousSolve _ _ = return Nothing 
585 586

----------------
587 588 589 590
trySpontaneousEqOneWay :: InertSet -> CoVar -> CtFlavor -> TcTyVar -> Xi 
                       -> TcS (Maybe (WorkItem,SWorkList))
-- tv is a MetaTyVar, not untouchable
trySpontaneousEqOneWay inerts cv gw tv xi	
591
  | not (isSigTyVar tv) || isTyVarTy xi 
592 593 594 595
  = do { kxi <- zonkTcTypeTcS xi >>= return . typeKind  -- Must look through the TcTyBinds
                                                        -- hence kxi and not typeKind xi
                                                        -- See Note [Kind Errors]
       ; if kxi `isSubKind` tyVarKind tv then
596
             solveWithIdentity inerts cv gw tv xi
597
         else if tyVarKind tv `isSubKind` kxi then 
598 599 600 601 602
             return Nothing -- kinds are compatible but we can't solveWithIdentity this way
                            -- This case covers the  a_touchable :: * ~ b_untouchable :: ?? 
                            -- which has to be deferred or floated out for someone else to solve 
                            -- it in a scope where 'b' is no longer untouchable. 
         else kindErrorTcS gw (mkTyVarTy tv) xi -- See Note [Kind errors]
603
       }
604 605
  | otherwise -- Still can't solve, sig tyvar and non-variable rhs
  = return Nothing 
606 607

----------------
608
trySpontaneousEqTwoWay :: InertSet -> CoVar -> CtFlavor -> TcTyVar -> TcTyVar
609
                       -> TcS (Maybe (WorkItem,SWorkList))
610
-- Both tyvars are *touchable* MetaTyvars so there is only a chance for kind error here
611
trySpontaneousEqTwoWay inerts cv gw tv1 tv2
612
  | k1 `isSubKind` k2
613
  , nicer_to_update_tv2 = solveWithIdentity inerts cv gw tv2 (mkTyVarTy tv1)
614
  | k2 `isSubKind` k1 
615
  = solveWithIdentity inerts cv gw tv1 (mkTyVarTy tv2) 
616 617
  | otherwise -- None is a subkind of the other, but they are both touchable! 
  = kindErrorTcS gw (mkTyVarTy tv1) (mkTyVarTy tv2) -- See Note [Kind errors]
618 619 620 621 622 623
  where
    k1 = tyVarKind tv1
    k2 = tyVarKind tv2
    nicer_to_update_tv2 = isSigTyVar tv1 || isSystemName (Var.varName tv2)
\end{code}

624 625 626 627 628 629 630 631 632 633 634
Note [Kind errors] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the wanted problem: 
      alpha ~ (# Int, Int #) 
where alpha :: ?? and (# Int, Int #) :: (#). We can't spontaneously solve this constraint, 
but we should rather reject the program that give rise to it. If 'trySpontaneousEqTwoWay' 
simply returns @Nothing@ then that wanted constraint is going to propagate all the way and 
get quantified over in inference mode. That's bad because we do know at this point that the 
constraint is insoluble. Instead, we call 'kindErrorTcS' here, which immediately fails. 

The same applies in canonicalization code in case of kind errors in the givens. 
635

636 637 638 639 640 641 642 643 644 645 646
However, when we canonicalize givens we only check for compatibility (@compatKind@). 
If there were a kind error in the givens, this means some form of inconsistency or dead code. 

When we spontaneously solve wanteds we may have to look through the bindings, hence we 
call zonkTcTypeTcS above. The reason is that maybe xi is @alpha@ where alpha :: ? and 
a previous spontaneous solving has set (alpha := f) with (f :: *). The reason that xi is 
still alpha and not f is becasue the solved constraint may be oriented as (f ~ alpha) instead
of (alpha ~ f). Then we should be using @xi@s "real" kind, which is * and not ?, when we try
to detect whether spontaneous solving is possible. 


647 648 649 650 651 652 653 654 655 656
Note [Spontaneous solving and kind compatibility] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note that our canonical constraints insist that only *given* equalities (tv ~ xi) 
or (F xis ~ rhs) require the LHS and the RHS to have exactly the same kinds. 

  - We have to require this because: 
        Given equalities can be freely used to rewrite inside 
        other types or constraints.
  - We do not have to do the same for wanteds because:
657 658 659 660 661 662 663 664
        First, wanted equations (tv ~ xi) where tv is a touchable
        unification variable may have kinds that do not agree (the
        kind of xi must be a sub kind of the kind of tv).  Second, any
        potential kind mismatch will result in the constraint not
        being soluble, which will be reported anyway. This is the
        reason that @trySpontaneousOneWay@ and @trySpontaneousTwoWay@
        will perform a kind compatibility check, and only then will
        they proceed to @solveWithIdentity@.
665 666 667 668 669 670 671 672 673 674 675

Caveat: 
  - Givens from higher-rank, such as: 
          type family T b :: * -> * -> * 
          type instance T Bool = (->) 

          f :: forall a. ((T a ~ (->)) => ...) -> a -> ... 
          flop = f (...) True 
     Whereas we would be able to apply the type instance, we would not be able to 
     use the given (T Bool ~ (->)) in the body of 'flop' 

676
Note [Loopy Spontaneous Solving] 
677
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
678

679 680
Example 1: [The problem of loopy spontaneous solving]
----------
681 682 683 684 685 686 687 688 689 690 691
Consider the original wanted: 
   wanted :  Maybe (E alpha) ~ alpha 
where E is a type family, such that E (T x) = x. After canonicalization, 
as a result of flattening, we will get: 
   given  : E alpha ~ fsk 
   wanted : alpha ~ Maybe fsk
where (fsk := E alpha, on the side). Now, if we spontaneously *solve* 
(alpha := Maybe fsk) we are in trouble! Instead, we should refrain from solving 
it and keep it as wanted.  In inference mode we'll end up quantifying over
   (alpha ~ Maybe (E alpha))
Hence, 'solveWithIdentity' performs a small occurs check before
692 693 694 695 696
actually solving. But this occurs check *must look through* flatten skolems.

