CgMonad.lhs 26.3 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
4
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
5
6
7
8
9
10
\section[CgMonad]{The code generation monad}

See the beginning of the top-level @CodeGen@ module, to see how this
monadic stuff fits into the Big Picture.

\begin{code}
11
{-# LANGUAGE BangPatterns #-}
12
module CgMonad (
13
14
	Code,	-- type
	FCode,	-- type
15
16

	initC, thenC, thenFC, listCs, listFCs, mapCs, mapFCs,
17
	returnFC, fixC, fixC_, checkedAbsC, 
18
19
	stmtC, stmtsC, labelC, emitStmts, nopC, whenC, newLabelC,
	newUnique, newUniqSupply, 
20

21
22
23
24
25
	CgStmts, emitCgStmts, forkCgStmts, cgStmtsToBlocks,
	getCgStmts', getCgStmts,
	noCgStmts, oneCgStmt, consCgStmt,

	getCmm,
26
	emitDecl, emitProc, emitSimpleProc,
27
28

	forkLabelledCode,
29
	forkClosureBody, forkStatics, forkAlts, forkEval,
30
31
	forkEvalHelp, forkProc, codeOnly,
	SemiTaggingStuff, ConTagZ,
32
33
34
35

	EndOfBlockInfo(..),
	setEndOfBlockInfo, getEndOfBlockInfo,

36
	setSRT, getSRT,
37
	setSRTLabel, getSRTLabel, 
38
	setTickyCtrLabel, getTickyCtrLabel,
39

40
41
42
43
44
	StackUsage(..), HeapUsage(..),
	VirtualSpOffset, VirtualHpOffset,
	initStkUsage, initHpUsage,
	getHpUsage,  setHpUsage,
	heapHWM,
45

Simon Marlow's avatar
Simon Marlow committed
46
	getModuleName,
47
48
49

	Sequel(..), -- ToDo: unabstract?

rje's avatar
rje committed
50
	-- ideally we wouldn't export these, but some other modules access internal state
51
	getState, setState, getInfoDown, getDynFlags, getThisPackage, 
rje's avatar
rje committed
52
53

	-- more localised access to monad state	
54
	getStkUsage, setStkUsage,
rje's avatar
rje committed
55
56
	getBinds, setBinds, getStaticBinds,

57
	-- out of general friendliness, we also export ...
58
	CgInfoDownwards(..), CgState(..)	-- non-abstract
59
60
    ) where

61
#include "HsVersions.h"
sof's avatar
sof committed
62

63
import {-# SOURCE #-} CgBindery ( CgBindings, nukeVolatileBinds )
64

Simon Marlow's avatar
Simon Marlow committed
65
import DynFlags
66
import BlockId
67
68
import OldCmm
import OldCmmUtils
69
import CLabel
70
import StgSyn (SRT)
71
import ClosureInfo( ConTagZ )
Simon Marlow's avatar
Simon Marlow committed
72
73
74
import SMRep
import Module
import Id
75
import VarEnv
76
import OrdList
Simon Marlow's avatar
Simon Marlow committed
77
78
import Unique
import UniqSupply
79
import Outputable
80

Simon Marlow's avatar
Simon Marlow committed
81
import Control.Monad
82
import Data.List
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
infixr 9 `thenC`	-- Right-associative!
infixr 9 `thenFC`
\end{code}

%************************************************************************
%*									*
\subsection[CgMonad-environment]{Stuff for manipulating environments}
%*									*
%************************************************************************

This monadery has some information that it only passes {\em
downwards}, as well as some ``state'' which is modified as we go
along.

\begin{code}
data CgInfoDownwards	-- information only passed *downwards* by the monad
100
  = MkCgInfoDown {
101
	cgd_dflags  :: DynFlags,
102
103
	cgd_mod     :: Module,		-- Module being compiled
	cgd_statics :: CgBindings,	-- [Id -> info] : static environment
104
105
	cgd_srt_lbl :: CLabel,		-- label of the current SRT
        cgd_srt     :: SRT,		-- the current SRT
106
107
108
109
	cgd_ticky   :: CLabel,		-- current destination for ticky counts
	cgd_eob     :: EndOfBlockInfo	-- Info for stuff to do at end of basic block:
  }

Simon Marlow's avatar
Simon Marlow committed
110
111
initCgInfoDown :: DynFlags -> Module -> CgInfoDownwards
initCgInfoDown dflags mod
112
113
  = MkCgInfoDown {	cgd_dflags  = dflags,
			cgd_mod     = mod,
114
			cgd_statics = emptyVarEnv,
115
			cgd_srt_lbl = error "initC: srt_lbl",
116
117
118
			cgd_srt     = error "initC: srt",
			cgd_ticky   = mkTopTickyCtrLabel,
			cgd_eob     = initEobInfo }
119

