Parser.y.pp 53.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
34
import StaticFlags	( opt_SccProfilingOn )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41 42

import FastString
import Maybes		( orElse )
import Outputable
43
import GLAEXTS
44 45 46
}

{-
47 48 49 50 51 52 53 54 55 56 57
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

58
-----------------------------------------------------------------------------
59
Conflicts: 36 shift/reduce (1.25)
60

61
10 for abiguity in 'if x then y else z + 1'		[State 178]
62 63 64
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

65
1 for ambiguity in 'if x then y else z :: T'		[State 178]
66 67
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

68
4 for ambiguity in 'if x then y else z -< e'		[State 178]
ross's avatar
ross committed
69
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
70 71 72 73 74 75 76 77 78 79
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
ross's avatar
ross committed
80

81
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
82 83
	(e::a) `b` c, or 
	(e :: (a `b` c))
84
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
85
    Same duplication between states 11 and 253 as the previous case
86

87
1 for ambiguity in 'let ?x ...'				[State 329]
88 89 90 91
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

92
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
93 94 95 96
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

97
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
116
     -- This doesn't seem to work anymore -=chak
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

179
 'forall'	{ L _ ITforall }		-- GHC extension keywords
180 181 182 183 184 185 186 187
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
188
 'iso'		{ L _ ITiso }
189 190 191 192 193 194
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

195 196 197
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension
 IPSPLITVARID  	{ L _ (ITsplitipvarid _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
 		    
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
285
%name parseType ctype
286
%partial parseHeader header
287
%tokentype { (Located Token) }
288 289
%%

290 291 292 293 294 295 296 297
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

298 299 300 301 302 303 304 305 306 307 308 309 310
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc ->
311
		   return (L loc (HsModule (Just $2) $4 (fst $6) (snd $6) $3)) }
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
				(fst $2) (snd $2) Nothing)) }

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule (Just $2) $4 $6 [] $3)) }
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing)) }

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

351 352 353 354 355 356 357
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

358 359 360 361 362
exportlist  :: { [LIE RdrName] }
	: ','					{ [] }
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
363 364
	:  export				{ [$1] }
	|  export ',' exportlist		{ $1 : $3 }
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	|  {- empty -}				{ [] }

   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
	:  qcnames ',' qcname			{ unLoc $3 : $1 }
	|  qcname				{ [unLoc $1]  }

qcname 	:: { Located RdrName }	-- Variable or data constructor
	:  qvar					{ $1 }
383
	|  qcon					{ $1 }
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
409
maybeas :: { Located (Maybe ModuleName) }
410 411 412 413 414 415 416 417
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
418 419
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

440
topdecls :: { OrdList (LHsDecl RdrName) }
441
	: topdecls ';' topdecl		{ $1 `appOL` $3 }
442
	| topdecls ';'			{ $1 }
443
	| topdecl			{ $1 }
444

445
topdecl :: { OrdList (LHsDecl RdrName) }
446 447
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
  	| ty_decl			{% checkTopTyClD $1 >>= return.unitOL.L1 }
448
	| 'instance' inst_type where
449 450 451
		{ let (binds, sigs, ats) = cvBindsAndSigs (unLoc $3)
		  in unitOL (L (comb3 $1 $2 $3) 
			    (InstD (InstDecl $2 binds sigs ats))) }
452 453 454 455
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
456 457
      	| decl					{ unLoc $1 }

458 459 460 461 462 463
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

464 465 466 467 468 469
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
	: 'class' tycl_hdr fds where
		{% do { let { (binds, sigs, ats)           = 
			        cvBindsAndSigs (unLoc $4)
470
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
471
                      ; checkTyVars tparms False  -- only type vars allowed
472 473 474 475 476 477 478
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
					        (unLoc $3) sigs binds ats) } }