However, it may be the case that the flatten skolem in hand is equal to some other 
flatten skolem whith *does not* mention our unification variable. Here's a typical example:

697 698
Example 2: [The need of keeping track of flatten skolem equivalence classes]
----------
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
Original wanteds: 
   g: F alpha ~ F beta 
   w: alpha ~ F alpha 
After canonicalization: 
   g: F beta ~ f1 
   g: F alpha ~ f1 
   w: alpha ~ f2 
   g: F alpha ~ f2 
After some reactions: 
   g: f1 ~ f2 
   g: F beta ~ f1 
   w: alpha ~ f2 
   g: F alpha ~ f2 
At this point, we will try to spontaneously solve (alpha ~ f2) which remains as yet unsolved.
We will look inside f2, which immediately mentions (F alpha), so it's not good to unify! However
by looking at the equivalence class of the flatten skolems, we can see that it is fine to 
unify (alpha ~ f1) which solves our goals! 

717 718
Example 3: [The need of looking through TyBinds for already spontaneously solved variables]
----------
719 720 721 722 723 724 725 726 727 728 729 730 731
A similar problem happens because of other spontaneous solving. Suppose we have the 
following wanteds, arriving in this exact order:
  (first)  w: beta ~ alpha 
  (second) w: alpha ~ fsk 
  (third)  g: F beta ~ fsk
Then, we first spontaneously solve the first constraint, making (beta := alpha), and having
(beta ~ alpha) as given. *Then* we encounter the second wanted (alpha ~ fsk). "fsk" does not 
obviously mention alpha, so naively we can also spontaneously solve (alpha := fsk). But 
that is wrong since fsk mentions beta, which has already secretly been unified to alpha! 

To avoid this problem, the same occurs check must unveil rewritings that can happen because 
of spontaneously having solved other constraints. 

732 733
Example 4: [Orientation of (tv ~ xi) equalities] 
----------
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
We orient equalities (tv ~ xi) so that flatten skolems appear on the left, if possible. Here
is an example of why this is needed: 

  [Wanted] w1: alpha ~ fsk 
  [Given]  g1: F alpha ~ fsk 
  [Given]  g2: b ~ fsk 
  Flatten skolem equivalence class = [] 

Assume that g2 is *not* oriented properly, as shown above. Then we would like to spontaneously
solve w1 but we can't set alpha := fsk, since fsk hides the type F alpha. However, by using 
the equation g2 it would be possible to solve w1 by setting  alpha := b. In other words, it is
not enough to look at a flatten skolem equivalence class to try to find alternatives to unify
with. We may have to go to other variables. 

By orienting the equalities so that flatten skolems are in the LHS we are eliminating them
as much as possible from the RHS of other wanted equalities, and hence it suffices to look 
in their flatten skolem equivalence classes. 

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
NB: This situation appears in the IndTypesPerf test case, inside indexed-types/.

Caveat: You may wonder if we should be doing this for unification variables as well. 
However, Note [Efficient Orientation], Case 2, demonstrates that this is not possible 
at least for touchable unification variables which we have to keep oriented with the 
touchable on the LHS to be able to eliminate it. So then, what about untouchables? 

Example 4a: 
-----------
  Untouchable = beta, Touchable = alpha 

  [Wanted] w1: alpha ~ fsk 
  [Given]  g1: F alpha ~ fsk 
  [Given]  g2: beta ~ fsk 
  Flatten skolem equivalence class = [] 

Should we be able to unify  alpha := beta to solve the constraint? Arguably yes, but 
that implies that an *untouchable* unification variable (beta) is in the same equivalence
class as a flatten skolem that mentions @alpha@. I.e. g2 means that: 
  beta ~ F alpha
But I do not think that there is any way to produce evidence for such a constraint from
the outside other than beta := F alpha, which violates the OutsideIn-ness.  


776 777 778 779 780 781 782

Note [Avoid double unifications] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The spontaneous solver has to return a given which mentions the unified unification
variable *on the left* of the equality. Here is what happens if not: 
  Original wanted:  (a ~ alpha),  (alpha ~ Int) 
We spontaneously solve the first wanted, without changing the order! 
783
      given : a ~ alpha      [having unified alpha := a] 
784 785 786
Now the second wanted comes along, but he cannot rewrite the given, so we simply continue.
At the end we spontaneously solve that guy, *reunifying*  [alpha := Int] 

787 788 789
We avoid this problem by orienting the given so that the unification
variable is on the left.  [Note that alternatively we could attempt to
enforce this at canonicalization]
790

