Interpreter.c 43.6 KB
Newer Older
1
/* -----------------------------------------------------------------------------
2
 * Bytecode interpreter
3
 *
4
 * Copyright (c) The GHC Team, 1994-2002.
5 6
 * ---------------------------------------------------------------------------*/

7
#include "PosixSource.h"
8 9
#include "Rts.h"
#include "RtsAPI.h"
Simon Marlow's avatar
Simon Marlow committed
10 11 12 13
#include "rts/Bytecodes.h"

// internal headers
#include "sm/Storage.h"
Simon Marlow's avatar
Simon Marlow committed
14
#include "sm/Sanity.h"
15
#include "RtsUtils.h"
16 17
#include "Schedule.h"
#include "Updates.h"
18
#include "Prelude.h"
Simon Marlow's avatar
Simon Marlow committed
19
#include "Stable.h"
20 21
#include "Printer.h"
#include "Disassembler.h"
22
#include "Interpreter.h"
Simon Marlow's avatar
Simon Marlow committed
23
#include "ThreadPaused.h"
24
#include "Threads.h"
25

26 27 28 29 30
#include <string.h>     /* for memcpy */
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif

31 32 33 34 35 36 37
// When building the RTS in the non-dyn way on Windows, we don't
//	want declspec(__dllimport__) on the front of function prototypes
//	from libffi.
#if defined(mingw32_HOST_OS) && !defined(__PIC__)
# define LIBFFI_NOT_DLL
#endif

38
#include "ffi.h"
39

40
/* --------------------------------------------------------------------------
41
 * The bytecode interpreter
42 43
 * ------------------------------------------------------------------------*/

44 45 46 47 48 49
/* Gather stats about entry, opcode, opcode-pair frequencies.  For
   tuning the interpreter. */

/* #define INTERP_STATS */


50
/* Sp points to the lowest live word on the stack. */
51

52
#define BCO_NEXT      instrs[bciPtr++]
53 54 55 56 57 58 59
#define BCO_NEXT_32   (bciPtr += 2, (((StgWord) instrs[bciPtr-2]) << 16) + ((StgWord) instrs[bciPtr-1]))
#define BCO_NEXT_64   (bciPtr += 4, (((StgWord) instrs[bciPtr-4]) << 48) + (((StgWord) instrs[bciPtr-3]) << 32) + (((StgWord) instrs[bciPtr-2]) << 16) + ((StgWord) instrs[bciPtr-1]))
#if WORD_SIZE_IN_BITS == 32
#define BCO_NEXT_WORD BCO_NEXT_32
#elif WORD_SIZE_IN_BITS == 64
#define BCO_NEXT_WORD BCO_NEXT_64
#else
Ian Lynagh's avatar
Ian Lynagh committed
60
#error Cannot cope with WORD_SIZE_IN_BITS being nether 32 nor 64
61 62 63
#endif
#define BCO_GET_LARGE_ARG ((bci & bci_FLAG_LARGE_ARGS) ? BCO_NEXT_WORD : BCO_NEXT)

64
#define BCO_PTR(n)    (W_)ptrs[n]
65
#define BCO_LIT(n)    literals[n]
66

67 68 69 70
#define LOAD_STACK_POINTERS					\
    Sp = cap->r.rCurrentTSO->sp;				\
    /* We don't change this ... */				\
    SpLim = cap->r.rCurrentTSO->stack + RESERVED_STACK_WORDS;
71

72
#define SAVE_STACK_POINTERS			\
73
    ASSERT(Sp > SpLim); \
74
    cap->r.rCurrentTSO->sp = Sp
75

76
#define RETURN_TO_SCHEDULER(todo,retcode)	\
77 78
   SAVE_STACK_POINTERS;				\
   cap->r.rCurrentTSO->what_next = (todo);	\
79
   threadPaused(cap,cap->r.rCurrentTSO);		\
80 81
   cap->r.rRet = (retcode);			\
   return cap;
82 83

#define RETURN_TO_SCHEDULER_NO_PAUSE(todo,retcode)	\
84 85 86 87
   SAVE_STACK_POINTERS;					\
   cap->r.rCurrentTSO->what_next = (todo);		\
   cap->r.rRet = (retcode);				\
   return cap;
88 89


sof's avatar
sof committed
90
STATIC_INLINE StgPtr
91
allocate_NONUPD (Capability *cap, int n_words)
92
{
93
    return allocate(cap, stg_max(sizeofW(StgHeader)+MIN_PAYLOAD_SIZE, n_words));
94 95
}