-- Type declarations
--
ty_decl :: { LTyClDecl RdrName }
479 480 481 482 483 484 485 486
        -- type function signature and equations (w/ type synonyms as special
        -- case); we need to handle all this in one rule to avoid a large
        -- number of shift/reduce conflicts (due to the generality of `type')
        : 'type' opt_iso type kind_or_ctype
	        --
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared and type
		-- patterns for type function equations
487
		-- 
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		-- We have that `typats :: Maybe [LHsType name]' is `Nothing'
		-- (in the second case alternative) when all arguments are
		-- variables (and we thus have a vanilla type synonym
		-- declaration); otherwise, it contains all arguments as type
		-- patterns.
		--
 		{% case $4 of 
		     Left kind -> 
		       do { (tc, tvs, _) <- checkSynHdr $3 False
		          ; return (L (comb3 $1 $3 kind) 
				      (TyFunction tc tvs $2 (unLoc kind)))
		          } 
		     Right ty  -> 
		       do { (tc, tvs, typats) <- checkSynHdr $3 True
		          ; return (L (comb2 $1 ty) 
				      (TySynonym tc tvs typats ty)) }
                }

        -- data type or newtype declaration
507
	| data_or_newtype tycl_hdr constrs deriving
508 509 510 511 512 513 514 515
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                      ; tpats <- checkTyVars tparms True -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, tpats) 
			     Nothing (reverse (unLoc $3)) (unLoc $4)) } }
516

517
        -- GADT declaration
518
        | data_or_newtype tycl_hdr opt_kind_sig 
519
		 'where' gadt_constrlist
520
		 deriving
521 522 523 524 525 526
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                      ; tpats <- checkTyVars tparms True -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $4 $5)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, tpats) $3
			     (reverse (unLoc $5)) (unLoc $6)) } }
527 528 529 530 531 532 533 534 535 536 537 538 539

opt_iso :: { Bool }
	:       { False }
	| 'iso'	{ True  }

kind_or_ctype :: { Either (Located (Maybe Kind)) (LHsType RdrName) }
	: 		{ Left  (noLoc Nothing)           }
        | '::' kind	{ Left  (LL    (Just (unLoc $2))) }
	| '=' ctype	{ Right (LL    (unLoc $2))        }
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
540

541 542 543 544
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

545 546
opt_kind_sig :: { Maybe Kind }
	: 				{ Nothing }
547
	| '::' kind			{ Just (unLoc $2) }
548

549
-- tycl_hdr parses the header of a class or data type decl,
550 551 552 553
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
554
--      T Int [a]			-- for associated types
555
-- Rather a lot of inlining here, else we get reduce/reduce errors
556 557 558
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
559
		       [LHsType RdrName]) }
560
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
561 562 563 564 565
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

-----------------------------------------------------------------------------
-- Nested declarations

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
-- Type declaration or value declaration
--
tydecl  :: { Located (OrdList (LHsDecl RdrName)) }
tydecl  : ty_decl		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	| decl                          { $1 }

tydecls	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: tydecls ';' tydecl		{ LL (unLoc $1 `appOL` unLoc $3) }
	| tydecls ';'			{ LL (unLoc $1) }
	| tydecl			{ $1 }
	| {- empty -}			{ noLoc nilOL }


tydecllist 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'            tydecls '}'	{ LL (unLoc $2) }
	|     vocurly    tydecls close	{ $2 }

-- Form of the body of class and instance declarations
--
where 	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' tydecllist		{ LL (unLoc $2) }
	| {- empty -}			{ noLoc nilOL }

592
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
593
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
594
	| decls ';'			{ LL (unLoc $1) }
595
	| decl				{ $1 }
596
	| {- empty -}			{ noLoc nilOL }
597 598


599
decllist :: { Located (OrdList (LHsDecl RdrName)) }
600 601 602
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

603 604
-- Binding groups other than those of class and instance declarations
--
605
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
606
						-- No type declarations
607 608 609
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
610

611
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
612
						-- No type declarations
613
	: 'where' binds			{ LL (unLoc $2) }
614
	| {- empty -}			{ noLoc emptyLocalBinds }
615 616 617 618 619


-----------------------------------------------------------------------------
-- Transformation Rules

620
rules	:: { OrdList (LHsDecl RdrName) }
621
	:  rules ';' rule			{ $1 `snocOL` $3 }
622
        |  rules ';'				{ $1 }
623 624
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
625

626
rule  	:: { LHsDecl RdrName }
627
	: STRING activation rule_forall infixexp '=' exp
628 629
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
630
				  $3 $4 placeHolderNames $6 placeHolderNames) }
631