120
data CgState
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  = MkCgState {
     cgs_stmts :: OrdList CgStmt,	  -- Current proc
     cgs_tops  :: OrdList CmmTop,
	-- Other procedures and data blocks in this compilation unit
	-- Both the latter two are ordered only so that we can 
	-- reduce forward references, when it's easy to do so
     
     cgs_binds :: CgBindings,	-- [Id -> info] : *local* bindings environment
     				-- Bindings for top-level things are given in
				-- the info-down part
     
     cgs_stk_usg :: StackUsage,
     cgs_hp_usg  :: HeapUsage,
     
     cgs_uniqs :: UniqSupply }

initCgState :: UniqSupply -> CgState
initCgState uniqs
  = MkCgState { cgs_stmts = nilOL, cgs_tops = nilOL,
		cgs_binds = emptyVarEnv, 
		cgs_stk_usg = initStkUsage, 
		cgs_hp_usg = initHpUsage,
		cgs_uniqs = uniqs }
144
145
\end{code}

146
147
148
@EndOfBlockInfo@ tells what to do at the end of this block of code or,
if the expression is a @case@, what to do at the end of each
alternative.
149
150
151
152

\begin{code}
data EndOfBlockInfo
  = EndOfBlockInfo
153
	VirtualSpOffset   -- Args Sp: trim the stack to this point at a
154
155
156
			  -- return; push arguments starting just
			  -- above this point on a tail call.
			  
157
			  -- This is therefore the stk ptr as seen
158
			  -- by a case alternative.
159
160
	Sequel

Ian Lynagh's avatar
Ian Lynagh committed
161
initEobInfo :: EndOfBlockInfo
162
initEobInfo = EndOfBlockInfo 0 OnStack
163
164
165
166
167
168
169
170
\end{code}

Any addressing modes inside @Sequel@ must be ``robust,'' in the sense
that it must survive stack pointer adjustments at the end of the
block.

\begin{code}
data Sequel
171
  = OnStack 		-- Continuation is on the stack
172

173
  | CaseAlts
174
175
	  CLabel     -- Jump to this; if the continuation is for a vectored
		     -- case this might be the label of a return vector
176
	  SemiTaggingStuff
177
	  Id	      -- The case binder, only used to see if it's dead
178

179
type SemiTaggingStuff
180
  = Maybe			-- Maybe[1] we don't have any semi-tagging stuff...
181
182
     ([(ConTagZ, CmmLit)],	-- Alternatives
      CmmLit)			-- Default (will be a can't happen RTS label if can't happen)
183
184

-- The case branch is executed only from a successful semitagging
185
186
187
-- venture, when a case has looked at a variable, found that it's
-- evaluated, and wants to load up the contents and go to the join
-- point.
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
\end{code}

%************************************************************************
%*									*
		CgStmt type
%*									*
%************************************************************************

The CgStmts type is what the code generator outputs: it is a tree of
statements, including in-line labels.  The job of flattenCgStmts is to
turn this into a list of basic blocks, each of which ends in a jump
statement (either a local branch or a non-local jump).

\begin{code}
type CgStmts = OrdList CgStmt

data CgStmt
  = CgStmt  CmmStmt
  | CgLabel BlockId
  | CgFork  BlockId CgStmts

flattenCgStmts :: BlockId -> CgStmts -> [CmmBasicBlock]
flattenCgStmts id stmts = 
	case flatten (fromOL stmts) of
	  ([],blocks)    -> blocks
	  (block,blocks) -> BasicBlock id block : blocks
 where
  flatten [] = ([],[])

  -- A label at the end of a function or fork: this label must not be reachable,
  -- but it might be referred to from another BB that also isn't reachable.
  -- Eliminating these has to be done with a dead-code analysis.  For now,
  -- we just make it into a well-formed block by adding a recursive jump.
  flatten [CgLabel id]
222
    = ( [CmmBranch id], [BasicBlock id [CmmBranch id]] )
223
224
225
226
227
228
229
230
231
232
233
234