96 97
int rts_stop_next_breakpoint = 0;
int rts_stop_on_exception = 0;
98

99
#ifdef INTERP_STATS
100

101 102 103 104 105 106 107 108 109 110 111 112 113
/* Hacky stats, for tuning the interpreter ... */
int it_unknown_entries[N_CLOSURE_TYPES];
int it_total_unknown_entries;
int it_total_entries;

int it_retto_BCO;
int it_retto_UPDATE;
int it_retto_other;

int it_slides;
int it_insns;
int it_BCO_entries;

114 115
int it_ofreq[27];
int it_oofreq[27][27];
116 117
int it_lastopc;

118

119 120
#define INTERP_TICK(n) (n)++

121 122 123 124 125 126 127 128
void interp_startup ( void )
{
   int i, j;
   it_retto_BCO = it_retto_UPDATE = it_retto_other = 0;
   it_total_entries = it_total_unknown_entries = 0;
   for (i = 0; i < N_CLOSURE_TYPES; i++)
      it_unknown_entries[i] = 0;
   it_slides = it_insns = it_BCO_entries = 0;
129 130 131
   for (i = 0; i < 27; i++) it_ofreq[i] = 0;
   for (i = 0; i < 27; i++) 
     for (j = 0; j < 27; j++)
132 133 134 135 136 137 138
        it_oofreq[i][j] = 0;
   it_lastopc = 0;
}

void interp_shutdown ( void )
{
   int i, j, k, o_max, i_max, j_max;
139
   debugBelch("%d constrs entered -> (%d BCO, %d UPD, %d ??? )\n",
140 141
                   it_retto_BCO + it_retto_UPDATE + it_retto_other,
                   it_retto_BCO, it_retto_UPDATE, it_retto_other );
142
   debugBelch("%d total entries, %d unknown entries \n", 
143 144 145
                   it_total_entries, it_total_unknown_entries);
   for (i = 0; i < N_CLOSURE_TYPES; i++) {
     if (it_unknown_entries[i] == 0) continue;
146
     debugBelch("   type %2d: unknown entries (%4.1f%%) == %d\n",
147 148 149 150
	     i, 100.0 * ((double)it_unknown_entries[i]) / 
                        ((double)it_total_unknown_entries),
             it_unknown_entries[i]);
   }
151
   debugBelch("%d insns, %d slides, %d BCO_entries\n", 
152
                   it_insns, it_slides, it_BCO_entries);
153
   for (i = 0; i < 27; i++) 
154
      debugBelch("opcode %2d got %d\n", i, it_ofreq[i] );
155 156 157 158

   for (k = 1; k < 20; k++) {
      o_max = 0;
      i_max = j_max = 0;
159 160
      for (i = 0; i < 27; i++) {
         for (j = 0; j < 27; j++) {
161 162 163 164 165 166 167
	    if (it_oofreq[i][j] > o_max) {
               o_max = it_oofreq[i][j];
	       i_max = i; j_max = j;
	    }
	 }
      }
      
168
      debugBelch("%d:  count (%4.1f%%) %6d   is %d then %d\n",
169 170 171 172 173 174 175
                k, ((double)o_max) * 100.0 / ((double)it_insns), o_max,
                   i_max, j_max );
      it_oofreq[i_max][j_max] = 0;

   }
}

176 177 178 179 180
#else // !INTERP_STATS

#define INTERP_TICK(n) /* nothing */

#endif
181

182 183 184 185 186 187 188 189 190
static StgWord app_ptrs_itbl[] = {
    (W_)&stg_ap_p_info,
    (W_)&stg_ap_pp_info,
    (W_)&stg_ap_ppp_info,
    (W_)&stg_ap_pppp_info,
    (W_)&stg_ap_ppppp_info,
    (W_)&stg_ap_pppppp_info,
};

191
HsStablePtr rts_breakpoint_io_action; // points to the IO action which is executed on a breakpoint
192 193
                                // it is set in main/GHC.hs:runStmt

194
Capability *
195
interpretBCO (Capability* cap)
196
{
197 198 199 200
    // Use of register here is primarily to make it clear to compilers
    // that these entities are non-aliasable.
    register StgPtr       Sp;    // local state -- stack pointer
    register StgPtr       SpLim; // local state -- stack lim pointer
201
    register StgClosure   *tagged_obj = 0, *obj;
202
    nat n, m;
203

204 205
    LOAD_STACK_POINTERS;

206 207 208
    cap->r.rHpLim = (P_)1; // HpLim is the context-switch flag; when it
                           // goes to zero we must return to the scheduler.

