Capability.c 28.4 KB
Newer Older
sof's avatar
sof committed
1
/* ---------------------------------------------------------------------------
2
 *
3
 * (c) The GHC Team, 2003-2006
sof's avatar
sof committed
4
5
6
 *
 * Capabilities
 *
sof's avatar
sof committed
7
8
 * A Capability represent the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
sof's avatar
sof committed
9
 * its STG registers, a pointer to its TSO, a nursery etc. During
sof's avatar
sof committed
10
 * STG execution, a pointer to the capabilitity is kept in a
11
 * register (BaseReg; actually it is a pointer to cap->r).
sof's avatar
sof committed
12
 *
13
14
15
 * Only in an THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
16
 *
sof's avatar
sof committed
17
 * --------------------------------------------------------------------------*/
18

sof's avatar
sof committed
19
20
#include "PosixSource.h"
#include "Rts.h"
Simon Marlow's avatar
Simon Marlow committed
21

sof's avatar
sof committed
22
#include "Capability.h"
23
#include "Schedule.h"
24
#include "Sparks.h"
Simon Marlow's avatar
Simon Marlow committed
25
#include "Trace.h"
Simon Marlow's avatar
Simon Marlow committed
26
27
28
#include "sm/GC.h" // for gcWorkerThread()
#include "STM.h"
#include "RtsUtils.h"
sof's avatar
sof committed
29

30
31
32
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
sof's avatar
sof committed
33

Simon Marlow's avatar
Simon Marlow committed
34
nat n_capabilities = 0;
35
Capability *capabilities = NULL;
sof's avatar
sof committed
36

37
38
39
40
// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
Simon Marlow's avatar
Simon Marlow committed
41
Capability *last_free_capability = NULL;
42

43
44
45
/* GC indicator, in scope for the scheduler, init'ed to false */
volatile StgWord waiting_for_gc = 0;

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/* Let foreign code get the current Capability -- assuming there is one!
 * This is useful for unsafe foreign calls because they are called with
 * the current Capability held, but they are not passed it. For example,
 * see see the integer-gmp package which calls allocateLocal() in its
 * stgAllocForGMP() function (which gets called by gmp functions).
 * */
Capability * rts_unsafeGetMyCapability (void)
{
#if defined(THREADED_RTS)
  return myTask()->cap;
#else
  return &MainCapability;
#endif
}

61
#if defined(THREADED_RTS)
62
63
64
STATIC_INLINE rtsBool
globalWorkToDo (void)
{
65
66
    return sched_state >= SCHED_INTERRUPTING
        || recent_activity == ACTIVITY_INACTIVE; // need to check for deadlock
67
}
68
#endif
69

70
#if defined(THREADED_RTS)
71
StgClosure *
72
findSpark (Capability *cap)
73
{
74
75
  Capability *robbed;
  StgClosurePtr spark;
76
  rtsBool retry;
77
78
  nat i = 0;

79
  if (!emptyRunQueue(cap) || cap->returning_tasks_hd != NULL) {
80
81
82
83
84
85
      // If there are other threads, don't try to run any new
      // sparks: sparks might be speculative, we don't want to take
      // resources away from the main computation.
      return 0;
  }

86
87
  do {
      retry = rtsFalse;
88

89
90
91
92
93
94
      // first try to get a spark from our own pool.
      // We should be using reclaimSpark(), because it works without
      // needing any atomic instructions:
      //   spark = reclaimSpark(cap->sparks);
      // However, measurements show that this makes at least one benchmark
      // slower (prsa) and doesn't affect the others.
95
96
      spark = tryStealSpark(cap->sparks);
      while (spark != NULL && fizzledSpark(spark)) {
97
          cap->spark_stats.fizzled++;
98
99
          spark = tryStealSpark(cap->sparks);
      }
100
      if (spark != NULL) {
101
          cap->spark_stats.converted++;
102
103