  -- A jump/branch: throw away all the code up to the next label, because
  -- it is unreachable.  Be careful to keep forks that we find on the way.
  flatten (CgStmt stmt : stmts)
    | isJump stmt
    = case dropWhile isOrdinaryStmt stmts of
	[]                     -> ( [stmt], [] )
	[CgLabel id]	       -> ( [stmt], [BasicBlock id [CmmBranch id]])
	(CgLabel id : stmts)   -> ( [stmt], BasicBlock id block : blocks )
	    where (block,blocks) = flatten stmts
	(CgFork fork_id stmts : ss) -> 
	   flatten (CgFork fork_id stmts : CgStmt stmt : ss)
235
        (CgStmt {} : _) -> panic "CgStmt not seen as ordinary"
236
237
238
239
240
241
242
243
244
245

  flatten (s:ss) = 
	case s of
	  CgStmt stmt -> (stmt:block,blocks)
	  CgLabel id  -> ([CmmBranch id],BasicBlock id block:blocks)
	  CgFork fork_id stmts -> 
		(block, BasicBlock fork_id fork_block : fork_blocks ++ blocks)
		where (fork_block, fork_blocks) = flatten (fromOL stmts)
    where (block,blocks) = flatten ss

Ian Lynagh's avatar
Ian Lynagh committed
246
isJump :: CmmStmt -> Bool
247
248
isJump (CmmJump _ _) = True
isJump (CmmBranch _) = True
249
isJump (CmmSwitch _ _) = True
250
isJump (CmmReturn _) = True
251
252
isJump _ = False

Ian Lynagh's avatar
Ian Lynagh committed
253
isOrdinaryStmt :: CgStmt -> Bool
254
255
256
257
258
259
260
261
262
isOrdinaryStmt (CgStmt _) = True
isOrdinaryStmt _ = False
\end{code}

%************************************************************************
%*									*
		Stack and heap models
%*									*
%************************************************************************
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
\begin{code}
type VirtualHpOffset = WordOff	-- Both are in
type VirtualSpOffset = WordOff	-- units of words

data StackUsage 
  = StackUsage {
	virtSp :: VirtualSpOffset,
		-- Virtual offset of topmost allocated slot

	frameSp :: VirtualSpOffset,
		-- Virtual offset of the return address of the enclosing frame.
		-- This RA describes the liveness/pointedness of
		-- all the stack from frameSp downwards
		-- INVARIANT: less than or equal to virtSp

	 freeStk :: [VirtualSpOffset], 
		-- List of free slots, in *increasing* order
		-- INVARIANT: all <= virtSp
		-- All slots <= virtSp are taken except these ones

	 realSp :: VirtualSpOffset,	
		-- Virtual offset of real stack pointer register

	 hwSp :: VirtualSpOffset
  }		   -- Highest value ever taken by virtSp

290
-- INVARIANT: The environment contains no Stable references to
291
292
293
294
295
296
297
298
-- 	      stack slots below (lower offset) frameSp
--	      It can contain volatile references to this area though.

data HeapUsage =
  HeapUsage {
	virtHp :: VirtualHpOffset,	-- Virtual offset of highest-allocated word
	realHp :: VirtualHpOffset	-- realHp: Virtual offset of real heap ptr
  }
299
\end{code}
300

301
302
303
304
The heap high water mark is the larger of virtHp and hwHp.  The latter is
only records the high water marks of forked-off branches, so to find the
heap high water mark you have to take the max of virtHp and hwHp.  Remember,
virtHp never retreats!
305

306
Note Jan 04: ok, so why do we only look at the virtual Hp??
307
308

\begin{code}
309
310
311
heapHWM :: HeapUsage -> VirtualHpOffset
heapHWM = virtHp
\end{code}
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
Initialisation.

\begin{code}
initStkUsage :: StackUsage
initStkUsage = StackUsage {
			virtSp = 0,
			frameSp = 0,
			freeStk = [],
			realSp = 0,
			hwSp = 0
	       }
		
initHpUsage :: HeapUsage 
initHpUsage = HeapUsage {
	      	virtHp = 0,
		realHp = 0
	      }
330
331
332
333
334
335
336
\end{code}

@stateIncUsage@$~e_1~e_2$ incorporates in $e_1$ the stack and heap high water
marks found in $e_2$.

\begin{code}
stateIncUsage :: CgState -> CgState -> CgState
337
338
339
340
341
342
343
344
345
346
347
348
stateIncUsage s1 s2@(MkCgState { cgs_stk_usg = stk_usg, cgs_hp_usg = hp_usg })
     = s1 { cgs_hp_usg  = cgs_hp_usg  s1 `maxHpHw`  virtHp hp_usg,
	    cgs_stk_usg = cgs_stk_usg s1 `maxStkHw` hwSp   stk_usg }
       `addCodeBlocksFrom` s2
		
stateIncUsageEval :: CgState -> CgState -> CgState
stateIncUsageEval s1 s2
     = s1 { cgs_stk_usg = cgs_stk_usg s1 `maxStkHw` hwSp (cgs_stk_usg s2) }
       `addCodeBlocksFrom` s2
	-- We don't max the heap high-watermark because stateIncUsageEval is
	-- used only in forkEval, which in turn is only used for blocks of code
	-- which do their own heap-check.
349