209 210 211 212 213 214 215 216 217 218 219
    // ------------------------------------------------------------------------
    // Case 1:
    // 
    //       We have a closure to evaluate.  Stack looks like:
    //       
    //      	|   XXXX_info   |
    //      	+---------------+
    //       Sp |      -------------------> closure
    //      	+---------------+
    //       
    if (Sp[0] == (W_)&stg_enter_info) {
220 221
       Sp++;
       goto eval;
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    }

    // ------------------------------------------------------------------------
    // Case 2:
    // 
    //       We have a BCO application to perform.  Stack looks like:
    //
    //      	|     ....      |
    //      	+---------------+
    //      	|     arg1      |
    //      	+---------------+
    //      	|     BCO       |
    //      	+---------------+
    //       Sp |   RET_BCO     |
    //      	+---------------+
    //       
    else if (Sp[0] == (W_)&stg_apply_interp_info) {
Simon Marlow's avatar
Simon Marlow committed
239
	obj = UNTAG_CLOSURE((StgClosure *)Sp[1]);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	Sp += 2;
	goto run_BCO_fun;
    }

    // ------------------------------------------------------------------------
    // Case 3:
    //
    //       We have an unboxed value to return.  See comment before
    //       do_return_unboxed, below.
    //
    else {
	goto do_return_unboxed;
    }

    // Evaluate the object on top of the stack.
eval:
256
    tagged_obj = (StgClosure*)Sp[0]; Sp++;
257 258

eval_obj:
259
    obj = UNTAG_CLOSURE(tagged_obj);
260 261 262
    INTERP_TICK(it_total_evals);

    IF_DEBUG(interpreter,
263
             debugBelch(
264
             "\n---------------------------------------------------------------\n");
265 266 267
             debugBelch("Evaluating: "); printObj(obj);
             debugBelch("Sp = %p\n", Sp);
             debugBelch("\n" );
268

269
             printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
270
             debugBelch("\n\n");
271
            );
272

273 274
//    IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));
    IF_DEBUG(sanity,checkStackFrame(Sp));
275

276
    switch ( get_itbl(obj)->type ) {
277

278 279 280 281 282 283
    case IND:
    case IND_OLDGEN:
    case IND_PERM:
    case IND_OLDGEN_PERM:
    case IND_STATIC:
    { 
284
	tagged_obj = ((StgInd*)obj)->indirectee;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	goto eval_obj;
    }
    
    case CONSTR:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_2_0:
    case CONSTR_1_1:
    case CONSTR_0_2:
    case CONSTR_STATIC:
    case CONSTR_NOCAF_STATIC:
    case FUN:
    case FUN_1_0:
    case FUN_0_1:
    case FUN_2_0:
    case FUN_1_1:
    case FUN_0_2:
    case FUN_STATIC:
    case PAP:
	// already in WHNF
	break;
	
    case BCO:
308
    {
309
	ASSERT(((StgBCO *)obj)->arity > 0);
310
	break;
311
    }
312 313 314 315 316 317 318 319 320 321 322 323

    case AP:	/* Copied from stg_AP_entry. */
    {
	nat i, words;
	StgAP *ap;
	
	ap = (StgAP*)obj;
	words = ap->n_args;
	
	// Stack check
	if (Sp - (words+sizeofW(StgUpdateFrame)) < SpLim) {
	    Sp -= 2;
324
	    Sp[1] = (W_)tagged_obj;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	    Sp[0] = (W_)&stg_enter_info;
	    RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
	}
	
	/* Ok; we're safe.  Party on.  Push an update frame. */
	Sp -= sizeofW(StgUpdateFrame);
	{
	    StgUpdateFrame *__frame;
	    __frame = (StgUpdateFrame *)Sp;
	    SET_INFO(__frame, (StgInfoTable *)&stg_upd_frame_info);
	    __frame->updatee = (StgClosure *)(ap);
	}
	
	/* Reload the stack */
	Sp -= words;
	for (i=0; i < words; i++) {
	    Sp[i] = (W_)ap->payload[i];
	}