632 633 634
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

655
deprecations :: { OrdList (LHsDecl RdrName) }
656
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
657
	| deprecations ';' 			{ $1 }
658 659
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
660 661

-- SUP: TEMPORARY HACK, not checking for `module Foo'
662
deprecation :: { OrdList (LHsDecl RdrName) }
663
	: depreclist STRING
664 665
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
666 667 668 669 670 671


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
672
fdecl : 'import' callconv safety fspec
673
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
674
      | 'import' callconv        fspec		
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
       : STRING var '::' sigtype      { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtype      { LL (noLoc nilFS, $1, $3) }
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

708
sigtypes1 :: { [LHsType RdrName] }
709
	: sigtype			{ [ $1 ] }
710
	| sigtype ',' sigtypes1		{ $1 : $3 }
711 712 713 714 715 716 717 718 719 720 721 722

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

723 724 725 726
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
context :: { LHsContext RdrName }
	: btype 			{% checkContext $1 }

type :: { LHsType RdrName }
742
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
743 744 745 746 747
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
748
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
749
 	| btype '->' ctype		{ LL $ HsFunTy $1 $3 }
750 751 752 753 754 755 756

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
757
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
758
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
759
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
760
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
761 762
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
763
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
764
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
765 766 767 768 769 770 771 772
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
773
	: sigtype			{% checkInstType $1 }
774

775 776 777 778
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

779 780 781 782 783
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
784 785
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
786 787 788 789 790 791 792

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
793 794
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

815
kind	:: { Located Kind }
816
	: akind			{ $1 }
817
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
818

819 820 821 822
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
823 824 825 826 827


-----------------------------------------------------------------------------
-- Datatype declarations

828 829 830 831 832 833
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
834
        | gadt_constrs ';' 		{ $1 }
835 836
        | gadt_constr                   { L1 [$1] } 

837 838 839 840 841 842
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

843
gadt_constr :: { LConDecl RdrName }
844
        : con '::' sigtype
845 846 847
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
848
        -- XXX revisit audreyt
849 850 851 852 853 854 855 856 857 858 859 860
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3)) }
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6)) }
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4)) }
-}

861 862 863 864 865 866 867 868 869 870 871 872

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
        | '=' constrs1                  { LL (unLoc $2) }

constrs1 :: { Located [LConDecl RdrName] }
	: constrs1 '|' constr		{ LL ($3 : unLoc $1) }
	| constr			{ L1 [$1] }

constr :: { LConDecl RdrName }
	: forall context '=>' constr_stuff	
		{ let (con,details) = unLoc $4 in 
873
		  LL (ConDecl con Explicit (unLoc $1) $2 details ResTyH98) }
874 875
	| forall constr_stuff
		{ let (con,details) = unLoc $2 in 
876
		  LL (ConDecl con Explicit (unLoc $1) (noLoc []) details ResTyH98) }
877 878 879 880 881 882

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
883 884 885 886 887 888 889
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
890 891 892
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
893
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
894

895 896 897 898
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

899 900 901 902 903
fielddecls :: { [([Located RdrName], LBangType RdrName)] }
	: fielddecl ',' fielddecls	{ unLoc $1 : $3 }
	| fielddecl			{ [unLoc $1] }

fielddecl :: { Located ([Located RdrName], LBangType RdrName) }
904
	: sig_vars '::' ctype		{ LL (reverse (unLoc $1), $3) }
905

906 907 908 909
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
910 911
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
912 913 914
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
915 916
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

943
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
944
	: sigdecl			{ $1 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
945 946 947 948
	| '!' infixexp rhs		{% do { pat <- checkPattern $2;
					        return (LL $ unitOL $ LL $ ValD $ 
							PatBind (LL $ BangPat pat) (unLoc $3)
								placeHolderType placeHolderNames) } }
949
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
950
						return (LL $ unitOL (LL $ ValD r)) } }
951 952

rhs	:: { Located (GRHSs RdrName) }
953 954
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
955 956 957 958 959 960

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
961
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
962

963
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
964 965
	: infixexp '::' sigtype
				{% do s <- checkValSig $1 $3; 
966
				      return (LL $ unitOL (LL $ SigD s)) }
967 968
		-- See the above notes for why we need infixexp here
	| var ',' sig_vars '::' sigtype	
969
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
970
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
971 972
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
973
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
974
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
975
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec)
976
					    | t <- $4] }
977
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
978
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
979
					    | t <- $5] }
980
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
981
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
982 983 984 985 986 987

