TidyPgm.lhs 23.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section{Tidying up Core}

\begin{code}
module TidyPgm( tidyCorePgm, tidyCoreExpr ) where

#include "HsVersions.h"

import CmdLineOpts	( DynFlags, DynFlag(..), opt_OmitInterfacePragmas )
import CoreSyn
import CoreUnfold	( noUnfolding, mkTopUnfolding, okToUnfoldInHiFile )
import CoreFVs		( ruleLhsFreeIds, ruleRhsFreeVars, exprSomeFreeVars )
import CoreTidy		( tidyExpr, tidyVarOcc, tidyIdRules )
import PprCore 		( pprIdRules )
import CoreLint		( showPass, endPass )
18
import CoreUtils	( exprArity, rhsIsNonUpd )
19
20
21
22
import VarEnv
import VarSet
import Var		( Id, Var )
import Id		( idType, idInfo, idName, idCoreRules, 
23
			  isExportedId, mkVanillaGlobal, isLocalId, 
24
			  isImplicitId, idArity, setIdInfo, idCafInfo
25
26
27
			) 
import IdInfo		{- loads of stuff -}
import NewDemand	( isBottomingSig, topSig )
28
import BasicTypes	( Arity, isNeverActive )
29
import Name		( getOccName, nameOccName, mkInternalName,
30
31
		  	  localiseName, isExternalName, nameSrcLoc
			)
32
import RnEnv		( lookupOrigNameCache, newExternalName )
33
import NameEnv		( lookupNameEnv, filterNameEnv )
34
35
import OccName		( TidyOccEnv, initTidyOccEnv, tidyOccName )
import Type		( tidyTopType )
36
import Module		( Module )
37
38
import HscTypes		( PersistentCompilerState( pcs_nc ), 
			  NameCache( nsNames, nsUniqs ),
39
			  TypeEnv, extendTypeEnvList, typeEnvIds,
40
			  ModGuts(..), ModGuts, TyThing(..)
41
42
43
44
45
46
47
48
49
			)
import Maybes		( orElse )
import ErrUtils		( showPass, dumpIfSet_core )
import UniqFM		( mapUFM )
import UniqSupply	( splitUniqSupply, uniqFromSupply )
import List		( partition )
import Util		( mapAccumL )
import Maybe		( isJust )
import Outputable
50
import FastTypes  hiding ( fastOr )
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
\end{code}


%************************************************************************
%*				 					*
\subsection{What goes on}
%*				 					* 
%************************************************************************

[SLPJ: 19 Nov 00]

The plan is this.  

Step 1: Figure out external Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First we figure out which Ids are "external" Ids.  An
"external" Id is one that is visible from outside the compilation
unit.  These are
	a) the user exported ones
	b) ones mentioned in the unfoldings, workers, 
	   or rules of externally-visible ones 
This exercise takes a sweep of the bindings bottom to top.  Actually,
in Step 2 we're also going to need to know which Ids should be
exported with their unfoldings, so we produce not an IdSet but an
IdEnv Bool


Step 2: Tidy the program
~~~~~~~~~~~~~~~~~~~~~~~~
Next we traverse the bindings top to bottom.  For each *top-level*
binder

 1. Make it into a GlobalId

 2. Give it a system-wide Unique.
    [Even non-exported things need system-wide Uniques because the
    byte-code generator builds a single Name->BCO symbol table.]

89
    We use the NameCache kept in the PersistentCompilerState as the
90
91
    source of such system-wide uniques.

92
    For external Ids, use the original-name cache in the NameCache
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    to ensure that the unique assigned is the same as the Id had 
    in any previous compilation run.
  
 3. If it's an external Id, make it have a global Name, otherwise
    make it have a local Name.
    This is used by the code generator to decide whether
    to make the label externally visible

 4. Give external Ids a "tidy" occurrence name.  This means
    we can print them in interface files without confusing 
    "x" (unique 5) with "x" (unique 10).