Simon Marlow's avatar
Simon Marlow committed
344
	obj = UNTAG_CLOSURE((StgClosure*)ap->fun);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	ASSERT(get_itbl(obj)->type == BCO);
	goto run_BCO_fun;
    }

    default:
#ifdef INTERP_STATS
    { 
	int j;
	
	j = get_itbl(obj)->type;
	ASSERT(j >= 0 && j < N_CLOSURE_TYPES);
	it_unknown_entries[j]++;
	it_total_unknown_entries++;
    }
#endif
    {
	// Can't handle this object; yield to scheduler
	IF_DEBUG(interpreter,
363
		 debugBelch("evaluating unknown closure -- yielding to sched\n"); 
364 365 366
		 printObj(obj);
	    );
	Sp -= 2;
367
	Sp[1] = (W_)tagged_obj;
368
	Sp[0] = (W_)&stg_enter_info;
369
	RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
370 371 372 373
    }
    }

    // ------------------------------------------------------------------------
374
    // We now have an evaluated object (tagged_obj).  The next thing to
375 376
    // do is return it to the stack frame on top of the stack.
do_return:
377
    obj = UNTAG_CLOSURE(tagged_obj);
378 379 380
    ASSERT(closure_HNF(obj));

    IF_DEBUG(interpreter,
381
             debugBelch(
382
             "\n---------------------------------------------------------------\n");
383 384 385
             debugBelch("Returning: "); printObj(obj);
             debugBelch("Sp = %p\n", Sp);
             debugBelch("\n" );
386
             printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
387
             debugBelch("\n\n");
388
            );
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));

    switch (get_itbl((StgClosure *)Sp)->type) {

    case RET_SMALL: {
	const StgInfoTable *info;

	// NOTE: not using get_itbl().
	info = ((StgClosure *)Sp)->header.info;
	if (info == (StgInfoTable *)&stg_ap_v_info) {
	    n = 1; m = 0; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_f_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_d_info) {
	    n = 1; m = sizeofW(StgDouble); goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_l_info) {
	    n = 1; m = sizeofW(StgInt64); goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_n_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_p_info) {
	    n = 1; m = 1; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pp_info) {
	    n = 2; m = 2; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_ppp_info) {
	    n = 3; m = 3; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pppp_info) {
	    n = 4; m = 4; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_ppppp_info) {
	    n = 5; m = 5; goto do_apply;
	}
	if (info == (StgInfoTable *)&stg_ap_pppppp_info) {
	    n = 6; m = 6; goto do_apply;
	}
	goto do_return_unrecognised;
    }

    case UPDATE_FRAME:
	// Returning to an update frame: do the update, pop the update
	// frame, and continue with the next stack frame.
438 439 440 441 442 443 444 445
        //
        // NB. we must update with the *tagged* pointer.  Some tags
        // are not optional, and if we omit the tag bits when updating
        // then bad things can happen (albeit very rarely).  See #1925.
        // What happened was an indirection was created with an
        // untagged pointer, and this untagged pointer was propagated
        // to a PAP by the GC, violating the invariant that PAPs
        // always contain a tagged pointer to the function.
446
	INTERP_TICK(it_retto_UPDATE);
447 448
        updateThunk(cap, cap->r.rCurrentTSO, 
                    ((StgUpdateFrame *)Sp)->updatee, tagged_obj);
449 450 451 452 453 454 455 456 457
	Sp += sizeofW(StgUpdateFrame);
	goto do_return;

    case RET_BCO:
	// Returning to an interpreted continuation: put the object on
	// the stack, and start executing the BCO.
	INTERP_TICK(it_retto_BCO);
	Sp--;
	Sp[0] = (W_)obj;
458 459
        // NB. return the untagged object; the bytecode expects it to
        // be untagged.  XXX this doesn't seem right.
460 461 462 463 464 465 466 467 468 469
	obj = (StgClosure*)Sp[2];
	ASSERT(get_itbl(obj)->type == BCO);
	goto run_BCO_return;

    default:
    do_return_unrecognised:
    {
	// Can't handle this return address; yield to scheduler
	INTERP_TICK(it_retto_other);
	IF_DEBUG(interpreter,
470
		 debugBelch("returning to unknown frame -- yielding to sched\n"); 
471 472 473
		 printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
	    );
	Sp -= 2;
474
	Sp[1] = (W_)tagged_obj;
475
	Sp[0] = (W_)&stg_enter_info;
476
	RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    }
    }