791 792 793
See also Note [No touchables as FunEq RHS] in TcSMonad; avoiding
double unifications is the main reason we disallow touchable
unification variables as RHS of type family equations: F xis ~ alpha.
794 795 796

\begin{code}
----------------
797
solveWithIdentity :: InertSet 
798
                  -> CoVar -> CtFlavor -> TcTyVar -> Xi 
799
                  -> TcS (Maybe (WorkItem, SWorkList)) 
800 801
-- Solve with the identity coercion 
-- Precondition: kind(xi) is a sub-kind of kind(tv)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
802 803 804
-- Precondition: CtFlavor is Wanted or Derived
-- See [New Wanted Superclass Work] to see why solveWithIdentity 
--     must work for Derived as well as Wanted
805 806 807 808 809
-- Returns: (workItem, workList) where 
--        workItem = the new Given constraint
--        workList = some additional work that may have been produced as a result of flattening
--                   in case we did some chasing through flatten skolem equivalence classes.
solveWithIdentity inerts cv gw tv xi 
810
  = do { tybnds <- getTcSTyBindsMap
811 812 813 814
       ; case occurCheck tybnds inerts tv xi of 
           Nothing              -> return Nothing 
           Just (xi_unflat,coi) -> solve_with xi_unflat coi }
  where
815
    solve_with xi_unflat coi  -- coi : xi_unflat ~ xi
816
      = do { traceTcS "Sneaky unification:" $ 
817 818 819 820
                       vcat [text "Coercion variable:  " <+> ppr gw, 
                             text "Coercion:           " <+> pprEq (mkTyVarTy tv) xi,
                             text "Left  Kind is     : " <+> ppr (typeKind (mkTyVarTy tv)),
                             text "Right Kind is     : " <+> ppr (typeKind xi)
821
                  ]
822 823 824

           ; setWantedTyBind tv xi_unflat        -- Set tv := xi_unflat
           ; cv_given <- newGivOrDerCoVar (mkTyVarTy tv) xi_unflat xi_unflat
825
           ; let flav = mkGivenFlavor gw UnkSkol 
826 827 828 829 830 831 832 833 834
           ; (ct,cts, co) <- case coi of 
               ACo co  -> do { (cc,ccs) <- canEqLeafTyVarLeft flav cv_given tv xi_unflat
                             ; return (cc, ccs, co) } 
               IdCo co -> return $ (CTyEqCan { cc_id = cv_given 
                                             , cc_flavor = mkGivenFlavor gw UnkSkol
                                             , cc_tyvar = tv, cc_rhs = xi }
                                      -- xi, *not* xi_unflat because 
                                      -- xi_unflat may require flattening!
                                   , emptyWorkList, co)
835 836 837 838
           ; case gw of 
               Wanted  {} -> setWantedCoBind  cv co
               Derived {} -> setDerivedCoBind cv co 
               _          -> pprPanic "Can't spontaneously solve *given*" empty 
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	              -- See Note [Avoid double unifications]
           ; return $ Just (ct,cts)
           }

--            ; let flav = mkGivenFlavor gw UnkSkol 
--            ; (cts, co) <- case coi of 
--                             -- TODO: Optimise this, along the way it used to be 
--                ACo co  -> do { cv_given <- newGivOrDerCoVar (mkTyVarTy tv)  xi_unflat xi_unflat
--                              ; setWantedTyBind tv xi_unflat
--                              ; can_eqs <- canEq flav cv_given (mkTyVarTy tv) xi_unflat
--                              ; return (can_eqs, co) }
--                IdCo co -> do { cv_given <- newGivOrDerCoVar (mkTyVarTy tv) xi xi 
--                              ; setWantedTyBind tv xi
--                              ; can_eqs <- canEq flav cv_given (mkTyVarTy tv) xi
--                              ; return (can_eqs, co) }
--            ; case gw of 
--                Wanted  {} -> setWantedCoBind  cv co
--                Derived {} -> setDerivedCoBind cv co 
--                _          -> pprPanic "Can't spontaneously solve *given*" empty 
-- 	              -- See Note [Avoid double unifications] 
--            ; return $ Just cts }
860

861
occurCheck :: VarEnv (TcTyVar, TcType) -> InertSet
862 863 864 865 866 867 868 869 870 871
           -> TcTyVar -> TcType -> Maybe (TcType,CoercionI) 
-- Traverse @ty@ to make sure that @tv@ does not appear under some flatten skolem. 
-- If it appears under some flatten skolem look in that flatten skolem equivalence class 
-- (see Note [InertSet FlattenSkolemEqClass], [Loopy Spontaneous Solving]) to see if you 
-- can find a different flatten skolem to use, that is, one that does not mention @tv@.
-- 
-- Postcondition: Just (ty', coi) = occurCheck binds inerts tv ty 
--       coi :: ty' ~ ty 
-- NB: The returned type ty' may not be flat!

872 873
occurCheck ty_binds inerts the_tv the_ty
  = ok emptyVarSet the_ty 
874
  where 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
875 876
    -- If (fsk `elem` bad) then tv occurs in any rendering
    -- of the type under the expansion of fsk
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    ok bad this_ty@(TyConApp tc tys) 
      | Just tys_cois <- allMaybes (map (ok bad) tys) 
      , (tys',cois') <- unzip tys_cois
      = Just (TyConApp tc tys', mkTyConAppCoI tc cois') 
      | isSynTyCon tc, Just ty_expanded <- tcView this_ty
      = ok bad ty_expanded   -- See Note [Type synonyms and the occur check] in TcUnify
    ok bad (PredTy sty) 
      | Just (sty',coi) <- ok_pred bad sty 
      = Just (PredTy sty', coi) 
    ok bad (FunTy arg res) 
      | Just (arg', coiarg) <- ok bad arg, Just (res', coires) <- ok bad res
      = Just (FunTy arg' res', mkFunTyCoI coiarg coires) 
    ok bad (AppTy fun arg) 
      | Just (fun', coifun) <- ok bad fun, Just (arg', coiarg) <- ok bad arg 
      = Just (AppTy fun' arg', mkAppTyCoI coifun coiarg) 
    ok bad (ForAllTy tv1 ty1) 
    -- WARNING: What if it is a (t1 ~ t2) => t3? It's not handled properly at the moment. 
      | Just (ty1', coi) <- ok bad ty1 
      = Just (ForAllTy tv1 ty1', mkForAllTyCoI tv1 coi) 