  
 5. Give it its UTTERLY FINAL IdInfo; in ptic, 
	* Its IdDetails becomes VanillaGlobal, reflecting the fact that
	  from now on we regard it as a global, not local, Id

  	* its unfolding, if it should have one
	
	* its arity, computed from the number of visible lambdas

	* its CAF info, computed from what is free in its RHS

		
Finally, substitute these new top-level binders consistently
throughout, including in unfoldings.  We also tidy binders in
RHSs, so that they print nicely in interfaces.

\begin{code}
121
tidyCorePgm :: DynFlags
122
	    -> PersistentCompilerState
123
124
	    -> ModGuts
	    -> IO (PersistentCompilerState, ModGuts)
125

126
tidyCorePgm dflags pcs
127
128
129
	    mod_impl@(ModGuts { mg_module = mod, 
				mg_types = env_tc, mg_insts = insts_tc, 
				mg_binds = binds_in, mg_rules = orphans_in })
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  = do	{ showPass dflags "Tidy Core"

	; let ext_ids   = findExternalSet   binds_in orphans_in
	; let ext_rules = findExternalRules binds_in orphans_in ext_ids
		-- findExternalRules filters ext_rules to avoid binders that 
		-- aren't externally visible; but the externally-visible binders 
		-- are computed (by findExternalSet) assuming that all orphan
		-- rules are exported.  So in fact we may export more than we
		-- need.  (It's a sort of mutual recursion.)

	-- We also make sure to avoid any exported binders.  Consider
	--	f{-u1-} = 1	-- Local decl
	--	...
	--	f{-u2-} = 2	-- Exported decl
	--
	-- The second exported decl must 'get' the name 'f', so we
	-- have to put 'f' in the avoids list before we get to the first
	-- decl.  tidyTopId then does a no-op on exported binders.
148
	; let   orig_ns       = pcs_nc pcs
149
150
151
152
153
154
155
156
157
158
159
160
		init_tidy_env = (orig_ns, initTidyOccEnv avoids, emptyVarEnv)
		avoids	      = [getOccName name | bndr <- typeEnvIds env_tc,
						   let name = idName bndr,
						   isExternalName name]
		-- In computing our "avoids" list, we must include
		--	all implicit Ids
		--	all things with global names (assigned once and for
		--					all by the renamer)
		-- since their names are "taken".
		-- The type environment is a convenient source of such things.

	; let ((orig_ns', occ_env, subst_env), tidy_binds) 
161
	       		= mapAccumL (tidyTopBind mod ext_ids) 
162
163
164
165
				    init_tidy_env binds_in

	; let tidy_rules = tidyIdRules (occ_env,subst_env) ext_rules

166
	; let pcs' = pcs { pcs_nc = orig_ns' }
167

168
	; let tidy_type_env = mkFinalTypeEnv env_tc tidy_binds
169
170

		-- Dfuns are local Ids that might have
171
172
173
174
175
176
177
178
179
180
181
182
183
		-- changed their unique during tidying.  Remember
		-- to lookup the id in the TypeEnv too, because
		-- those Ids have had their IdInfo stripped if
		-- necessary.