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
ross's avatar
ross committed
988 989 990 991
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
992 993 994 995 996 997 998 999 1000
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
	: '\\' aexp aexps opt_asig '->' exp	
			{% checkPatterns ($2 : reverse $3) >>= \ ps -> 
1001
			   return (LL $ HsLam (mkMatchGroup [LL $ Match ps $4
1002
					    (GRHSs (unguardedRHS $6) emptyLocalBinds
1003
							)])) }
1004 1005
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
1006
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
1007 1008 1009
	| '-' fexp				{ LL $ mkHsNegApp $2 }

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
1010 1011
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
1012
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
1013 1014
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexps 	:: { [LHsExpr RdrName] }
	: aexps aexp				{ $2 : $1 }
  	| {- empty -}				{ [] }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1044
--	| '!' aexp			{ LL $ EBangPat $2 }
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) 
							(reverse $3);
				        return (LL r) }}
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
 	| qcname '{|' gentype '|}'      { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
						     (sL (getLoc $3) (HsType $3)) }

aexp2	:: { LHsExpr RdrName }
	: ipvar				{ L1 (HsIPVar $! unLoc $1) }
	| qcname			{ L1 (HsVar   $! unLoc $1) }
	| literal			{ L1 (HsLit   $! unLoc $1) }
	| INTEGER			{ L1 (HsOverLit $! mkHsIntegral (getINTEGER $1)) }
	| RATIONAL			{ L1 (HsOverLit $! mkHsFractional (getRATIONAL $1)) }
	| '(' exp ')'			{ LL (HsPar $2) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1068
	| '(' texp ',' texps ')'	{ LL $ ExplicitTuple ($2 : reverse $4) Boxed }
1069 1070 1071 1072 1073 1074 1075
	| '(#' texps '#)'		{ LL $ ExplicitTuple (reverse $2)      Unboxed }
	| '[' list ']'                  { LL (unLoc $2) }
	| '[:' parr ':]'                { LL (unLoc $2) }
	| '(' infixexp qop ')'		{ LL $ SectionL $2 $3 }
	| '(' qopm infixexp ')'		{ LL $ SectionR $2 $3 }
	| '_'				{ L1 EWildPat }
	
1076
	-- Template Haskell Extension
1077
	| TH_ID_SPLICE          { L1 $ HsSpliceE (mkHsSplice 
1078
					(L1 $ HsVar (mkUnqual varName 
1079 1080 1081
							(getTH_ID_SPLICE $1)))) } -- $x
	| '$(' exp ')'   	{ LL $ HsSpliceE (mkHsSplice $2) }               -- $( exp )

1082
	| TH_VAR_QUOTE qvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1083
	| TH_VAR_QUOTE qcon 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	| TH_TY_QUOTE tyvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
 	| TH_TY_QUOTE gtycon	{ LL $ HsBracket (VarBr (unLoc $2)) }
	| '[|' exp '|]'         { LL $ HsBracket (ExpBr $2) }                       
	| '[t|' ctype '|]'      { LL $ HsBracket (TypBr $2) }                       
	| '[p|' infixexp '|]'   {% checkPattern $2 >>= \p ->
					   return (LL $ HsBracket (PatBr p)) }
	| '[d|' cvtopbody '|]'	{ LL $ HsBracket (DecBr (mkGroup $2)) }

	-- arrow notation extension
	| '(|' aexp2 cmdargs '|)'	{ LL $ HsArrForm $2 Nothing (reverse $3) }

cmdargs	:: { [LHsCmdTop RdrName] }
	: cmdargs acmd			{ $2 : $1 }
  	| {- empty -}			{ [] }

acmd	:: { LHsCmdTop RdrName }
	: aexp2			{ L1 $ HsCmdTop $1 [] placeHolderType undefined }

cvtopbody :: { [LHsDecl RdrName] }
1103 1104 1105 1106 1107 1108
	:  '{'            cvtopdecls0 '}'		{ $2 }
	|      vocurly    cvtopdecls0 close		{ $2 }

cvtopdecls0 :: { [LHsDecl RdrName] }
	: {- empty -}		{ [] }
	| cvtopdecls		{ $1 }
1109