          // Post event for running a spark from capability's own pool.
104
          traceEventRunSpark(cap, cap->r.rCurrentTSO);
105
106
107
108
109
110
111
112
113
114
115
116
117

          return spark;
      }
      if (!emptySparkPoolCap(cap)) {
          retry = rtsTrue;
      }

      if (n_capabilities == 1) { return NULL; } // makes no sense...

      debugTrace(DEBUG_sched,
                 "cap %d: Trying to steal work from other capabilities", 
                 cap->no);

118
119
120
121
122
123
      /* visit cap.s 0..n-1 in sequence until a theft succeeds. We could
      start at a random place instead of 0 as well.  */
      for ( i=0 ; i < n_capabilities ; i++ ) {
          robbed = &capabilities[i];
          if (cap == robbed)  // ourselves...
              continue;
124

125
126
127
          if (emptySparkPoolCap(robbed)) // nothing to steal here
              continue;

128
129
          spark = tryStealSpark(robbed->sparks);
          while (spark != NULL && fizzledSpark(spark)) {
130
              cap->spark_stats.fizzled++;
131
132
              spark = tryStealSpark(robbed->sparks);
          }
133
134
135
136
137
138
139
          if (spark == NULL && !emptySparkPoolCap(robbed)) {
              // we conflicted with another thread while trying to steal;
              // try again later.
              retry = rtsTrue;
          }

          if (spark != NULL) {
140
              cap->spark_stats.converted++;
141

142
              traceEventStealSpark(cap, cap->r.rCurrentTSO, robbed->no);
143
              
144
              return spark;
145
146
147
148
          }
          // otherwise: no success, try next one
      }
  } while (retry);
149

150
  debugTrace(DEBUG_sched, "No sparks stolen");
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  return NULL;
}

// Returns True if any spark pool is non-empty at this moment in time
// The result is only valid for an instant, of course, so in a sense
// is immediately invalid, and should not be relied upon for
// correctness.
rtsBool
anySparks (void)
{
    nat i;

    for (i=0; i < n_capabilities; i++) {
        if (!emptySparkPoolCap(&capabilities[i])) {
            return rtsTrue;
        }
    }
    return rtsFalse;
169
}
170
#endif
171
172
173

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
174
 *
175
176
177
178
179
180
181
182
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
183
    ASSERT(task->next == NULL);
184
    if (cap->returning_tasks_hd) {
185
186
	ASSERT(cap->returning_tasks_tl->next == NULL);
	cap->returning_tasks_tl->next = task;
187
188
189
190
    } else {
	cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;
191
192
}

193
194
195
196
197
198
199
STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
200
    cap->returning_tasks_hd = task->next;
201
202
203
    if (!cap->returning_tasks_hd) {
	cap->returning_tasks_tl = NULL;
    }
204
    task->next = NULL;
205
206
207
208
    return task;
}
#endif

209
/* ----------------------------------------------------------------------------
210
211
212
213
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */
214
215

static void
216
initCapability( Capability *cap, nat i )
sof's avatar
sof committed
217
{
218
    nat g;
219

220
221
222
223
224
225
226
227
228
229
    cap->no = i;
    cap->in_haskell        = rtsFalse;

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
230
    cap->n_spare_workers   = 0;
231
    cap->suspended_ccalls  = NULL;
232
233
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
234
    cap->inbox              = (Message*)END_TSO_QUEUE;
235
    cap->sparks             = allocSparkPool();
236
237
    cap->spark_stats.created    = 0;
    cap->spark_stats.dud        = 0;
238
    cap->spark_stats.overflowed = 0;
239
240
241
    cap->spark_stats.converted  = 0;
    cap->spark_stats.gcd        = 0;
    cap->spark_stats.fizzled    = 0;
242
243
#endif