    -- Variable cases 
898 899 900 901 902 903
    ok bad this_ty@(TyVarTy tv) 
      | tv == the_tv           		        = Nothing             -- Occurs check error
      | not (isTcTyVar tv) 		        = Just (this_ty, IdCo this_ty) -- Bound var
      | FlatSkol zty <- tcTyVarDetails tv       = ok_fsk bad tv zty
      | Just (_,ty) <- lookupVarEnv ty_binds tv = ok bad ty 
      | otherwise                               = Just (this_ty, IdCo this_ty)
904 905 906 907 908

    -- Check if there exists a ty bind already, as a result of sneaky unification. 
    -- Fall through
    ok _bad _ty = Nothing 

909
    -----------
910 911 912 913 914 915 916 917 918 919 920 921
    ok_pred bad (ClassP cn tys)
      | Just tys_cois <- allMaybes $ map (ok bad) tys 
      = let (tys', cois') = unzip tys_cois 
        in Just (ClassP cn tys', mkClassPPredCoI cn cois')
    ok_pred bad (IParam nm ty)   
      | Just (ty',co') <- ok bad ty 
      = Just (IParam nm ty', mkIParamPredCoI nm co') 
    ok_pred bad (EqPred ty1 ty2) 
      | Just (ty1',coi1) <- ok bad ty1, Just (ty2',coi2) <- ok bad ty2
      = Just (EqPred ty1' ty2', mkEqPredCoI coi1 coi2) 
    ok_pred _ _ = Nothing 

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    -----------
    ok_fsk bad fsk zty
      | fsk `elemVarSet` bad 
            -- We are already trying to find a rendering of fsk, 
	    -- and to do that it seems we need a rendering, so fail
      = Nothing
      | otherwise 
      = firstJusts (ok new_bad zty : map (go_under_fsk new_bad) fsk_equivs)
      where
        fsk_equivs = getFskEqClass inerts fsk 
        new_bad    = bad `extendVarSetList` (fsk : map fst fsk_equivs)

    -----------
    go_under_fsk bad_tvs (fsk,co)
      | FlatSkol zty <- tcTyVarDetails fsk
      = case ok bad_tvs zty of
           Nothing        -> Nothing
           Just (ty,coi') -> Just (ty, mkTransCoI coi' (ACo co)) 
      | otherwise = pprPanic "go_down_equiv" (ppr fsk)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
\end{code}


*********************************************************************************
*                                                                               * 
                       The interact-with-inert Stage
*                                                                               *
*********************************************************************************

\begin{code}
-- Interaction result of  WorkItem <~> AtomicInert
data InteractResult
   = IR { ir_stop         :: StopOrContinue
            -- Stop
            --   => Reagent (work item) consumed.
            -- ContinueWith new_reagent
            --   => Reagent transformed but keep gathering interactions. 
            --      The transformed item remains inert with respect 
            --      to any previously encountered inerts.

        , ir_inert_action :: InertAction
            -- Whether the inert item should remain in the InertSet.

        , ir_new_work     :: WorkList
            -- new work items to add to the WorkList
966 967

        , ir_improvement  :: Maybe FDImprovement -- In case improvement kicked in
968 969 970 971 972 973 974
        }

-- What to do with the inert reactant.
data InertAction = KeepInert | DropInert
  deriving Eq

mkIRContinue :: Monad m => WorkItem -> InertAction -> WorkList -> m InteractResult
975
mkIRContinue wi keep newWork = return $ IR (ContinueWith wi) keep newWork Nothing 
976 977

mkIRStop :: Monad m => InertAction -> WorkList -> m InteractResult
978 979 980 981 982
mkIRStop keep newWork = return $ IR Stop keep newWork Nothing

mkIRStop_RecordImprovement :: Monad m => InertAction -> WorkList -> FDImprovement -> m InteractResult 
mkIRStop_RecordImprovement keep newWork fdimpr = return $ IR Stop keep newWork (Just fdimpr) 

983 984

dischargeWorkItem :: Monad m => m InteractResult
985
dischargeWorkItem = mkIRStop KeepInert emptyWorkList
986 987

noInteraction :: Monad m => WorkItem -> m InteractResult
988
noInteraction workItem = mkIRContinue workItem KeepInert emptyWorkList
989

dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
990
data WhichComesFromInert = LeftComesFromInert | RightComesFromInert 
991
     -- See Note [Efficient Orientation, Case 2] 
992

993

994
---------------------------------------------------
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
-- Interact a single WorkItem with the equalities of an inert set as far as possible, i.e. until we 
-- get a Stop result from an individual reaction (i.e. when the WorkItem is consumed), or until we've 
-- interact the WorkItem with the entire equalities of the InertSet

interactWithInertEqsStage :: SimplifierStage 
interactWithInertEqsStage workItem inert
  = foldISEqCtsM interactNext initITR inert 
  where initITR = SR { sr_inerts   = IS { inert_eqs  = emptyCCan -- We will fold over the equalities
                                        , inert_fsks = Map.empty -- which will generate those two again
                                        , inert_cts  = inert_cts inert
                                        , inert_fds  = inert_fds inert
                                        }
                     , sr_new_work = emptyWorkList
                     , sr_stop     = ContinueWith workItem }