	; let lookup_dfun_id id = 
		 case lookupVarEnv subst_env id of
		   Nothing -> dfun_panic
		   Just id -> 
		      case lookupNameEnv tidy_type_env (idName id) of
			Just (AnId id) -> id
			_other -> dfun_panic
	      	where 
		   dfun_panic = pprPanic "lookup_dfun_id" (ppr id)
184
185
186

	      tidy_dfun_ids = map lookup_dfun_id insts_tc

187
188
189
190
	; let tidy_result = mod_impl { mg_types = tidy_type_env,
				       mg_rules = tidy_rules,
				       mg_insts = tidy_dfun_ids,
				       mg_binds = tidy_binds }
191
192
193
194
195
196

   	; endPass dflags "Tidy Core" Opt_D_dump_simpl tidy_binds
	; dumpIfSet_core dflags Opt_D_dump_simpl
		"Tidy Core Rules"
		(pprIdRules tidy_rules)

197
	; return (pcs', tidy_result)
198
199
200
201
202
203
204
205
206
207
208
209
210
211
	}

tidyCoreExpr :: CoreExpr -> IO CoreExpr
tidyCoreExpr expr = return (tidyExpr emptyTidyEnv expr)
\end{code}


%************************************************************************
%*				 					*
\subsection{Write a new interface file}
%*				 					*
%************************************************************************

\begin{code}
212
213
mkFinalTypeEnv :: TypeEnv 	-- From typechecker
	       -> [CoreBind]	-- Final Ids
214
215
	       -> TypeEnv

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
-- The competed type environment is gotten from
-- 	a) keeping the types and classes
--	b) removing all Ids, 
--	c) adding Ids with correct IdInfo, including unfoldings,
--		gotten from the bindings
-- From (c) we keep only those Ids with Global names;
--	    the CoreTidy pass makes sure these are all and only
--	    the externally-accessible ones
-- This truncates the type environment to include only the 
-- exported Ids and things needed from them, which saves space
--
-- However, we do keep things like constructors, which should not appear 
-- in interface files, because they are needed by importing modules when
-- using the compilation manager

mkFinalTypeEnv type_env tidy_binds
  = extendTypeEnvList (filterNameEnv keep_it type_env) final_ids
233
  where
234
235
236
237
238
239
240
241
242
243
    final_ids  = [ AnId (strip_id_info id)
		 | bind <- tidy_binds,
		   id <- bindersOf bind,
		   isExternalName (idName id)]

    strip_id_info id
	  | opt_OmitInterfacePragmas = id `setIdInfo` vanillaIdInfo
	  | otherwise		     = id
	-- If the interface file has no pragma info then discard all
	-- info right here.
244
	--
245
246
247
248
249
250
251
252
253
254
255
256
257
258
	-- This is not so important for *this* module, but it's
	-- vital for ghc --make:
	--   subsequent compilations must not see (e.g.) the arity if
	--   the interface file does not contain arity
	-- If they do, they'll exploit the arity; then the arity might
	-- change, but the iface file doesn't change => recompilation
	-- does not happen => disaster
	--
	-- This IdInfo will live long-term in the Id => vanillaIdInfo makes
	-- a conservative assumption about Caf-hood
	-- 
	-- We're not worried about occurrences of these Ids in unfoldings,
	-- because in OmitInterfacePragmas mode we're stripping all the
	-- unfoldings anyway.
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

	-- We keep implicit Ids, because they won't appear 
	-- in the bindings from which final_ids are derived!
    keep_it (AnId id) = isImplicitId id	-- Remove all Ids except implicit ones
    keep_it other     = True		-- Keep all TyCons and Classes
\end{code}

\begin{code}
findExternalRules :: [CoreBind]
		  -> [IdCoreRule] -- Orphan rules
	          -> IdEnv a	  -- Ids that are exported, so we need their rules
	          -> [IdCoreRule]
  -- The complete rules are gotten by combining
  --	a) the orphan rules
  --	b) rules embedded in the top-level Ids
findExternalRules binds orphan_rules ext_ids
  | opt_OmitInterfacePragmas = []
  | otherwise
  = filter needed_rule (orphan_rules ++ local_rules)
  where
    local_rules  = [ rule
 		   | id <- bindersOfBinds binds,
		     id `elemVarEnv` ext_ids,
		     rule <- idCoreRules id
		   ]
    needed_rule (id, rule)
	=  not (isBuiltinRule rule)
	 	-- We can't print builtin rules in interface files
		-- Since they are built in, an importing module
		-- will have access to them anyway

	&& not (any internal_id (varSetElems (ruleLhsFreeIds rule)))
		-- Don't export a rule whose LHS mentions an Id that
		-- is completely internal (i.e. not visible to an
		-- importing module)

    internal_id id = isLocalId id && not (id `elemVarEnv` ext_ids)
\end{code}

%************************************************************************
%*				 					*
\subsection{Step 1: finding externals}
%*				 					* 
%************************************************************************

\begin{code}
findExternalSet :: [CoreBind] -> [IdCoreRule]
		-> IdEnv Bool	-- In domain => external
				-- Range = True <=> show unfolding
	-- Step 1 from the notes above
findExternalSet binds orphan_rules
  = foldr find init_needed binds
  where
    orphan_rule_ids :: IdSet
    orphan_rule_ids = unionVarSets [ ruleRhsFreeVars rule 
				   | (_, rule) <- orphan_rules]
    init_needed :: IdEnv Bool
    init_needed = mapUFM (\_ -> False) orphan_rule_ids
	-- The mapUFM is a bit cheesy.  It is a cheap way
	-- to turn the set of orphan_rule_ids, which we use to initialise
	-- the sweep, into a mapping saying 'don't expose unfolding'	
	-- (When we come to the binding site we may change our mind, of course.)