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1110 1111 1112 1113 1114 1115
texp :: { LHsExpr RdrName }
	: exp				{ $1 }
	| qopm infixexp			{ LL $ SectionR $1 $2 }
	-- The second production is really here only for bang patterns
	-- but 

1116
texps :: { [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1117 1118
	: texps ',' texp		{ $3 : $1 }
	| texp				{ [$1] }
1119 1120 1121 1122 1123 1124 1125 1126 1127


-----------------------------------------------------------------------------
-- List expressions

-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.

list :: { LHsExpr RdrName }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1128
	: texp			{ L1 $ ExplicitList placeHolderType [$1] }
1129
	| lexps 		{ L1 $ ExplicitList placeHolderType (reverse (unLoc $1)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1130 1131 1132 1133 1134
	| texp '..'		{ LL $ ArithSeq noPostTcExpr (From $1) }
	| texp ',' exp '..' 	{ LL $ ArithSeq noPostTcExpr (FromThen $1 $3) }
	| texp '..' exp	 	{ LL $ ArithSeq noPostTcExpr (FromTo $1 $3) }
	| texp ',' exp '..' exp	{ LL $ ArithSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| texp pquals		{ sL (comb2 $1 $>) $ mkHsDo ListComp (reverse (unLoc $2)) $1 }
1135 1136

lexps :: { Located [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1137 1138
	: lexps ',' texp 		{ LL ($3 : unLoc $1) }
	| texp ',' texp			{ LL [$3,$1] }
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

-----------------------------------------------------------------------------
-- List Comprehensions

pquals :: { Located [LStmt RdrName] }	-- Either a singleton ParStmt, 
					-- or a reversed list of Stmts
	: pquals1			{ case unLoc $1 of
					    [qs] -> L1 qs
					    qss  -> L1 [L1 (ParStmt stmtss)]
						 where
						    stmtss = [ (reverse qs, undefined) 
						    	     | qs <- qss ]
					}
			
pquals1 :: { Located [[LStmt RdrName]] }
	: pquals1 '|' quals		{ LL (unLoc $3 : unLoc $1) }
	| '|' quals			{ L (getLoc $2) [unLoc $2] }

quals :: { Located [LStmt RdrName] }
	: quals ',' qual		{ LL ($3 : unLoc $1) }
	| qual				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Parallel array expressions

-- The rules below are little bit contorted; see the list case for details.
-- Note that, in contrast to lists, we only have finite arithmetic sequences.
-- Moreover, we allow explicit arrays with no element (represented by the nil
-- constructor in the list case).

parr :: { LHsExpr RdrName }
	: 				{ noLoc (ExplicitPArr placeHolderType []) }
	| exp				{ L1 $ ExplicitPArr placeHolderType [$1] }
	| lexps 			{ L1 $ ExplicitPArr placeHolderType 
						       (reverse (unLoc $1)) }
1174 1175 1176
	| exp '..' exp	 		{ LL $ PArrSeq noPostTcExpr (FromTo $1 $3) }
	| exp ',' exp '..' exp		{ LL $ PArrSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| exp pquals			{ sL (comb2 $1 $>) $ mkHsDo PArrComp (reverse (unLoc $2)) $1 }
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

-- We are reusing `lexps' and `pquals' from the list case.

-----------------------------------------------------------------------------
-- Case alternatives

altslist :: { Located [LMatch RdrName] }
	: '{'            alts '}'	{ LL (reverse (unLoc $2)) }
	|     vocurly    alts  close	{ L (getLoc $2) (reverse (unLoc $2)) }

alts    :: { Located [LMatch RdrName] }
        : alts1				{ L1 (unLoc $1) }
	| ';' alts			{ LL (unLoc $2) }

alts1 	:: { Located [LMatch RdrName] }
	: alts1 ';' alt			{ LL ($3 : unLoc $1) }
	| alts1 ';'			{ LL (unLoc $1) }
	| alt				{ L1 [$1] }