350
351
352
353
354
355
356
357
358
359
360
361
addCodeBlocksFrom :: CgState -> CgState -> CgState
-- Add code blocks from the latter to the former
-- (The cgs_stmts will often be empty, but not always; see codeOnly)
s1 `addCodeBlocksFrom` s2
  = s1 { cgs_stmts = cgs_stmts s1 `appOL` cgs_stmts s2,
	 cgs_tops  = cgs_tops  s1 `appOL` cgs_tops  s2 }

maxHpHw :: HeapUsage -> VirtualHpOffset -> HeapUsage
hp_usg `maxHpHw` hw = hp_usg { virtHp = virtHp hp_usg `max` hw }

maxStkHw :: StackUsage -> VirtualSpOffset -> StackUsage
stk_usg `maxStkHw` hw = stk_usg { hwSp = hwSp stk_usg `max` hw }
362
363
364
365
\end{code}

%************************************************************************
%*									*
366
		The FCode monad
367
368
369
370
%*									*
%************************************************************************

\begin{code}
rje's avatar
rje committed
371
newtype FCode a = FCode (CgInfoDownwards -> CgState -> (a, CgState))
372
type Code       = FCode ()
rje's avatar
rje committed
373
374
375
376

instance Monad FCode where
	(>>=) = thenFC
	return = returnFC
377
378
379
380
381
382
383
384

{-# INLINE thenC #-}
{-# INLINE thenFC #-}
{-# INLINE returnFC #-}
\end{code}
The Abstract~C is not in the environment so as to improve strictness.

\begin{code}
Simon Marlow's avatar
Simon Marlow committed
385
initC :: DynFlags -> Module -> FCode a -> IO a
386

Simon Marlow's avatar
Simon Marlow committed
387
initC dflags mod (FCode code)
388
  = do	{ uniqs <- mkSplitUniqSupply 'c'
Simon Marlow's avatar
Simon Marlow committed
389
	; case code (initCgInfoDown dflags mod) (initCgState uniqs) of
390
391
	      (res, _) -> return res
	}
392
393

returnFC :: a -> FCode a
Ian Lynagh's avatar
Ian Lynagh committed
394
returnFC val = FCode (\_ state -> (val, state))
395
396
397
\end{code}

\begin{code}
rje's avatar
rje committed
398
399
400
401
thenC :: Code -> FCode a -> FCode a
thenC (FCode m) (FCode k) = 
  	FCode (\info_down state -> let (_,new_state) = m info_down state in 
  		k info_down new_state)
402
403

listCs :: [Code] -> Code
rje's avatar
rje committed
404
405
406
407
408
listCs [] = return ()
listCs (fc:fcs) = do
	fc
	listCs fcs
   	
409
mapCs :: (a -> Code) -> [a] -> Code
rje's avatar
rje committed
410
mapCs = mapM_
411
412
413
\end{code}

\begin{code}
rje's avatar
rje committed
414
415
416
417
thenFC	:: FCode a -> (a -> FCode c) -> FCode c
thenFC (FCode m) k = FCode (
	\info_down state ->
		let 
418
419
                        (m_result, new_state) = m info_down state
                        (FCode kcode) = k m_result
rje's avatar
rje committed
420
421
422
		in 
			kcode info_down new_state
	)
423
424

listFCs :: [FCode a] -> FCode [a]
rje's avatar
rje committed
425
listFCs = sequence
426
427

mapFCs :: (a -> FCode b) -> [a] -> FCode [b]
rje's avatar
rje committed
428
mapFCs = mapM
429
430
431
432
433
\end{code}

And the knot-tying combinator:
\begin{code}
fixC :: (a -> FCode a) -> FCode a
rje's avatar
rje committed
434
435
436
437
438
439
440
441
442
fixC fcode = FCode (
	\info_down state -> 
		let
			FCode fc = fcode v
			result@(v,_) = fc info_down state
			--	    ^--------^
		in
			result
	)
443
444
445

fixC_ :: (a -> FCode a) -> FCode ()
fixC_ fcode = fixC fcode >> return ()
rje's avatar
rje committed
446
447
\end{code}

448
449
450
451
452
453
%************************************************************************
%*									*
	Operators for getting and setting the state and "info_down".