    find (NonRec id rhs) needed
	| need_id needed id = addExternal (id,rhs) needed
	| otherwise 	    = needed
    find (Rec prs) needed   = find_prs prs needed

	-- For a recursive group we have to look for a fixed point
    find_prs prs needed	
	| null needed_prs = needed
	| otherwise	  = find_prs other_prs new_needed
	where
	  (needed_prs, other_prs) = partition (need_pr needed) prs
	  new_needed = foldr addExternal needed needed_prs

	-- The 'needed' set contains the Ids that are needed by earlier
	-- interface file emissions.  If the Id isn't in this set, and isn't
	-- exported, there's no need to emit anything
    need_id needed_set id       = id `elemVarEnv` needed_set || isExportedId id 
    need_pr needed_set (id,rhs)	= need_id needed_set id

addExternal :: (Id,CoreExpr) -> IdEnv Bool -> IdEnv Bool
-- The Id is needed; extend the needed set
-- with it and its dependents (free vars etc)
addExternal (id,rhs) needed
  = extendVarEnv (foldVarSet add_occ needed new_needed_ids)
		 id show_unfold
  where
    add_occ id needed = extendVarEnv needed id False
	-- "False" because we don't know we need the Id's unfolding
	-- We'll override it later when we find the binding site

    new_needed_ids | opt_OmitInterfacePragmas = emptyVarSet
	           | otherwise		      = worker_ids	`unionVarSet`
						unfold_ids	`unionVarSet`
						spec_ids

    idinfo	   = idInfo id
    dont_inline	   = isNeverActive (inlinePragInfo idinfo)
    loop_breaker   = isLoopBreaker (occInfo idinfo)
    bottoming_fn   = isBottomingSig (newStrictnessInfo idinfo `orElse` topSig)
    spec_ids	   = rulesRhsFreeVars (specInfo idinfo)
    worker_info	   = workerInfo idinfo

	-- Stuff to do with the Id's unfolding
	-- The simplifier has put an up-to-date unfolding
	-- in the IdInfo, but the RHS will do just as well
    unfolding	 = unfoldingInfo idinfo
    rhs_is_small = not (neverUnfold unfolding)

	-- We leave the unfolding there even if there is a worker
	-- In GHCI the unfolding is used by importers
	-- When writing an interface file, we omit the unfolding 
	-- if there is a worker
    show_unfold = not bottoming_fn	 &&	-- Not necessary
		  not dont_inline	 &&
		  not loop_breaker	 &&
		  rhs_is_small		 &&	-- Small enough
		  okToUnfoldInHiFile rhs 	-- No casms etc

    unfold_ids | show_unfold = exprSomeFreeVars isLocalId rhs
	       | otherwise   = emptyVarSet

    worker_ids = case worker_info of
		   HasWorker work_id _ -> unitVarSet work_id
		   otherwise	       -> emptyVarSet
\end{code}


%************************************************************************
%*									*
\subsection{Step 2: top-level tidying}
%*									*
%************************************************************************


\begin{code}
397
type TopTidyEnv = (NameCache, TidyOccEnv, VarEnv Var)
398
399

-- TopTidyEnv: when tidying we need to know
400
--   * ns: The NameCache, containing a unique supply and any pre-ordained Names.  