    // -------------------------------------------------------------------------
    // Returning an unboxed value.  The stack looks like this:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     fv2       |
    // 	  +---------------+
    // 	  |     fv1       |
    // 	  +---------------+
    // 	  |     BCO       |
    // 	  +---------------+
    // 	  | stg_ctoi_ret_ |
    // 	  +---------------+
    // 	  |    retval     |
    // 	  +---------------+
    // 	  |   XXXX_info   |
    // 	  +---------------+
    //
    // where XXXX_info is one of the stg_gc_unbx_r1_info family.
    //
    // We're only interested in the case when the real return address
    // is a BCO; otherwise we'll return to the scheduler.

do_return_unboxed:
    { 
	int offset;
	
	ASSERT( Sp[0] == (W_)&stg_gc_unbx_r1_info
		|| Sp[0] == (W_)&stg_gc_unpt_r1_info
		|| Sp[0] == (W_)&stg_gc_f1_info
		|| Sp[0] == (W_)&stg_gc_d1_info
		|| Sp[0] == (W_)&stg_gc_l1_info
		|| Sp[0] == (W_)&stg_gc_void_info // VoidRep
	    );

	// get the offset of the stg_ctoi_ret_XXX itbl
	offset = stack_frame_sizeW((StgClosure *)Sp);

	switch (get_itbl((StgClosure *)Sp+offset)->type) {

	case RET_BCO:
	    // Returning to an interpreted continuation: put the object on
	    // the stack, and start executing the BCO.
	    INTERP_TICK(it_retto_BCO);
	    obj = (StgClosure*)Sp[offset+1];
	    ASSERT(get_itbl(obj)->type == BCO);
	    goto run_BCO_return_unboxed;

	default:
	{
	    // Can't handle this return address; yield to scheduler
	    INTERP_TICK(it_retto_other);
	    IF_DEBUG(interpreter,
533
		     debugBelch("returning to unknown frame -- yielding to sched\n"); 
534 535
		     printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
		);
536
	    RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
537 538 539 540 541 542 543 544 545 546
	}
	}
    }
    // not reached.


    // -------------------------------------------------------------------------
    // Application...

do_apply:
547
    ASSERT(obj == UNTAG_CLOSURE(tagged_obj));
548 549 550 551 552 553 554 555
    // we have a function to apply (obj), and n arguments taking up m
    // words on the stack.  The info table (stg_ap_pp_info or whatever)
    // is on top of the arguments on the stack.
    {
	switch (get_itbl(obj)->type) {

	case PAP: {
	    StgPAP *pap;
556
	    nat i, arity;
557 558 559 560

	    pap = (StgPAP *)obj;

	    // we only cope with PAPs whose function is a BCO
Simon Marlow's avatar
Simon Marlow committed
561
	    if (get_itbl(UNTAG_CLOSURE(pap->fun))->type != BCO) {
562 563
		goto defer_apply_to_sched;
	    }
564

565 566 567 568 569 570 571 572 573 574
            // Stack check: we're about to unpack the PAP onto the
            // stack.  The (+1) is for the (arity < n) case, where we
            // also need space for an extra info pointer.
            if (Sp - (pap->n_args + 1) < SpLim) {
                Sp -= 2;
                Sp[1] = (W_)tagged_obj;
                Sp[0] = (W_)&stg_enter_info;
                RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
            }