244
    cap->f.stgEagerBlackholeInfo = (W_)&__stg_EAGER_BLACKHOLE_info;
Simon Marlow's avatar
Simon Marlow committed
245
246
    cap->f.stgGCEnter1     = (StgFunPtr)__stg_gc_enter_1;
    cap->f.stgGCFun        = (StgFunPtr)__stg_gc_fun;
247

248
    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
249
250
				     RtsFlags.GcFlags.generations,
				     "initCapability");
251
252
253
    cap->saved_mut_lists = stgMallocBytes(sizeof(bdescr *) *
                                          RtsFlags.GcFlags.generations,
                                          "initCapability");
254
255
256

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
	cap->mut_lists[g] = NULL;
257
    }
258

tharris@microsoft.com's avatar
tharris@microsoft.com committed
259
260
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
261
262
263
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
264
    cap->context_switch = 0;
265
    cap->pinned_object_block = NULL;
266
267

    traceCapsetAssignCap(CAPSET_OSPROCESS_DEFAULT, i);
sof's avatar
sof committed
268
269
}

270
/* ---------------------------------------------------------------------------
sof's avatar
sof committed
271
272
 * Function:  initCapabilities()
 *
273
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
sof's avatar
sof committed
274
 *            we keep a table of them, the size of which is
275
 *            controlled by the user via the RTS flag -N.
sof's avatar
sof committed
276
 *
277
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
278
void
279
initCapabilities( void )
sof's avatar
sof committed
280
{
281
282
283
284
    /* Declare a single capability set representing the process. 
       Each capability will get added to this capset. */ 
    traceCapsetCreate(CAPSET_OSPROCESS_DEFAULT, CapsetTypeOsProcess);

285
286
#if defined(THREADED_RTS)
    nat i;
287

288
#ifndef REG_Base
Simon Marlow's avatar
Simon Marlow committed
289
290
291
292
293
294
295
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nNodes > 1) {
	errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
	RtsFlags.ParFlags.nNodes = 1;
    }
#endif

296
297
298
299
300
301
302
303
304
305
306
    n_capabilities = RtsFlags.ParFlags.nNodes;

    if (n_capabilities == 1) {
	capabilities = &MainCapability;
	// THREADED_RTS must work on builds that don't have a mutable
	// BaseReg (eg. unregisterised), so in this case
	// capabilities[0] must coincide with &MainCapability.
    } else {
	capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
				      "initCapabilities");
    }
307

308
    for (i = 0; i < n_capabilities; i++) {
309
	initCapability(&capabilities[i], i);
310
    }
311

Simon Marlow's avatar
Simon Marlow committed
312
    debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
313
314
315

#else /* !THREADED_RTS */

316
    n_capabilities = 1;
317
    capabilities = &MainCapability;
318
    initCapability(&MainCapability, 0);
319

320
321
#endif

322
323
324
325
    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    last_free_capability = &capabilities[0];
sof's avatar
sof committed
326
327
}

328
329
330
331
332
333
334
/* ----------------------------------------------------------------------------
 * setContextSwitches: cause all capabilities to context switch as
 * soon as possible.
 * ------------------------------------------------------------------------- */

void setContextSwitches(void)
{
335
336
337
338
    nat i;
    for (i=0; i < n_capabilities; i++) {
        contextSwitchCapability(&capabilities[i]);
    }
339
340
}

341
/* ----------------------------------------------------------------------------
342
343
344
345
346
347
348
349
350
351
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
352
353
 *
 * ------------------------------------------------------------------------- */
354
355
356

#if defined(THREADED_RTS)
STATIC_INLINE void
357
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
358
{
359
360
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
Simon Marlow's avatar
Simon Marlow committed
361
    debugTrace(DEBUG_sched, "passing capability %d to %s %p",
362
               cap->no, task->incall->tso ? "bound task" : "worker",
Simon Marlow's avatar
Simon Marlow committed
363
               (void *)task->id);
364
365
366
367
368
369
370
    ACQUIRE_LOCK(&task->lock);
    task->wakeup = rtsTrue;
    // the wakeup flag is needed because signalCondition() doesn't
    // flag the condition if the thread is already runniing, but we want
    // it to be sticky.
    signalCondition(&task->cond);
    RELEASE_LOCK(&task->lock);
371
}
372
#endif
373