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
--	  These may have arisen because the
--	  renamer read in an interface file mentioning M.$wf, say,
--	  and assigned it unique r77.  If, on this compilation, we've
--	  invented an Id whose name is $wf (but with a different unique)
--	  we want to rename it to have unique r77, so that we can do easy
--	  comparisons with stuff from the interface file
--
--   * occ_env: The TidyOccEnv, which tells us which local occurrences 
--     are 'used'
--
--   * subst_env: A Var->Var mapping that substitutes the new Var for the old
\end{code}


\begin{code}
tidyTopBind :: Module
	    -> IdEnv Bool	-- Domain = Ids that should be external
				-- True <=> their unfolding is external too
	    -> TopTidyEnv -> CoreBind
	    -> (TopTidyEnv, CoreBind)

422
tidyTopBind mod ext_ids top_tidy_env@(_,_,subst1) (NonRec bndr rhs)
423
424
425
  = ((orig,occ,subst) , NonRec bndr' rhs')
  where
    ((orig,occ,subst), bndr')
426
	 = tidyTopBinder mod ext_ids caf_info
427
428
429
			 rec_tidy_env rhs rhs' top_tidy_env bndr
    rec_tidy_env = (occ,subst)
    rhs' = tidyExpr rec_tidy_env rhs
430
    caf_info = hasCafRefs subst1 (idArity bndr') rhs'
431

432
tidyTopBind mod ext_ids top_tidy_env@(_,_,subst1) (Rec prs)
433
434
435
436
437
438
439
440
441
  = (final_env, Rec prs')
  where
    (final_env@(_,occ,subst), prs') = mapAccumL do_one top_tidy_env prs
    rec_tidy_env = (occ,subst)

    do_one top_tidy_env (bndr,rhs) 
	= ((orig,occ,subst), (bndr',rhs'))
	where
	((orig,occ,subst), bndr')
442
	   = tidyTopBinder mod ext_ids caf_info
443
444
445
446
		rec_tidy_env rhs rhs' top_tidy_env bndr

        rhs' = tidyExpr rec_tidy_env rhs

447
448
449
	-- the CafInfo for a recursive group says whether *any* rhs in
	-- the group may refer indirectly to a CAF (because then, they all do).
    caf_info 
450
451
	| or [ mayHaveCafRefs (hasCafRefs subst1 (idArity bndr) rhs)
	     | (bndr,rhs) <- prs ] = MayHaveCafRefs
452
453
454
	| otherwise = NoCafRefs

tidyTopBinder :: Module -> IdEnv Bool -> CafInfo
455
456
457
458
459
460
461
462
	      -> TidyEnv 	-- The TidyEnv is used to tidy the IdInfo
	      -> CoreExpr	-- RHS *before* tidying
	      -> CoreExpr	-- RHS *after* tidying
			-- The TidyEnv and the after-tidying RHS are
			-- both are knot-tied: don't look at them!