%*									*
%************************************************************************
rje's avatar
rje committed
454
455
456

\begin{code}
getState :: FCode CgState
Ian Lynagh's avatar
Ian Lynagh committed
457
getState = FCode $ \_ state -> (state,state)
rje's avatar
rje committed
458
459

setState :: CgState -> FCode ()
Ian Lynagh's avatar
Ian Lynagh committed
460
setState state = FCode $ \_ _ -> ((),state)
rje's avatar
rje committed
461

462
463
464
465
getStkUsage :: FCode StackUsage
getStkUsage = do
	state <- getState
	return $ cgs_stk_usg state
rje's avatar
rje committed
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
setStkUsage :: StackUsage -> Code
setStkUsage new_stk_usg = do
	state <- getState
	setState $ state {cgs_stk_usg = new_stk_usg}

getHpUsage :: FCode HeapUsage
getHpUsage = do
	state <- getState
	return $ cgs_hp_usg state
	
setHpUsage :: HeapUsage -> Code
setHpUsage new_hp_usg = do
	state <- getState
	setState $ state {cgs_hp_usg = new_hp_usg}
rje's avatar
rje committed
481
482
483

getBinds :: FCode CgBindings
getBinds = do
484
485
	state <- getState
	return $ cgs_binds state
rje's avatar
rje committed
486
487
	
setBinds :: CgBindings -> FCode ()
488
489
490
setBinds new_binds = do
	state <- getState
	setState $ state {cgs_binds = new_binds}
rje's avatar
rje committed
491
492
493

getStaticBinds :: FCode CgBindings
getStaticBinds = do
494
495
	info  <- getInfoDown
	return (cgd_statics info)
rje's avatar
rje committed
496
497
498
499
500

withState :: FCode a -> CgState -> FCode (a,CgState)
withState (FCode fcode) newstate = FCode $ \info_down state -> 
	let (retval, state2) = fcode info_down newstate in ((retval,state2), state)

501
502
503
504
505
506
507
508
509
510
511
512
513
newUniqSupply :: FCode UniqSupply
newUniqSupply = do
	state <- getState
	let (us1, us2) = splitUniqSupply (cgs_uniqs state)
	setState $ state { cgs_uniqs = us1 }
	return us2

newUnique :: FCode Unique
newUnique = do
	us <- newUniqSupply
	return (uniqFromSupply us)

------------------
rje's avatar
rje committed
514
515
516
getInfoDown :: FCode CgInfoDownwards
getInfoDown = FCode $ \info_down state -> (info_down,state)

517
518
519
getDynFlags :: FCode DynFlags
getDynFlags = liftM cgd_dflags getInfoDown

Simon Marlow's avatar
Simon Marlow committed
520
521
getThisPackage :: FCode PackageId
getThisPackage = liftM thisPackage getDynFlags
522

rje's avatar
rje committed
523
524
525
526
527
withInfoDown :: FCode a -> CgInfoDownwards -> FCode a
withInfoDown (FCode fcode) info_down = FCode $ \_ state -> fcode info_down state 

doFCode :: FCode a -> CgInfoDownwards -> CgState -> (a,CgState)
doFCode (FCode fcode) info_down state = fcode info_down state
528
529
\end{code}

rje's avatar
rje committed
530

531
532
533
534
535
536
%************************************************************************
%*									*
		Forking
%*									*
%************************************************************************

537
538
539
540
541
542
@forkClosureBody@ takes a code, $c$, and compiles it in a completely
fresh environment, except that:
	- compilation info and statics are passed in unchanged.
The current environment is passed on completely unaltered, except that
abstract C from the fork is incorporated.

543
544
545
546
@forkProc@ takes a code and compiles it in the current environment,
returning the basic blocks thus constructed.  The current environment
is passed on completely unchanged.  It is pretty similar to
@getBlocks@, except that the latter does affect the environment.
547
548
549
550
551
552
553
554

@forkStatics@ $fc$ compiles $fc$ in an environment whose statics come
from the current bindings, but which is otherwise freshly initialised.
The Abstract~C returned is attached to the current state, but the
bindings and usage information is otherwise unchanged.

\begin{code}
forkClosureBody :: Code -> Code
555
556
557
558
559
560
561
562
563
forkClosureBody body_code
  = do	{ info <- getInfoDown
	; us   <- newUniqSupply
	; state <- getState
   	; let	body_info_down = info { cgd_eob = initEobInfo }
		((),fork_state)	= doFCode body_code body_info_down 
					  (initCgState us)
	; ASSERT( isNilOL (cgs_stmts fork_state) )
	  setState $ state `addCodeBlocksFrom` fork_state }
rje's avatar
rje committed
564
	