374
/* ----------------------------------------------------------------------------
sof's avatar
sof committed
375
376
 * Function:  releaseCapability(Capability*)
 *
sof's avatar
sof committed
377
378
379
 * Purpose:   Letting go of a capability. Causes a
 *            'returning worker' thread or a 'waiting worker'
 *            to wake up, in that order.
380
381
 * ------------------------------------------------------------------------- */

382
#if defined(THREADED_RTS)
383
void
384
385
releaseCapability_ (Capability* cap, 
                    rtsBool always_wakeup)
386
{
387
388
389
390
    Task *task;

    task = cap->running_task;

391
    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
392
393

    cap->running_task = NULL;
394

395
396
    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
397
398
399
400
    if (cap->returning_tasks_hd != NULL) {
	giveCapabilityToTask(cap,cap->returning_tasks_hd);
	// The Task pops itself from the queue (see waitForReturnCapability())
	return;
401
    }
402

403
    if (waiting_for_gc == PENDING_GC_SEQ) {
404
      last_free_capability = cap; // needed?
Simon Marlow's avatar
Simon Marlow committed
405
      debugTrace(DEBUG_sched, "GC pending, set capability %d free", cap->no);
406
407
408
409
      return;
    } 


410
411
412
413
    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
	// Make sure we're not about to try to wake ourselves up
414
415
416
417
	// ASSERT(task != cap->run_queue_hd->bound);
        // assertion is false: in schedule() we force a yield after
	// ThreadBlocked, but the thread may be back on the run queue
	// by now.
418
	task = cap->run_queue_hd->bound->task;
419
420
	giveCapabilityToTask(cap,task);
	return;
421
    }
422

423
    if (!cap->spare_workers) {
424
425
426
427
	// Create a worker thread if we don't have one.  If the system
	// is interrupted, we only create a worker task if there
	// are threads that need to be completed.  If the system is
	// shutting down, we never create a new worker.
428
	if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
Simon Marlow's avatar
Simon Marlow committed
429
430
	    debugTrace(DEBUG_sched,
		       "starting new worker on capability %d", cap->no);
431
	    startWorkerTask(cap);
432
433
	    return;
	}
434
    }
435

436
437
    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
438
    if (always_wakeup || 
439
        !emptyRunQueue(cap) || !emptyInbox(cap) ||
440
        !emptySparkPoolCap(cap) || globalWorkToDo()) {
441
442
443
444
445
446
447
	if (cap->spare_workers) {
	    giveCapabilityToTask(cap,cap->spare_workers);
	    // The worker Task pops itself from the queue;
	    return;
	}
    }

448
    last_free_capability = cap;
Simon Marlow's avatar
Simon Marlow committed
449
    debugTrace(DEBUG_sched, "freeing capability %d", cap->no);
sof's avatar
sof committed
450
451
}

452
void
453
releaseCapability (Capability* cap USED_IF_THREADS)
454
455
{
    ACQUIRE_LOCK(&cap->lock);
456
457
458
459
460
461
462
463
464
    releaseCapability_(cap, rtsFalse);
    RELEASE_LOCK(&cap->lock);
}

void
releaseAndWakeupCapability (Capability* cap USED_IF_THREADS)
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap, rtsTrue);
465
466
467
468
    RELEASE_LOCK(&cap->lock);
}

static void
469
releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
470
471
472
473
474
475
476
{
    Task *task;

    ACQUIRE_LOCK(&cap->lock);

    task = cap->running_task;

477
478
479
480
    // If the Task is stopped, we shouldn't be yielding, we should
    // be just exiting.
    ASSERT(!task->stopped);