575 576 577 578 579 580 581 582 583 584 585
	    Sp++;
	    arity = pap->arity;
	    ASSERT(arity > 0);
	    if (arity < n) {
		// n must be greater than 1, and the only kinds of
		// application we support with more than one argument
		// are all pointers...
		//
		// Shuffle the args for this function down, and put
		// the appropriate info table in the gap.
		for (i = 0; i < arity; i++) {
586 587
		    Sp[(int)i-1] = Sp[i];
		    // ^^^^^ careful, i-1 might be negative, but i in unsigned
588 589 590 591 592 593 594 595
		}
		Sp[arity-1] = app_ptrs_itbl[n-arity-1];
		Sp--;
		// unpack the PAP's arguments onto the stack
		Sp -= pap->n_args;
		for (i = 0; i < pap->n_args; i++) {
		    Sp[i] = (W_)pap->payload[i];
		}
Simon Marlow's avatar
Simon Marlow committed
596
		obj = UNTAG_CLOSURE(pap->fun);
597 598 599 600 601 602 603
		goto run_BCO_fun;
	    } 
	    else if (arity == n) {
		Sp -= pap->n_args;
		for (i = 0; i < pap->n_args; i++) {
		    Sp[i] = (W_)pap->payload[i];
		}
Simon Marlow's avatar
Simon Marlow committed
604
		obj = UNTAG_CLOSURE(pap->fun);
605 606 607 608 609
		goto run_BCO_fun;
	    } 
	    else /* arity > n */ {
		// build a new PAP and return it.
		StgPAP *new_pap;
610
		new_pap = (StgPAP *)allocate(cap, PAP_sizeW(pap->n_args + m));
611 612 613 614 615 616 617 618 619 620
		SET_HDR(new_pap,&stg_PAP_info,CCCS);
		new_pap->arity = pap->arity - n;
		new_pap->n_args = pap->n_args + m;
		new_pap->fun = pap->fun;
		for (i = 0; i < pap->n_args; i++) {
		    new_pap->payload[i] = pap->payload[i];
		}
		for (i = 0; i < m; i++) {
		    new_pap->payload[pap->n_args + i] = (StgClosure *)Sp[i];
		}
621
		tagged_obj = (StgClosure *)new_pap;
622 623 624 625 626 627
		Sp += m;
		goto do_return;
	    }
	}	    

	case BCO: {
628
	    nat arity, i;
629 630

	    Sp++;
631
	    arity = ((StgBCO *)obj)->arity;
632 633 634 635 636 637 638 639 640
	    ASSERT(arity > 0);
	    if (arity < n) {
		// n must be greater than 1, and the only kinds of
		// application we support with more than one argument
		// are all pointers...
		//
		// Shuffle the args for this function down, and put
		// the appropriate info table in the gap.
		for (i = 0; i < arity; i++) {
641 642
		    Sp[(int)i-1] = Sp[i];
		    // ^^^^^ careful, i-1 might be negative, but i in unsigned
643 644 645 646 647 648 649 650 651 652 653
		}
		Sp[arity-1] = app_ptrs_itbl[n-arity-1];
		Sp--;
		goto run_BCO_fun;
	    } 
	    else if (arity == n) {
		goto run_BCO_fun;
	    }
	    else /* arity > n */ {
		// build a PAP and return it.
		StgPAP *pap;
654
		nat i;
655
		pap = (StgPAP *)allocate(cap, PAP_sizeW(m));
656 657 658 659 660 661 662
		SET_HDR(pap, &stg_PAP_info,CCCS);
		pap->arity = arity - n;
		pap->fun = obj;
		pap->n_args = m;
		for (i = 0; i < m; i++) {
		    pap->payload[i] = (StgClosure *)Sp[i];
		}
663
		tagged_obj = (StgClosure *)pap;
664 665 666 667 668 669 670 671 672
		Sp += m;
		goto do_return;
	    }
	}

	// No point in us applying machine-code functions
	default:
	defer_apply_to_sched:
	    Sp -= 2;
673
	    Sp[1] = (W_)tagged_obj;
674
	    Sp[0] = (W_)&stg_enter_info;
675
	    RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    }

    // ------------------------------------------------------------------------
    // Ok, we now have a bco (obj), and its arguments are all on the
    // stack.  We can start executing the byte codes.
    //
    // The stack is in one of two states.  First, if this BCO is a
    // function:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     arg2      |
    // 	  +---------------+
    // 	  |     arg1      |
    // 	  +---------------+
    //
    // Second, if this BCO is a continuation:
    //
    // 	  |     ....      |
    // 	  +---------------+
    // 	  |     fv2       |
    // 	  +---------------+
    // 	  |     fv1       |
    // 	  +---------------+
    // 	  |     BCO       |
    // 	  +---------------+
    // 	  | stg_ctoi_ret_ |
    // 	  +---------------+
    // 	  |    retval     |
    // 	  +---------------+
    // 
    // where retval is the value being returned to this continuation.
    // In the event of a stack check, heap check, or context switch,
    // we need to leave the stack in a sane state so the garbage
    // collector can find all the pointers.
    //
    //  (1) BCO is a function:  the BCO's bitmap describes the
    //      pointerhood of the arguments.
    //
    //  (2) BCO is a continuation: BCO's bitmap describes the
    //      pointerhood of the free variables.
    //
    // Sadly we have three different kinds of stack/heap/cswitch check
    // to do:

721

722 723
run_BCO_return:
    // Heap check
724
    if (doYouWantToGC(cap)) {
725 726 727
	Sp--; Sp[0] = (W_)&stg_enter_info;
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
728 729
    // Stack checks aren't necessary at return points, the stack use
    // is aggregated into the enclosing function entry point.
730

731 732 733 734
    goto run_BCO;
    
run_BCO_return_unboxed:
    // Heap check
735
    if (doYouWantToGC(cap)) {
736 737
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
738 739
    // Stack checks aren't necessary at return points, the stack use
    // is aggregated into the enclosing function entry point.
740

741 742 743 744 745 746 747 748 749 750 751 752
    goto run_BCO;
    
run_BCO_fun:
    IF_DEBUG(sanity,
	     Sp -= 2; 
	     Sp[1] = (W_)obj; 
	     Sp[0] = (W_)&stg_apply_interp_info;
	     checkStackChunk(Sp,SpLim);
	     Sp += 2;
	);

    // Heap check
753
    if (doYouWantToGC(cap)) {
754 755 756 757 758 759
	Sp -= 2; 
	Sp[1] = (W_)obj; 
	Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
	RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
    }
    
760 761
    // Stack check
    if (Sp - INTERP_STACK_CHECK_THRESH < SpLim) {
762 763 764 765 766
	Sp -= 2; 
	Sp[1] = (W_)obj; 
	Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
	RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
    }
767

768 769 770 771 772 773 774
    goto run_BCO;
    
    // Now, actually interpret the BCO... (no returning to the
    // scheduler again until the stack is in an orderly state).
run_BCO:
    INTERP_TICK(it_BCO_entries);
    {
775
	register int       bciPtr = 0; /* instruction pointer */
776
        register StgWord16 bci;
777
	register StgBCO*   bco        = (StgBCO*)obj;
778
	register StgWord16* instrs    = (StgWord16*)(bco->instrs->payload);
779 780
	register StgWord*  literals   = (StgWord*)(&bco->literals->payload[0]);
	register StgPtr*   ptrs       = (StgPtr*)(&bco->ptrs->payload[0]);
781 782 783
	int bcoSize;
    bcoSize = BCO_NEXT_WORD;
	IF_DEBUG(interpreter,debugBelch("bcoSize = %d\n", bcoSize));
784

785 786 787
#ifdef INTERP_STATS
	it_lastopc = 0; /* no opcode */
#endif
788

789
    nextInsn:
790
	ASSERT(bciPtr < bcoSize);
791 792
	IF_DEBUG(interpreter,
		 //if (do_print_stack) {
793
		 //debugBelch("\n-- BEGIN stack\n");
794
		 //printStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
795
		 //debugBelch("-- END stack\n\n");
796
		 //}
797
		 debugBelch("Sp = %p   pc = %d      ", Sp, bciPtr);
798 799
		 disInstr(bco,bciPtr);
		 if (0) { int i;
800
		 debugBelch("\n");
801
		 for (i = 8; i >= 0; i--) {
802
		     debugBelch("%d  %p\n", i, (StgPtr)(*(Sp+i)));
803
		 }
804
		 debugBelch("\n");
805
		 }
806 807
		 //if (do_print_stack) checkStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
	    );
808

809

810 811 812 813 814 815 816 817 818
	INTERP_TICK(it_insns);

#ifdef INTERP_STATS
	ASSERT( (int)instrs[bciPtr] >= 0 && (int)instrs[bciPtr] < 27 );
	it_ofreq[ (int)instrs[bciPtr] ] ++;
	it_oofreq[ it_lastopc ][ (int)instrs[bciPtr] ] ++;
	it_lastopc = (int)instrs[bciPtr];
#endif

819 820 821 822 823 824
	bci = BCO_NEXT;
    /* We use the high 8 bits for flags, only the highest of which is
     * currently allocated */
    ASSERT((bci & 0xFF00) == (bci & 0x8000));

    switch (bci & 0xFF) {
825

826 827 828 829 830
        /* check for a breakpoint on the beginning of a let binding */
        case bci_BRK_FUN: 
        {
            int arg1_brk_array, arg2_array_index, arg3_freeVars;
            StgArrWords *breakPoints;
831 832
            int returning_from_break;     // are we resuming execution from a breakpoint?
                                          //  if yes, then don't break this time around
833 834 835 836 837 838
            StgClosure *ioAction;         // the io action to run at a breakpoint

            StgAP_STACK *new_aps;         // a closure to save the top stack frame on the heap
            int i;
            int size_words;