1010

1011 1012 1013 1014 1015
---------------------------------------------------
-- Interact a single WorkItem with *non-equality* constraints in the inert set. 
-- Precondition: equality interactions must have already happened, hence we have 
-- to pick up some information from the incoming inert, before folding over the 
-- "Other" constraints it contains! 
1016 1017
interactWithInertsStage :: SimplifierStage
interactWithInertsStage workItem inert
1018
  = foldISOtherCtsM interactNext initITR inert
1019
  where 
1020 1021 1022 1023 1024
    initITR = SR { -- Pick up: (1) equations, (2) FD improvements, (3) FlatSkol equiv. classes
                   sr_inerts   = IS { inert_eqs  = inert_eqs inert 
                                    , inert_cts  = emptyCCan      
                                    , inert_fds  = inert_fds inert 
                                    , inert_fsks = inert_fsks inert }
1025
                 , sr_new_work = emptyWorkList
1026 1027
                 , sr_stop     = ContinueWith workItem }

1028 1029 1030
interactNext :: StageResult -> AtomicInert -> TcS StageResult 
interactNext it inert  
  | ContinueWith workItem <- sr_stop it
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
  = do { let inerts      = sr_inerts it 
             fdimprs_old = getFDImprovements inerts 

       ; ir <- interactWithInert fdimprs_old inert workItem 

       -- New inerts depend on whether we KeepInert or not and must 
       -- be updated with FD improvement information from the interaction result (ir) 
       ; let inerts_new = updInertSetFDImprs upd_inert (ir_improvement ir) 
             upd_inert  = if ir_inert_action ir == KeepInert 
                          then inerts `updInertSet` inert else inerts

       ; return $ SR { sr_inerts   = inerts_new
                     , sr_new_work = sr_new_work it `unionWorkLists` ir_new_work ir
                     , sr_stop     = ir_stop ir } }
  | otherwise 
  = return $ it { sr_inerts = (sr_inerts it) `updInertSet` inert }
1047 1048

-- Do a single interaction of two constraints.
1049 1050
interactWithInert :: FDImprovements -> AtomicInert -> WorkItem -> TcS InteractResult
interactWithInert fdimprs inert workitem 
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
  =  do { ctxt <- getTcSContext
        ; let is_allowed  = allowedInteraction (simplEqsOnly ctxt) inert workitem 
              inert_ev    = cc_id inert 
              work_ev     = cc_id workitem 

        -- Never interact a wanted and a derived where the derived's evidence 
        -- mentions the wanted evidence in an unguarded way. 
        -- See Note [Superclasses and recursive dictionaries] 
        -- and Note [New Wanted Superclass Work] 
        -- We don't have to do this for givens, as we fully know the evidence for them. 
        ; rec_ev_ok <- 
            case (cc_flavor inert, cc_flavor workitem) of 
1063 1064 1065
              (Wanted loc, Derived {}) -> isGoodRecEv work_ev  (WantedEvVar inert_ev loc)
              (Derived {}, Wanted loc) -> isGoodRecEv inert_ev (WantedEvVar work_ev loc)
              _                        -> return True 
1066 1067

        ; if is_allowed && rec_ev_ok then 
1068
              doInteractWithInert fdimprs inert workitem 
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
          else 
              noInteraction workitem 
        }

allowedInteraction :: Bool -> AtomicInert -> WorkItem -> Bool 
-- Allowed interactions 
allowedInteraction eqs_only (CDictCan {}) (CDictCan {}) = not eqs_only
allowedInteraction eqs_only (CIPCan {})   (CIPCan {})   = not eqs_only
allowedInteraction _ _ _ = True 

--------------------------------------------
1080
doInteractWithInert :: FDImprovements -> CanonicalCt -> CanonicalCt -> TcS InteractResult
1081 1082
-- Identical class constraints.

1083
doInteractWithInert fdimprs
1084 1085 1086 1087 1088 1089 1090
           (CDictCan { cc_id = d1, cc_flavor = fl1, cc_class = cls1, cc_tyargs = tys1 }) 
  workItem@(CDictCan { cc_id = d2, cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
  | cls1 == cls2 && (and $ zipWith tcEqType tys1 tys2)
  = solveOneFromTheOther (d1,fl1) workItem 

  | cls1 == cls2 && (not (isGiven fl1 && isGiven fl2))
  = 	 -- See Note [When improvement happens]
1091 1092 1093 1094
    do { let pty1 = ClassP cls1 tys1 
             pty2 = ClassP cls2 tys2 
             work_item_pred_loc = (pty2, ppr d2)
             inert_pred_loc     = (pty1, ppr d1)
1095 1096
	     loc                = combineCtLoc fl1 fl2
             eqn_pred_locs = improveFromAnother work_item_pred_loc inert_pred_loc         
1097

1098
       ; wevvars <- mkWantedFunDepEqns loc eqn_pred_locs 
1099
       ; fd_work <- canWanteds wevvars 
1100
              	 -- See Note [Generating extra equalities]
1101
       ; traceTcS "Checking if improvements existed." (ppr fdimprs) 
1102
       ; if isEmptyWorkList fd_work || haveBeenImproved fdimprs pty1 pty2 then
1103
             -- Must keep going
1104
             mkIRContinue workItem KeepInert fd_work 
1105 1106
         else do { traceTcS "Recording improvement and throwing item back in worklist." (ppr (pty1,pty2))
                 ; mkIRStop_RecordImprovement KeepInert 
1107
                      (fd_work `unionWorkLists` workListFromCCan workItem) (pty1,pty2)
1108
                 }
1109 1110 1111 1112 1113
         -- See Note [FunDep Reactions] 
       }