481
482
483
484
485
    // If the current task is a worker, save it on the spare_workers
    // list of this Capability.  A worker can mark itself as stopped,
    // in which case it is not replaced on the spare_worker queue.
    // This happens when the system is shutting down (see
    // Schedule.c:workerStart()).
486
    if (!isBoundTask(task))
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    {
        if (cap->n_spare_workers < MAX_SPARE_WORKERS)
        {
            task->next = cap->spare_workers;
            cap->spare_workers = task;
            cap->n_spare_workers++;
        }
        else
        {
            debugTrace(DEBUG_sched, "%d spare workers already, exiting",
                       cap->n_spare_workers);
            releaseCapability_(cap,rtsFalse);
            // hold the lock until after workerTaskStop; c.f. scheduleWorker()
            workerTaskStop(task);
            RELEASE_LOCK(&cap->lock);
            shutdownThread();
        }
504
505
506
    }
    // Bound tasks just float around attached to their TSOs.

507
    releaseCapability_(cap,rtsFalse);
508
509
510
511

    RELEASE_LOCK(&cap->lock);
}
#endif
sof's avatar
sof committed
512

513
/* ----------------------------------------------------------------------------
514
 * waitForReturnCapability( Task *task )
sof's avatar
sof committed
515
516
 *
 * Purpose:  when an OS thread returns from an external call,
517
518
 * it calls waitForReturnCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
sof's avatar
sof committed
519
 * result of the external call back to the Haskell thread that
sof's avatar
sof committed
520
521
 * made it.
 *
522
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
523
void
524
waitForReturnCapability (Capability **pCap, Task *task)
sof's avatar
sof committed
525
{
526
#if !defined(THREADED_RTS)
527

528
529
530
    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;
531

532
#else
533
534
535
536
537
    Capability *cap = *pCap;

    if (cap == NULL) {
	// Try last_free_capability first
	cap = last_free_capability;
538
	if (cap->running_task) {
539
540
	    nat i;
	    // otherwise, search for a free capability
541
            cap = NULL;
542
	    for (i = 0; i < n_capabilities; i++) {
543
544
		if (!capabilities[i].running_task) {
                    cap = &capabilities[i];
545
546
547
		    break;
		}
	    }
548
549
550
551
            if (cap == NULL) {
                // Can't find a free one, use last_free_capability.
                cap = last_free_capability;
            }
552
553
554
555
556
	}

	// record the Capability as the one this Task is now assocated with.
	task->cap = cap;

557
    } else {
558
	ASSERT(task->cap == cap);
559
560
    }

561
    ACQUIRE_LOCK(&cap->lock);
sof's avatar
sof committed
562

Simon Marlow's avatar
Simon Marlow committed
563
    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
sof's avatar
sof committed
564

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    if (!cap->running_task) {
	// It's free; just grab it
	cap->running_task = task;
	RELEASE_LOCK(&cap->lock);
    } else {
	newReturningTask(cap,task);
	RELEASE_LOCK(&cap->lock);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

	    // now check whether we should wake up...
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task == NULL) {
		if (cap->returning_tasks_hd != task) {
		    giveCapabilityToTask(cap,cap->returning_tasks_hd);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->running_task = task;
		popReturningTask(cap);
		RELEASE_LOCK(&cap->lock);
		break;
	    }
	    RELEASE_LOCK(&cap->lock);
	}

    }

599
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
600

Simon Marlow's avatar
Simon Marlow committed
601
    debugTrace(DEBUG_sched, "resuming capability %d", cap->no);
602
603
604
605
606
607

    *pCap = cap;
#endif
}

#if defined(THREADED_RTS)
608
/* ----------------------------------------------------------------------------
609
 * yieldCapability
610
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
611

sof's avatar
sof committed
612
void
613
yieldCapability (Capability** pCap, Task *task)
sof's avatar
sof committed
614
{
615
616
    Capability *cap = *pCap;