565
forkStatics :: FCode a -> FCode a
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
forkStatics body_code
  = do	{ info  <- getInfoDown
	; us    <- newUniqSupply
	; state <- getState
	; let	rhs_info_down = info { cgd_statics = cgs_binds state,
				       cgd_eob     = initEobInfo }
		(result, fork_state_out) = doFCode body_code rhs_info_down 
						   (initCgState us)
	; ASSERT( isNilOL (cgs_stmts fork_state_out) )
	  setState (state `addCodeBlocksFrom` fork_state_out)
	; return result }

forkProc :: Code -> FCode CgStmts
forkProc body_code
  = do	{ info_down <- getInfoDown
	; us    <- newUniqSupply
	; state <- getState
	; let	fork_state_in = (initCgState us) 
					{ cgs_binds   = cgs_binds state,
					  cgs_stk_usg = cgs_stk_usg state,
					  cgs_hp_usg  = cgs_hp_usg state }
			-- ToDo: is the hp usage necesary?
		(code_blks, fork_state_out) = doFCode (getCgStmts body_code) 
						      info_down fork_state_in
	; setState $ state `stateIncUsageEval` fork_state_out
	; return code_blks }

codeOnly :: Code -> Code
-- Emit any code from the inner thing into the outer thing
-- Do not affect anything else in the outer state
-- Used in almost-circular code to prevent false loop dependencies
codeOnly body_code
  = do	{ info_down <- getInfoDown
	; us   <- newUniqSupply
	; state <- getState
	; let	fork_state_in = (initCgState us) { cgs_binds   = cgs_binds state,
					           cgs_stk_usg = cgs_stk_usg state,
					           cgs_hp_usg  = cgs_hp_usg state }
		((), fork_state_out) = doFCode body_code info_down fork_state_in
	; setState $ state `addCodeBlocksFrom` fork_state_out }
606
607
608
609
610
611
612
613
614
615
\end{code}

@forkAlts@ $bs~d$ takes fcodes $bs$ for the branches of a @case@, and
an fcode for the default case $d$, and compiles each in the current
environment.  The current environment is passed on unmodified, except
that
	- the worst stack high-water mark is incorporated
	- the virtual Hp is moved on to the worst virtual Hp for the branches

\begin{code}
616
617
618
forkAlts :: [FCode a] -> FCode [a]

forkAlts branch_fcodes
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
  = do	{ info_down <- getInfoDown
	; us <- newUniqSupply
	; state <- getState
	; let compile us branch 
		= (us2, doFCode branch info_down branch_state)
		where
		  (us1,us2) = splitUniqSupply us
	          branch_state = (initCgState us1) {
					cgs_binds   = cgs_binds state,
					cgs_stk_usg = cgs_stk_usg state,
					cgs_hp_usg  = cgs_hp_usg state }

	      (_us, results) = mapAccumL compile us branch_fcodes
	      (branch_results, branch_out_states) = unzip results
	; setState $ foldl stateIncUsage state branch_out_states
		-- NB foldl.  state is the *left* argument to stateIncUsage
	; return branch_results }
636
637
638
\end{code}

@forkEval@ takes two blocks of code.
639
640
641
642
643
644
645
646
647

   -  The first meddles with the environment to set it up as expected by
      the alternatives of a @case@ which does an eval (or gc-possible primop).
   -  The second block is the code for the alternatives.
      (plus info for semi-tagging purposes)

@forkEval@ picks up the virtual stack pointer and returns a suitable
@EndOfBlockInfo@ for the caller to use, together with whatever value
is returned by the second block.
648
649
650
651
652
653
654
655
656
657
658

It uses @initEnvForAlternatives@ to initialise the environment, and
@stateIncUsageAlt@ to incorporate usage; the latter ignores the heap
usage.

\begin{code}
forkEval :: EndOfBlockInfo              -- For the body
    	 -> Code			-- Code to set environment
	 -> FCode Sequel		-- Semi-tagging info to store
	 -> FCode EndOfBlockInfo	-- The new end of block info

659
forkEval body_eob_info env_code body_code
660
661
  = do  { (v, sequel) <- forkEvalHelp body_eob_info env_code body_code
 	; returnFC (EndOfBlockInfo v sequel) }
662