-- Class constraint and given equality: use the equality to rewrite
-- the class constraint. 
1114 1115
doInteractWithInert _fdimprs
                    (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
1116 1117 1118
                    (CDictCan { cc_id = dv, cc_flavor = wfl, cc_class = cl, cc_tyargs = xis }) 
  | ifl `canRewrite` wfl 
  , tv `elemVarSet` tyVarsOfTypes xis
1119 1120 1121 1122 1123 1124
  = if isDerivedSC wfl then 
        mkIRStop KeepInert $ emptyWorkList -- See Note [Adding Derived Superclasses]
    else do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,wfl,cl,xis)
            -- Continue with rewritten Dictionary because we can only be in the 
            -- interactWithEqsStage, so the dictionary is inert. 
            ; mkIRContinue rewritten_dict KeepInert emptyWorkList }
1125
    
1126 1127
doInteractWithInert _fdimprs 
                    (CDictCan { cc_id = dv, cc_flavor = ifl, cc_class = cl, cc_tyargs = xis }) 
1128 1129 1130
           workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfTypes xis
1131 1132 1133 1134 1135
  = if isDerivedSC ifl then
        mkIRContinue workItem DropInert emptyWorkList -- No need to do any rewriting, 
                                                      -- see Note [Adding Derived Superclasses]
    else do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,ifl,cl,xis) 
            ; mkIRContinue workItem DropInert (workListFromCCan rewritten_dict) }
1136 1137 1138

-- Class constraint and given equality: use the equality to rewrite
-- the class constraint.
1139 1140
doInteractWithInert _fdimprs 
                    (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
1141 1142 1143 1144
                    (CIPCan { cc_id = ipid, cc_flavor = wfl, cc_ip_nm = nm, cc_ip_ty = ty }) 
  | ifl `canRewrite` wfl
  , tv `elemVarSet` tyVarsOfType ty 
  = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,wfl,nm,ty) 
1145
       ; mkIRContinue rewritten_ip KeepInert emptyWorkList } 
1146

1147 1148
doInteractWithInert _fdimprs 
                    (CIPCan { cc_id = ipid, cc_flavor = ifl, cc_ip_nm = nm, cc_ip_ty = ty }) 
1149 1150 1151 1152
           workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfType ty
  = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,ifl,nm,ty) 
1153
       ; mkIRContinue workItem DropInert (workListFromCCan rewritten_ip) }
1154 1155 1156 1157 1158 1159

-- Two implicit parameter constraints.  If the names are the same,
-- but their types are not, we generate a wanted type equality 
-- that equates the type (this is "improvement").  
-- However, we don't actually need the coercion evidence,
-- so we just generate a fresh coercion variable that isn't used anywhere.
1160 1161
doInteractWithInert _fdimprs 
                    (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
1162
           workItem@(CIPCan { cc_flavor = wfl, cc_ip_nm = nm2, cc_ip_ty = ty2 })
1163 1164 1165 1166
  | nm1 == nm2 && isGiven wfl && isGiven ifl
  = 	-- See Note [Overriding implicit parameters]
        -- Dump the inert item, override totally with the new one
	-- Do not require type equality
1167
    mkIRContinue workItem DropInert emptyWorkList
1168

1169 1170 1171
  | nm1 == nm2 && ty1 `tcEqType` ty2 
  = solveOneFromTheOther (id1,ifl) workItem 

1172
  | nm1 == nm2
1173 1174 1175
  =  	-- See Note [When improvement happens]
    do { co_var <- newWantedCoVar ty1 ty2 
       ; let flav = Wanted (combineCtLoc ifl wfl) 
1176
       ; cans <- mkCanonical flav co_var 
1177
       ; mkIRContinue workItem KeepInert cans }
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188


-- Inert: equality, work item: function equality

-- Never rewrite a given with a wanted equality, and a type function
-- equality can never rewrite an equality.  Note also that if we have
-- F x1 ~ x2 and a ~ x3, and a occurs in x2, we don't rewrite it.  We
-- can wait until F x1 ~ x2 matches another F x1 ~ x4, and only then
-- we will ``expose'' x2 and x4 to rewriting.

-- Otherwise, we can try rewriting the type function equality with the equality.
1189 1190
doInteractWithInert _fdimprs
                    (CTyEqCan { cc_id = cv1, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi1 }) 
1191 1192 1193 1194 1195
                    (CFunEqCan { cc_id = cv2, cc_flavor = wfl, cc_fun = tc
                               , cc_tyargs = args, cc_rhs = xi2 })
  | ifl `canRewrite` wfl 
  , tv `elemVarSet` tyVarsOfTypes args
  = do { rewritten_funeq <- rewriteFunEq (cv1,tv,xi1) (cv2,wfl,tc,args,xi2) 
1196 1197
       ; mkIRStop KeepInert (workListFromCCan rewritten_funeq) } 
         -- must Stop here, because we may no longer be inert after the rewritting.
1198 1199

-- Inert: function equality, work item: equality
1200 1201
doInteractWithInert _fdimprs
                    (CFunEqCan {cc_id = cv1, cc_flavor = ifl, cc_fun = tc
1202 1203 1204 1205 1206
                              , cc_tyargs = args, cc_rhs = xi1 }) 
           workItem@(CTyEqCan { cc_id = cv2, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi2 })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfTypes args
  = do { rewritten_funeq <- rewriteFunEq (cv2,tv,xi2) (cv1,ifl,tc,args,xi1) 
1207
       ; mkIRContinue workItem DropInert (workListFromCCan rewritten_funeq) } 
1208