617
    if (waiting_for_gc == PENDING_GC_PAR) {
618
        traceEventGcStart(cap);
619
        gcWorkerThread(cap);
620
        traceEventGcEnd(cap);
621
622
623
        return;
    }

Simon Marlow's avatar
Simon Marlow committed
624
	debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
625
626

	// We must now release the capability and wait to be woken up
627
	// again.
628
	task->wakeup = rtsFalse;
629
630
631
632
633
634
635
636
637
638
	releaseCapabilityAndQueueWorker(cap);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

Simon Marlow's avatar
Simon Marlow committed
639
640
	    debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

641
642
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task != NULL) {
Simon Marlow's avatar
Simon Marlow committed
643
644
		debugTrace(DEBUG_sched, 
			   "capability %d is owned by another task", cap->no);
645
646
647
648
		RELEASE_LOCK(&cap->lock);
		continue;
	    }

649
	    if (task->incall->tso == NULL) {
650
651
652
653
654
655
656
657
658
659
		ASSERT(cap->spare_workers != NULL);
		// if we're not at the front of the queue, release it
		// again.  This is unlikely to happen.
		if (cap->spare_workers != task) {
		    giveCapabilityToTask(cap,cap->spare_workers);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->spare_workers = task->next;
		task->next = NULL;
660
661
                cap->n_spare_workers--;
            }
662
663
664
665
666
	    cap->running_task = task;
	    RELEASE_LOCK(&cap->lock);
	    break;
	}

Simon Marlow's avatar
Simon Marlow committed
667
	debugTrace(DEBUG_sched, "resuming capability %d", cap->no);
668
	ASSERT(cap->running_task == task);
669

670
    *pCap = cap;
671

672
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
673

674
    return;
sof's avatar
sof committed
675
676
}

677
/* ----------------------------------------------------------------------------
678
 * prodCapability
679
 *
680
681
 * If a Capability is currently idle, wake up a Task on it.  Used to 
 * get every Capability into the GC.
682
 * ------------------------------------------------------------------------- */
683

684
void
685
prodCapability (Capability *cap, Task *task)
686
{
687
688
689
690
691
692
    ACQUIRE_LOCK(&cap->lock);
    if (!cap->running_task) {
        cap->running_task = task;
        releaseCapability_(cap,rtsTrue);
    }
    RELEASE_LOCK(&cap->lock);
693
}
694

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
 *
 * ------------------------------------------------------------------------- */

rtsBool
tryGrabCapability (Capability *cap, Task *task)
{
    if (cap->running_task != NULL) return rtsFalse;
    ACQUIRE_LOCK(&cap->lock);
    if (cap->running_task != NULL) {
	RELEASE_LOCK(&cap->lock);
	return rtsFalse;
    }
    task->cap = cap;
    cap->running_task = task;
    RELEASE_LOCK(&cap->lock);
    return rtsTrue;
}


#endif /* THREADED_RTS */

720
721
722
723
724
725
726
727
728
729
730
731
/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
732
 *
733
 * ------------------------------------------------------------------------- */
734
735

void
736
737
738
shutdownCapability (Capability *cap,
                    Task *task USED_IF_THREADS,
                    rtsBool safe USED_IF_THREADS)
739
{
740
#if defined(THREADED_RTS)
741
742
743
744
    nat i;

    task->cap = cap;

745
746
747
748
749
750
751
    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
Simon Marlow's avatar
Simon Marlow committed
752
753
        ASSERT(sched_state == SCHED_SHUTTING_DOWN);