	      -> TopTidyEnv -> Id -> (TopTidyEnv, Id)
  -- NB: tidyTopBinder doesn't affect the unique supply

463
tidyTopBinder mod ext_ids caf_info rec_tidy_env rhs tidy_rhs
464
465
466
467
468
469
470
471
	      env@(ns2, occ_env2, subst_env2) id
	-- This function is the heart of Step 2
	-- The rec_tidy_env is the one to use for the IdInfo
	-- It's necessary because when we are dealing with a recursive
	-- group, a variable late in the group might be mentioned
	-- in the IdInfo of one early in the group

	-- The rhs is already tidied
472
473
474
475

  = ASSERT(isLocalId id)  -- "all Ids defined in this module are local
			  -- until the CoreTidy phase"  --GHC comentary
    ((orig_env', occ_env', subst_env'), id')
476
477
478
479
480
481
482
  where
    (orig_env', occ_env', name') = tidyTopName mod ns2 occ_env2
					       is_external
					       (idName id)
    ty'	   = tidyTopType (idType id)
    idinfo = tidyTopIdInfo rec_tidy_env is_external 
			   (idInfo id) unfold_info arity
483
			   caf_info
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

    id' = mkVanillaGlobal name' ty' idinfo

    subst_env' = extendVarEnv subst_env2 id id'

    maybe_external = lookupVarEnv ext_ids id
    is_external    = isJust maybe_external

    -- Expose an unfolding if ext_ids tells us to
    -- Remember that ext_ids maps an Id to a Bool: 
    --	True to show the unfolding, False to hide it
    show_unfold = maybe_external `orElse` False
    unfold_info | show_unfold = mkTopUnfolding tidy_rhs
		| otherwise   = noUnfolding

    -- Usually the Id will have an accurate arity on it, because
    -- the simplifier has just run, but not always. 
    -- One case I found was when the last thing the simplifier
    -- did was to let-bind a non-atomic argument and then float
    -- it to the top level. So it seems more robust just to
    -- fix it here.
    arity = exprArity rhs


-- tidyTopIdInfo creates the final IdInfo for top-level
-- binders.  There are two delicate pieces:
--
--  * Arity.  After CoreTidy, this arity must not change any more.
--	Indeed, CorePrep must eta expand where necessary to make
--	the manifest arity equal to the claimed arity.
--
515
516
--  * CAF info.  This must also remain valid through to code generation.
-- 	We add the info here so that it propagates to all
517
518
-- 	occurrences of the binders in RHSs, and hence to occurrences in
-- 	unfoldings, which are inside Ids imported by GHCi. Ditto RULES.
519
--	CoreToStg makes use of this when constructing SRTs.
520

521
tidyTopIdInfo tidy_env is_external idinfo unfold_info arity caf_info
522
523
524
525
  | not is_external	-- For internal Ids (not externally visible)
  = vanillaIdInfo	-- we only need enough info for code generation
			-- Arity and strictness info are enough;
			--	c.f. CoreTidy.tidyLetBndr
526
	`setCafInfo` 	       caf_info
527
528
529
530
531
	`setArityInfo`	       arity
	`setAllStrictnessInfo` newStrictnessInfo idinfo

  | otherwise		-- Externally-visible Ids get the whole lot
  = vanillaIdInfo
532
	`setCafInfo` 	       caf_info
533
534
	`setArityInfo`	       arity
	`setAllStrictnessInfo` newStrictnessInfo idinfo
535
536
537
538
539
540
	`setInlinePragInfo`    inlinePragInfo idinfo
	`setUnfoldingInfo`     unfold_info
	`setWorkerInfo`	       tidyWorker tidy_env (workerInfo idinfo)
		-- NB: we throw away the Rules
		-- They have already been extracted by findExternalRules

541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
-- This is where we set names to local/global based on whether they really are 
-- externally visible (see comment at the top of this module).  If the name
-- was previously local, we have to give it a unique occurrence name if
-- we intend to externalise it.
tidyTopName mod ns occ_env external name
  | global && internal = (ns, occ_env, localiseName name)

  | global && external = (ns, occ_env, name)
	-- Global names are assumed to have been allocated by the renamer,
	-- so they already have the "right" unique
	-- And it's a system-wide unique too

  | local  && internal = (ns_w_local, occ_env', new_local_name)
	-- Even local, internal names must get a unique occurrence, because
	-- if we do -split-objs we externalise the name later, in the code generator
	--
	-- Similarly, we must make sure it has a system-wide Unique, because
	-- the byte-code generator builds a system-wide Name->BCO symbol table

561
  | local  && external = case lookupOrigNameCache ns_names mod occ' of
562
563
564
565
566
567
568
569
570
571
572
573
			   Just orig -> (ns,	      occ_env', orig)
			   Nothing   -> (ns_w_global, occ_env', new_external_name)
	-- If we want to externalise a currently-local name, check
	-- whether we have already assigned a unique for it.