663
forkEvalHelp :: EndOfBlockInfo  -- For the body
664
665
    	     -> Code		-- Code to set environment
	     -> FCode a		-- The code to do after the eval
666
667
668
669
	     -> FCode (VirtualSpOffset,	-- Sp
		       a)		-- Result of the FCode
	-- A disturbingly complicated function
forkEvalHelp body_eob_info env_code body_code
670
  = do	{ info_down <- getInfoDown
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
	; us   <- newUniqSupply
	; state <- getState
	; let { info_down_for_body = info_down {cgd_eob = body_eob_info}
	      ; (_, env_state) = doFCode env_code info_down_for_body 
					 (state {cgs_uniqs = us})
	      ; state_for_body = (initCgState (cgs_uniqs env_state)) 
					{ cgs_binds   = binds_for_body,
	      				  cgs_stk_usg = stk_usg_for_body }
	      ; binds_for_body   = nukeVolatileBinds (cgs_binds env_state)
	      ; stk_usg_from_env = cgs_stk_usg env_state
	      ; virtSp_from_env  = virtSp stk_usg_from_env
	      ; stk_usg_for_body = stk_usg_from_env {realSp = virtSp_from_env,
	      					     hwSp   = virtSp_from_env}
	      ; (value_returned, state_at_end_return)
	        	= doFCode body_code info_down_for_body state_for_body		
	  } 
	; ASSERT( isNilOL (cgs_stmts state_at_end_return) )
		 -- The code coming back should consist only of nested declarations,
689
		 -- notably of the return vector!
690
691
	  setState $ state `stateIncUsageEval` state_at_end_return
	; return (virtSp_from_env, value_returned) }
692
693


694
695
696
-- ----------------------------------------------------------------------------
-- Combinators for emitting code

697
nopC :: Code
rje's avatar
rje committed
698
nopC = return ()
699

700
701
whenC :: Bool -> Code -> Code
whenC True  code = code
Ian Lynagh's avatar
Ian Lynagh committed
702
whenC False _    = nopC
703

704
705
-- Corresponds to 'emit' in new code generator with a smart constructor
-- from cmm/MkGraph.hs
706
707
708
709
710
711
712
stmtC :: CmmStmt -> Code
stmtC stmt = emitCgStmt (CgStmt stmt)

labelC :: BlockId -> Code
labelC id = emitCgStmt (CgLabel id)

newLabelC :: FCode BlockId
713
newLabelC = do { u <- newUnique
714
               ; return $ mkBlockId u }
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

checkedAbsC :: CmmStmt -> Code
-- Emit code, eliminating no-ops
checkedAbsC stmt = emitStmts (if isNopStmt stmt then nilOL
	 		      else unitOL stmt)

stmtsC :: [CmmStmt] -> Code
stmtsC stmts = emitStmts (toOL stmts)

-- Emit code; no no-op checking
emitStmts :: CmmStmts -> Code
emitStmts stmts = emitCgStmts (fmap CgStmt stmts)

-- forkLabelledCode is for emitting a chunk of code with a label, outside
-- of the current instruction stream.
forkLabelledCode :: Code -> FCode BlockId
forkLabelledCode code = getCgStmts code >>= forkCgStmts

emitCgStmt :: CgStmt -> Code
emitCgStmt stmt
  = do	{ state <- getState
	; setState $ state { cgs_stmts = cgs_stmts state `snocOL` stmt }
	}

739
740
emitDecl :: CmmTop -> Code
emitDecl decl
741
  = do 	{ state <- getState
742
	; setState $ state { cgs_tops = cgs_tops state `snocOL` decl } }
743

744
emitProc :: CmmInfo -> CLabel -> [CmmFormal] -> [CmmBasicBlock] -> Code
745
746
emitProc info lbl [] blocks
  = do  { let proc_block = CmmProc info lbl (ListGraph blocks)
747
748
	; state <- getState
	; setState $ state { cgs_tops = cgs_tops state `snocOL` proc_block } }
749
emitProc _ _ (_:_) _ = panic "emitProc called with nonempty args"
750
751
752
753
754
755

emitSimpleProc :: CLabel -> Code -> Code
-- Emit a procedure whose body is the specified code; no info table
emitSimpleProc lbl code
  = do	{ stmts <- getCgStmts code
	; blks <- cgStmtsToBlocks stmts
756
	; emitProc (CmmInfo Nothing Nothing CmmNonInfoTable) lbl [] blks }
757

758
getCmm :: Code -> FCode CmmPgm
759
-- Get all the CmmTops (there should be no stmts)
760
761
-- Return a single Cmm which may be split from other Cmms by
-- object splitting (at a later stage)
762
763
764
765
getCmm code 
  = do	{ state1 <- getState
	; ((), state2) <- withState code (state1 { cgs_tops  = nilOL })
	; setState $ state2 { cgs_tops = cgs_tops state1 } 
766
        ; return (fromOL (cgs_tops state2))
767
        }
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

-- ----------------------------------------------------------------------------
-- CgStmts

-- These functions deal in terms of CgStmts, which is an abstract type
-- representing the code in the current proc.