1209 1210
doInteractWithInert _fdimprs
                    (CFunEqCan { cc_id = cv1, cc_flavor = fl1, cc_fun = tc1
1211 1212 1213
                               , cc_tyargs = args1, cc_rhs = xi1 }) 
           workItem@(CFunEqCan { cc_id = cv2, cc_flavor = fl2, cc_fun = tc2
                               , cc_tyargs = args2, cc_rhs = xi2 })
1214
  | fl1 `canSolve` fl2 && lhss_match
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1215
  = do { cans <- rewriteEqLHS LeftComesFromInert  (mkCoVarCoercion cv1,xi1) (cv2,fl2,xi2) 
1216
       ; mkIRStop KeepInert cans } 
1217
  | fl2 `canSolve` fl1 && lhss_match
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1218
  = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCoercion cv2,xi2) (cv1,fl1,xi1) 
1219
       ; mkIRContinue workItem DropInert cans }
1220 1221 1222
  where
    lhss_match = tc1 == tc2 && and (zipWith tcEqType args1 args2) 

1223
doInteractWithInert _fdimprs 
1224
           inert@(CTyEqCan { cc_id = cv1, cc_flavor = fl1, cc_tyvar = tv1, cc_rhs = xi1 }) 
1225 1226
           workItem@(CTyEqCan { cc_id = cv2, cc_flavor = fl2, cc_tyvar = tv2, cc_rhs = xi2 })
-- Check for matching LHS 
1227
  | fl1 `canSolve` fl2 && tv1 == tv2 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1228
  = do { cans <- rewriteEqLHS LeftComesFromInert (mkCoVarCoercion cv1,xi1) (cv2,fl2,xi2) 
1229
       ; mkIRStop KeepInert cans } 
1230

1231
  | fl2 `canSolve` fl1 && tv1 == tv2 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1232
  = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCoercion cv2,xi2) (cv1,fl1,xi1) 
1233
       ; mkIRContinue workItem DropInert cans } 
1234 1235 1236 1237

-- Check for rewriting RHS 
  | fl1 `canRewrite` fl2 && tv1 `elemVarSet` tyVarsOfType xi2 
  = do { rewritten_eq <- rewriteEqRHS (cv1,tv1,xi1) (cv2,fl2,tv2,xi2) 
1238
       ; mkIRStop KeepInert rewritten_eq }
1239 1240
  | fl2 `canRewrite` fl1 && tv2 `elemVarSet` tyVarsOfType xi1
  = do { rewritten_eq <- rewriteEqRHS (cv2,tv2,xi2) (cv1,fl1,tv1,xi1) 
1241
       ; mkIRContinue workItem DropInert rewritten_eq } 
1242 1243 1244 1245 1246 1247

-- Finally, if workitem is a Flatten Equivalence Class constraint and the 
-- inert is a wanted constraint, even when the workitem cannot rewrite the 
-- inert, drop the inert out because you may have to reconsider solving the 
-- inert *using* the equivalence class you created. See note [Loopy Spontaneous Solving]
-- and [InertSet FlattenSkolemEqClass] 
1248 1249 1250 1251 1252

  | not $ isGiven fl1,                  -- The inert is wanted or derived
    isMetaTyVar tv1,                    -- and has a unification variable lhs
    FlatSkol {} <- tcTyVarDetails tv2,  -- And workitem is a flatten skolem equality
    Just tv2'   <- tcGetTyVar_maybe xi2, FlatSkol {} <- tcTyVarDetails tv2' 
1253
  = mkIRContinue workItem DropInert (workListFromCCan inert)   
1254 1255


1256
-- Fall-through case for all other situations
1257
doInteractWithInert _fdimprs _ workItem = noInteraction workItem
1258

1259
-------------------------
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
-- Equational Rewriting 
rewriteDict  :: (CoVar, TcTyVar, Xi) -> (DictId, CtFlavor, Class, [Xi]) -> TcS CanonicalCt
rewriteDict (cv,tv,xi) (dv,gw,cl,xis) 
  = do { let cos  = substTysWith [tv] [mkCoVarCoercion cv] xis -- xis[tv] ~ xis[xi]
             args = substTysWith [tv] [xi] xis
             con  = classTyCon cl 
             dict_co = mkTyConCoercion con cos 
       ; dv' <- newDictVar cl args 
       ; case gw of 
           Wanted {}         -> setDictBind dv (EvCast dv' (mkSymCoercion dict_co))
           _given_or_derived -> setDictBind dv' (EvCast dv dict_co) 
       ; return (CDictCan { cc_id = dv'
                          , cc_flavor = gw 
                          , cc_class = cl 
                          , cc_tyargs = args }) } 

rewriteIP :: (CoVar,TcTyVar,Xi) -> (EvVar,CtFlavor, IPName Name, TcType) -> TcS CanonicalCt 
rewriteIP (cv,tv,xi) (ipid,gw,nm,ty) 
  = do { let ip_co = substTyWith [tv] [mkCoVarCoercion cv] ty     -- ty[tv] ~ t[xi] 
             ty'   = substTyWith [tv] [xi] ty
       ; ipid' <- newIPVar nm ty' 
       ; case gw of 
           Wanted {}         -> setIPBind ipid  (EvCast ipid' (mkSymCoercion ip_co))
           _given_or_derived -> setIPBind ipid' (EvCast ipid ip_co) 
       ; return (CIPCan { cc_id = ipid'
                        , cc_flavor = gw
                        , cc_ip_nm = nm
                        , cc_ip_ty = ty' }) }
   
rewriteFunEq :: (CoVar,TcTyVar,Xi) -> (CoVar,CtFlavor,TyCon, [Xi], Xi) -> TcS CanonicalCt
rewriteFunEq (cv1,tv,xi1) (cv2,gw, tc,args,xi2) 
  = do { let arg_cos = substTysWith [tv] [mkCoVarCoercion cv1] args 
             args'   = substTysWith [tv] [xi1] args 
             fun_co  = mkTyConCoercion tc arg_cos 
       ; cv2' <- case gw of 
                   Wanted {} -> do { cv2' <- newWantedCoVar (mkTyConApp tc args') xi2 
                                   ; setWantedCoBind cv2 $ 
                                     mkTransCoercion fun_co (mkCoVarCoercion cv2') 
                                   ; return cv2' } 
                   _giv_or_der -> newGivOrDerCoVar (mkTyConApp tc args') xi2 $
                                  mkTransCoercion (mkSymCoercion fun_co) (mkCoVarCoercion cv2) 
       ; return (CFunEqCan { cc_id = cv2'
                           , cc_flavor = gw
                           , cc_tyargs = args'
                           , cc_fun = tc 
                           , cc_rhs = xi2 }) }