alt 	:: { LMatch RdrName }
	: infixexp opt_sig alt_rhs	{%  checkPattern $1 >>= \p ->
			    		    return (LL (Match [p] $2 (unLoc $3))) }
1199 1200
	| '!' infixexp opt_sig alt_rhs	{%  checkPattern $2 >>= \p ->
			    		    return (LL (Match [LL $ BangPat p] $3 (unLoc $4))) }
1201 1202

alt_rhs :: { Located (GRHSs RdrName) }
1203
	: ralt wherebinds		{ LL (GRHSs (unLoc $1) (unLoc $2)) }
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

ralt :: { Located [LGRHS RdrName] }
	: '->' exp			{ LL (unguardedRHS $2) }
	| gdpats			{ L1 (reverse (unLoc $1)) }

gdpats :: { Located [LGRHS RdrName] }
	: gdpats gdpat			{ LL ($2 : unLoc $1) }
	| gdpat				{ L1 [$1] }

gdpat	:: { LGRHS RdrName }
1214
	: '|' quals '->' exp	 	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1215 1216 1217 1218 1219 1220 1221 1222 1223

-----------------------------------------------------------------------------
-- Statement sequences

stmtlist :: { Located [LStmt RdrName] }
	: '{'         	stmts '}'	{ LL (unLoc $2) }
	|     vocurly   stmts close	{ $2 }

--	do { ;; s ; s ; ; s ;; }
1224
-- The last Stmt should be an expression, but that's hard to enforce
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
-- here, because we need too much lookahead if we see do { e ; }
-- So we use ExprStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead
stmts :: { Located [LStmt RdrName] }
	: stmt stmts_help		{ LL ($1 : unLoc $2) }
	| ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

stmts_help :: { Located [LStmt RdrName] } -- might be empty
	: ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

-- For typing stmts at the GHCi prompt, where 
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt RdrName) }
	: stmt				{ Just $1 }
	| {- nothing -}			{ Nothing }

stmt  :: { LStmt RdrName }
	: qual				{ $1 }
	| infixexp '->' exp		{% checkPattern $3 >>= \p ->
1246 1247
					   return (LL $ mkBindStmt p $1) }
  	| 'rec' stmtlist		{ LL $ mkRecStmt (unLoc $2) }
1248 1249

qual  :: { LStmt RdrName }
1250
	: exp '<-' exp			{% checkPattern $1 >>= \p ->
1251 1252
					   return (LL $ mkBindStmt p $3) }
	| exp				{ L1 $ mkExprStmt $1 }
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
  	| 'let' binds			{ LL $ LetStmt (unLoc $2) }

-----------------------------------------------------------------------------
-- Record Field Update/Construction

fbinds 	:: { HsRecordBinds RdrName }
	: fbinds1			{ $1 }
  	| {- empty -}			{ [] }

fbinds1	:: { HsRecordBinds RdrName }
	: fbinds1 ',' fbind		{ $3 : $1 }
	| fbind				{ [$1] }
  
fbind	:: { (Located RdrName, LHsExpr RdrName) }
	: qvar '=' exp			{ ($1,$3) }

-----------------------------------------------------------------------------
-- Implicit Parameter Bindings

dbinds 	:: { Located [LIPBind RdrName] }
	: dbinds ';' dbind		{ LL ($3 : unLoc $1) }
	| dbinds ';'			{ LL (unLoc $1) }
	| dbind				{ L1 [$1] }
--	| {- empty -}			{ [] }

dbind	:: { LIPBind RdrName }
dbind	: ipvar '=' exp			{ LL (IPBind (unLoc $1) $3) }

1281 1282 1283
ipvar	:: { Located (IPName RdrName) }
	: IPDUPVARID		{ L1 (Dupable (mkUnqual varName (getIPDUPVARID $1))) }
	| IPSPLITVARID		{ L1 (Linear  (mkUnqual varName (getIPSPLITVARID $1))) }
1284

1285 1286
-----------------------------------------------------------------------------
-- Deprecations
1287 1288 1289 1290 1291 1292 1293

depreclist :: { Located [RdrName] }
depreclist : deprec_var			{ L1 [unLoc $1] }
	   | deprec_var ',' depreclist	{ LL (unLoc $1 : unLoc $3) }

deprec_var :: { Located RdrName }
deprec_var : var			{ $1 }
1294
	   | con			{ $1 }
1295

1296 1297
-----------------------------------------
-- Data constructors