-- emit CgStmts into the current instruction stream
emitCgStmts :: CgStmts -> Code
emitCgStmts stmts
  = do	{ state <- getState
	; setState $ state { cgs_stmts = cgs_stmts state `appOL` stmts } }

-- emit CgStmts outside the current instruction stream, and return a label
forkCgStmts :: CgStmts -> FCode BlockId
forkCgStmts stmts
  = do  { id <- newLabelC
	; emitCgStmt (CgFork id stmts)
	; return id
	}

-- turn CgStmts into [CmmBasicBlock], for making a new proc.
cgStmtsToBlocks :: CgStmts -> FCode [CmmBasicBlock]
cgStmtsToBlocks stmts
  = do  { id <- newLabelC
	; return (flattenCgStmts id stmts)
	}	

-- collect the code emitted by an FCode computation
getCgStmts' :: FCode a -> FCode (a, CgStmts)
getCgStmts' fcode
  = do	{ state1 <- getState
	; (a, state2) <- withState fcode (state1 { cgs_stmts = nilOL })
	; setState $ state2 { cgs_stmts = cgs_stmts state1  }
	; return (a, cgs_stmts state2) }

getCgStmts :: FCode a -> FCode CgStmts
getCgStmts fcode = do { (_,stmts) <- getCgStmts' fcode; return stmts }

-- Simple ways to construct CgStmts:
noCgStmts :: CgStmts
noCgStmts = nilOL

oneCgStmt :: CmmStmt -> CgStmts
oneCgStmt stmt = unitOL (CgStmt stmt)

consCgStmt :: CmmStmt -> CgStmts -> CgStmts
consCgStmt stmt stmts = CgStmt stmt `consOL` stmts

-- ----------------------------------------------------------------------------
-- Get the current module name
820

Simon Marlow's avatar
Simon Marlow committed
821
822
getModuleName :: FCode Module
getModuleName = do { info <- getInfoDown; return (cgd_mod info) }
823
824
825

-- ----------------------------------------------------------------------------
-- Get/set the end-of-block info
826
827

setEndOfBlockInfo :: EndOfBlockInfo -> Code -> Code
rje's avatar
rje committed
828
setEndOfBlockInfo eob_info code	= do
829
830
	info  <- getInfoDown
	withInfoDown code (info {cgd_eob = eob_info})
831
832

getEndOfBlockInfo :: FCode EndOfBlockInfo
rje's avatar
rje committed
833
getEndOfBlockInfo = do
834
835
	info <- getInfoDown
	return (cgd_eob info)
836

837
838
-- ----------------------------------------------------------------------------
-- Get/set the current SRT label
839

840
841
842
-- There is just one SRT for each top level binding; all the nested
-- bindings use sub-sections of this SRT.  The label is passed down to
-- the nested bindings via the monad.
843
844

getSRTLabel :: FCode CLabel	-- Used only by cgPanic
845
getSRTLabel = do info  <- getInfoDown
846
		 return (cgd_srt_lbl info)
847

848
setSRTLabel :: CLabel -> FCode a -> FCode a
849
setSRTLabel srt_lbl code
850
  = do  info <- getInfoDown
851
852
853
854
855
856
857
858
859
860
	withInfoDown code (info { cgd_srt_lbl = srt_lbl})

getSRT :: FCode SRT
getSRT = do info <- getInfoDown
            return (cgd_srt info)

setSRT :: SRT -> FCode a -> FCode a
setSRT srt code
  = do info <- getInfoDown
       withInfoDown code (info { cgd_srt = srt})
861
862
863

-- ----------------------------------------------------------------------------
-- Get/set the current ticky counter label
864
865

getTickyCtrLabel :: FCode CLabel
rje's avatar
rje committed
866
getTickyCtrLabel = do
867
868
	info <- getInfoDown
	return (cgd_ticky info)
869
870

setTickyCtrLabel :: CLabel -> Code -> Code
rje's avatar
rje committed
871
setTickyCtrLabel ticky code = do
872
873
	info <- getInfoDown
	withInfoDown code (info {cgd_ticky = ticky})
874
\end{code}