1308
rewriteEqRHS :: (CoVar,TcTyVar,Xi) -> (CoVar,CtFlavor,TcTyVar,Xi) -> TcS WorkList
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
-- Use the first equality to rewrite the second, flavors already checked. 
-- E.g.          c1 : tv1 ~ xi1   c2 : tv2 ~ xi2
-- rewrites c2 to give
--               c2' : tv2 ~ xi2[xi1/tv1]
-- We must do an occurs check to sure the new constraint is canonical
-- So we might return an empty bag
rewriteEqRHS (cv1,tv1,xi1) (cv2,gw,tv2,xi2) 
  | Just tv2' <- tcGetTyVar_maybe xi2'
  , tv2 == tv2'	 -- In this case xi2[xi1/tv1] = tv2, so we have tv2~tv2
  = do { when (isWanted gw) (setWantedCoBind cv2 (mkSymCoercion co2')) 
       ; return emptyCCan } 
  | otherwise 
  = do { cv2' <- 
           case gw of 
             Wanted {} 
                 -> do { cv2' <- newWantedCoVar (mkTyVarTy tv2) xi2' 
                       ; setWantedCoBind cv2 $ 
                         mkCoVarCoercion cv2' `mkTransCoercion` mkSymCoercion co2'
                       ; return cv2' } 
             _giv_or_der 
                 -> newGivOrDerCoVar (mkTyVarTy tv2) xi2' $ 
                    mkCoVarCoercion cv2 `mkTransCoercion` co2'

       ; xi2'' <- canOccursCheck gw tv2 xi2' -- we know xi2' is *not* tv2 
1333
       ; canEq gw cv2' (mkTyVarTy tv2) xi2''
1334 1335 1336 1337 1338
       }
  where 
    xi2' = substTyWith [tv1] [xi1] xi2 
    co2' = substTyWith [tv1] [mkCoVarCoercion cv1] xi2  -- xi2 ~ xi2[xi1/tv1]

dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1339

1340
rewriteEqLHS :: WhichComesFromInert -> (Coercion,Xi) -> (CoVar,CtFlavor,Xi) -> TcS WorkList
1341
-- Used to ineract two equalities of the following form: 
1342 1343
-- First Equality:   co1: (XXX ~ xi1)  
-- Second Equality:  cv2: (XXX ~ xi2) 
1344
-- Where the cv1 `canSolve` cv2 equality 
1345 1346
-- We have an option of creating new work (xi1 ~ xi2) OR (xi2 ~ xi1), 
--    See Note [Efficient Orientation] for that 
dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
rewriteEqLHS which (co1,xi1) (cv2,gw,xi2) 
  = do { cv2' <- case (isWanted gw, which) of 
                   (True,LeftComesFromInert) ->
                       do { cv2' <- newWantedCoVar xi2 xi1 
                          ; setWantedCoBind cv2 $ 
                            co1 `mkTransCoercion` mkSymCoercion (mkCoVarCoercion cv2')
                          ; return cv2' } 
                   (True,RightComesFromInert) -> 
                       do { cv2' <- newWantedCoVar xi1 xi2 
                          ; setWantedCoBind cv2 $ 
                            co1 `mkTransCoercion` mkCoVarCoercion cv2'
                          ; return cv2' } 
                   (False,LeftComesFromInert) ->
                       newGivOrDerCoVar xi2 xi1 $ 
                       mkSymCoercion (mkCoVarCoercion cv2) `mkTransCoercion` co1 
                   (False,RightComesFromInert) -> 
                        newGivOrDerCoVar xi1 xi2 $ 
                        mkSymCoercion co1 `mkTransCoercion` mkCoVarCoercion cv2
1365 1366 1367
       ; mkCanonical gw cv2'
       }
                                           
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
solveOneFromTheOther :: (EvVar, CtFlavor) -> CanonicalCt -> TcS InteractResult 
-- First argument inert, second argument workitem. They both represent 
-- wanted/given/derived evidence for the *same* predicate so we try here to 
-- discharge one directly from the other. 
--
-- Precondition: value evidence only (implicit parameters, classes) 
--               not coercion
solveOneFromTheOther (iid,ifl) workItem 
      -- Both derived needs a special case. You might think that we do not need
      -- two evidence terms for the same claim. But, since the evidence is partial, 
      -- either evidence may do in some cases; see TcSMonad.isGoodRecEv.
      -- See also Example 3 in Note [Superclasses and recursive dictionaries] 
  | isDerived ifl && isDerived wfl 
  = noInteraction workItem 

1383
  | ifl `canSolve` wfl
1384 1385 1386 1387 1388
  = do { unless (isGiven wfl) $ setEvBind wid (EvId iid) 
           -- Overwrite the binding, if one exists
	   -- For Givens, which are lambda-bound, nothing to overwrite,
       ; dischargeWorkItem }

1389
  | otherwise  -- wfl `canSolve` ifl 
1390
  = do { unless (isGiven ifl) $ setEvBind iid (EvId wid)
1391
       ; mkIRContinue workItem DropInert emptyWorkList }
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449