Simon Marlow's avatar
Simon Marlow committed
754
755
	debugTrace(DEBUG_sched, 
		   "shutting down capability %d, attempt %d", cap->no, i);
756
757
758
	ACQUIRE_LOCK(&cap->lock);
	if (cap->running_task) {
	    RELEASE_LOCK(&cap->lock);
Simon Marlow's avatar
Simon Marlow committed
759
	    debugTrace(DEBUG_sched, "not owner, yielding");
760
761
	    yieldThread();
	    continue;
762
	}
763
	cap->running_task = task;
Simon Marlow's avatar
Simon Marlow committed
764
765
766
767
768
769
770
771
772
773
774
775
776

        if (cap->spare_workers) {
            // Look for workers that have died without removing
            // themselves from the list; this could happen if the OS
            // summarily killed the thread, for example.  This
            // actually happens on Windows when the system is
            // terminating the program, and the RTS is running in a
            // DLL.
            Task *t, *prev;
            prev = NULL;
            for (t = cap->spare_workers; t != NULL; t = t->next) {
                if (!osThreadIsAlive(t->id)) {
                    debugTrace(DEBUG_sched, 
777
                               "worker thread %p has died unexpectedly", (void *)t->id);
778
779
780
781
782
783
784
                    cap->n_spare_workers--;
                    if (!prev) {
                        cap->spare_workers = t->next;
                    } else {
                        prev->next = t->next;
                    }
                    prev = t;
Simon Marlow's avatar
Simon Marlow committed
785
786
787
788
                }
            }
        }

789
	if (!emptyRunQueue(cap) || cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
790
791
	    debugTrace(DEBUG_sched, 
		       "runnable threads or workers still alive, yielding");
792
	    releaseCapability_(cap,rtsFalse); // this will wake up a worker
793
794
795
	    RELEASE_LOCK(&cap->lock);
	    yieldThread();
	    continue;
796
	}
797
798
799
800
801
802
803

        // If "safe", then busy-wait for any threads currently doing
        // foreign calls.  If we're about to unload this DLL, for
        // example, we need to be sure that there are no OS threads
        // that will try to return to code that has been unloaded.
        // We can be a bit more relaxed when this is a standalone
        // program that is about to terminate, and let safe=false.
804
        if (cap->suspended_ccalls && safe) {
805
806
807
808
	    debugTrace(DEBUG_sched, 
		       "thread(s) are involved in foreign calls, yielding");
            cap->running_task = NULL;
	    RELEASE_LOCK(&cap->lock);
809
810
811
812
813
814
815
816
            // The IO manager thread might have been slow to start up,
            // so the first attempt to kill it might not have
            // succeeded.  Just in case, try again - the kill message
            // will only be sent once.
            //
            // To reproduce this deadlock: run ffi002(threaded1)
            // repeatedly on a loaded machine.
            ioManagerDie();
817
818
819
            yieldThread();
            continue;
        }
820

821
        traceEventShutdown(cap);
822
823
	RELEASE_LOCK(&cap->lock);
	break;
824
    }
825
826
    // we now have the Capability, its run queue and spare workers
    // list are both empty.
827

828
829
830
831
    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to 
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
832
833
    
#endif /* THREADED_RTS */
834
835

    traceCapsetRemoveCap(CAPSET_OSPROCESS_DEFAULT, cap->no);
836
}
837

838
839
void
shutdownCapabilities(Task *task, rtsBool safe)
840
{
841
842
843
844
    nat i;
    for (i=0; i < n_capabilities; i++) {
        ASSERT(task->incall->tso == NULL);
        shutdownCapability(&capabilities[i], task, safe);
845
    }
846
    traceCapsetDelete(CAPSET_OSPROCESS_DEFAULT);
847
848
849
850

#if defined(THREADED_RTS)
    ASSERT(checkSparkCountInvariant());
#endif
851
852
}

853
854
855
static void
freeCapability (Capability *cap)
{
Ian Lynagh's avatar
Ian Lynagh committed
856
    stgFree(cap->mut_lists);
Simon Marlow's avatar
Simon Marlow committed
857
    stgFree(cap->saved_mut_lists);
Simon Marlow's avatar
Simon Marlow committed
858
#if defined(THREADED_RTS)
859
    freeSparkPool(cap->sparks);
Ian Lynagh's avatar
Ian Lynagh committed
860
861
#endif
}
862