	-- If so, use it; if not, extend the table (ns_w_global).
	-- This is needed when *re*-compiling a module in GHCi; we want to
	-- use the same name for externally-visible things as we did before.

  where
    global	     = isExternalName name
    local	     = not global
    internal	     = not external
574
    loc		     = nameSrcLoc name
575
576

    (occ_env', occ') = tidyOccName occ_env (nameOccName name)
577

578
    ns_names	     = nsNames ns
579
    (us1, us2)	     = splitUniqSupply (nsUniqs ns)
580
    uniq	     = uniqFromSupply us1
581
    new_local_name   = mkInternalName uniq occ' loc
582
    ns_w_local	     = ns { nsUniqs = us2 }
583
584

    (ns_w_global, new_external_name) = newExternalName ns mod occ' loc
585
586
587
588
589
590
591


------------  Worker  --------------
tidyWorker tidy_env (HasWorker work_id wrap_arity) 
  = HasWorker (tidyVarOcc tidy_env work_id) wrap_arity
tidyWorker tidy_env other
  = NoWorker
592
\end{code}
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

%************************************************************************
%*									*
\subsection{Figuring out CafInfo for an expression}
%*									*
%************************************************************************

hasCafRefs decides whether a top-level closure can point into the dynamic heap.
We mark such things as `MayHaveCafRefs' because this information is
used to decide whether a particular closure needs to be referenced
in an SRT or not.

There are two reasons for setting MayHaveCafRefs:
	a) The RHS is a CAF: a top-level updatable thunk.
	b) The RHS refers to something that MayHaveCafRefs

Possible improvement: In an effort to keep the number of CAFs (and 
hence the size of the SRTs) down, we could also look at the expression and 
decide whether it requires a small bounded amount of heap, so we can ignore 
it as a CAF.  In these cases however, we would need to use an additional
CAF list to keep track of non-collectable CAFs.  

\begin{code}
hasCafRefs  :: VarEnv Var -> Arity -> CoreExpr -> CafInfo
hasCafRefs p arity expr 
  | is_caf || mentions_cafs = MayHaveCafRefs
  | otherwise 		    = NoCafRefs
 where
  mentions_cafs = isFastTrue (cafRefs p expr)
  is_caf = not (arity > 0 || rhsIsNonUpd expr)
  -- NB. we pass in the arity of the expression, which is expected
  -- to be calculated by exprArity.  This is because exprArity
  -- knows how much eta expansion is going to be done by 
  -- CorePrep later on, and we don't want to duplicate that
  -- knowledge in rhsIsNonUpd below.

cafRefs p (Var id)
	-- imported Ids first:
  | not (isLocalId id) = fastBool (mayHaveCafRefs (idCafInfo id))
	-- now Ids local to this module:
  | otherwise =
     case lookupVarEnv p id of
	Just id' -> fastBool (mayHaveCafRefs (idCafInfo id'))
	Nothing  -> fastBool False

cafRefs p (Lit l) 	     = fastBool False
cafRefs p (App f a) 	     = fastOr (cafRefs p f) (cafRefs p) a
cafRefs p (Lam x e) 	     = cafRefs p e
cafRefs p (Let b e) 	     = fastOr (cafRefss p (rhssOfBind b)) (cafRefs p) e
cafRefs p (Case e bndr alts) = fastOr (cafRefs p e) (cafRefss p) (rhssOfAlts alts)
cafRefs p (Note n e) 	     = cafRefs p e
cafRefs p (Type t) 	     = fastBool False

cafRefss p [] 	  = fastBool False
cafRefss p (e:es) = fastOr (cafRefs p e) (cafRefss p) es

-- hack for lazy-or over FastBool.
fastOr a f x = fastBool (isFastTrue a || isFastTrue (f x))
\end{code}