863
864
865
866
867
868
869
870
871
872
873
874
875
void
freeCapabilities (void)
{
#if defined(THREADED_RTS)
    nat i;
    for (i=0; i < n_capabilities; i++) {
        freeCapability(&capabilities[i]);
    }
#else
    freeCapability(&MainCapability);
#endif
}

876
877
878
879
880
881
882
/* ---------------------------------------------------------------------------
   Mark everything directly reachable from the Capabilities.  When
   using multiple GC threads, each GC thread marks all Capabilities
   for which (c `mod` n == 0), for Capability c and thread n.
   ------------------------------------------------------------------------ */

void
Simon Marlow's avatar
Simon Marlow committed
883
884
markCapability (evac_fn evac, void *user, Capability *cap,
                rtsBool no_mark_sparks USED_IF_THREADS)
885
{
886
    InCall *incall;
887
888
889
890
891
892

    // Each GC thread is responsible for following roots from the
    // Capability of the same number.  There will usually be the same
    // or fewer Capabilities as GC threads, but just in case there
    // are more, we mark every Capability whose number is the GC
    // thread's index plus a multiple of the number of GC threads.
Simon Marlow's avatar
Simon Marlow committed
893
894
    evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
    evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
895
#if defined(THREADED_RTS)
Simon Marlow's avatar
Simon Marlow committed
896
    evac(user, (StgClosure **)(void *)&cap->inbox);
897
#endif
Simon Marlow's avatar
Simon Marlow committed
898
899
900
901
    for (incall = cap->suspended_ccalls; incall != NULL;
         incall=incall->next) {
        evac(user, (StgClosure **)(void *)&incall->suspended_tso);
    }
902
903

#if defined(THREADED_RTS)
Simon Marlow's avatar
Simon Marlow committed
904
905
    if (!no_mark_sparks) {
        traverseSparkQueue (evac, user, cap);
906
    }
Simon Marlow's avatar
Simon Marlow committed
907
#endif
908

Simon Marlow's avatar
Simon Marlow committed
909
910
    // Free STM structures for this Capability
    stmPreGCHook(cap);
911
912
913
914
915
}

void
markCapabilities (evac_fn evac, void *user)
{
Simon Marlow's avatar
Simon Marlow committed
916
917
918
919
    nat n;
    for (n = 0; n < n_capabilities; n++) {
        markCapability(evac, user, &capabilities[n], rtsFalse);
    }
920
}
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

#if defined(THREADED_RTS)
rtsBool checkSparkCountInvariant (void)
{
    SparkCounters sparks = { 0, 0, 0, 0, 0, 0 };
    StgWord64 remaining = 0;
    nat i;

    for (i = 0; i < n_capabilities; i++) {
        sparks.created   += capabilities[i].spark_stats.created;
        sparks.dud       += capabilities[i].spark_stats.dud;
        sparks.overflowed+= capabilities[i].spark_stats.overflowed;
        sparks.converted += capabilities[i].spark_stats.converted;
        sparks.gcd       += capabilities[i].spark_stats.gcd;
        sparks.fizzled   += capabilities[i].spark_stats.fizzled;
        remaining        += sparkPoolSize(capabilities[i].sparks);
    }
    
    /* The invariant is
     *   created = converted + remaining + gcd + fizzled
     */
    debugTrace(DEBUG_sparks,"spark invariant: %ld == %ld + %ld + %ld + %ld "
                            "(created == converted + remaining + gcd + fizzled)",
                            sparks.created, sparks.converted, remaining,
                            sparks.gcd, sparks.fizzled);

    return (sparks.created ==
              sparks.converted + remaining + sparks.gcd + sparks.fizzled);

}
#endif