839 840 841
            arg1_brk_array      = BCO_NEXT;  // 1st arg of break instruction
            arg2_array_index    = BCO_NEXT;  // 2nd arg of break instruction
            arg3_freeVars       = BCO_NEXT;  // 3rd arg of break instruction
842

843 844
            // check if we are returning from a breakpoint - this info
            // is stored in the flags field of the current TSO
845 846
            returning_from_break = cap->r.rCurrentTSO->flags & TSO_STOPPED_ON_BREAKPOINT; 

847 848
            // if we are returning from a break then skip this section
            // and continue executing
849 850 851 852
            if (!returning_from_break)
            {
               breakPoints = (StgArrWords *) BCO_PTR(arg1_brk_array);

853
               // stop the current thread if either the
854
               // "rts_stop_next_breakpoint" flag is true OR if the
855 856
               // breakpoint flag for this particular expression is
               // true
857
               if (rts_stop_next_breakpoint == rtsTrue || 
858
                   breakPoints->payload[arg2_array_index] == rtsTrue)
859
               {
860 861
                  // make sure we don't automatically stop at the
                  // next breakpoint
862
                  rts_stop_next_breakpoint = rtsFalse;
863 864 865 866 867

                  // allocate memory for a new AP_STACK, enough to
                  // store the top stack frame plus an
                  // stg_apply_interp_info pointer and a pointer to
                  // the BCO
868
                  size_words = BCO_BITMAP_SIZE(obj) + 2;
869
                  new_aps = (StgAP_STACK *) allocate(cap, AP_STACK_sizeW(size_words));
870 871 872 873 874
                  SET_HDR(new_aps,&stg_AP_STACK_info,CCS_SYSTEM); 
                  new_aps->size = size_words;
                  new_aps->fun = &stg_dummy_ret_closure; 

                  // fill in the payload of the AP_STACK 
875 876
                  new_aps->payload[0] = (StgClosure *)&stg_apply_interp_info;
                  new_aps->payload[1] = (StgClosure *)obj;
877 878 879 880

                  // copy the contents of the top stack frame into the AP_STACK
                  for (i = 2; i < size_words; i++)
                  {
881
                     new_aps->payload[i] = (StgClosure *)Sp[i-2];
882 883
                  }

884
                  // prepare the stack so that we can call the
885
                  // rts_breakpoint_io_action and ensure that the stack is
886 887
                  // in a reasonable state for the GC and so that
                  // execution of this BCO can continue when we resume
888
                  ioAction = (StgClosure *) deRefStablePtr (rts_breakpoint_io_action);
889 890 891 892
                  Sp -= 9;
                  Sp[8] = (W_)obj;   
                  Sp[7] = (W_)&stg_apply_interp_info;
                  Sp[6] = (W_)&stg_noforceIO_info;     // see [unreg] below
893 894 895 896
                  Sp[5] = (W_)new_aps;                 // the AP_STACK
                  Sp[4] = (W_)BCO_PTR(arg3_freeVars);  // the info about local vars of the breakpoint
                  Sp[3] = (W_)False_closure;            // True <=> a breakpoint
                  Sp[2] = (W_)&stg_ap_pppv_info;
897 898
                  Sp[1] = (W_)ioAction;                // apply the IO action to its two arguments above
                  Sp[0] = (W_)&stg_enter_info;         // get ready to run the IO action
899 900 901 902
                  // Note [unreg]: in unregisterised mode, the return
                  // convention for IO is different.  The
                  // stg_noForceIO_info stack frame is necessary to
                  // account for this difference.
903

904 905 906 907
                  // set the flag in the TSO to say that we are now
                  // stopping at a breakpoint so that when we resume
                  // we don't stop on the same breakpoint that we
                  // already stopped at just now
908 909
                  cap->r.rCurrentTSO->flags |= TSO_STOPPED_ON_BREAKPOINT;

910 911 912
                  // stop this thread and return to the scheduler -
                  // eventually we will come back and the IO action on
                  // the top of the stack will be executed
913 914 915 916 917 918 919 920 921 922
                  RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
               }
            }
            // record that this thread is not stopped at a breakpoint anymore
            cap->r.rCurrentTSO->flags &= ~TSO_STOPPED_ON_BREAKPOINT;

            // continue normal execution of the byte code instructions
	    goto nextInsn;
        }

923 924 925 926
	case bci_STKCHECK: {
	    // Explicit stack check at the beginning of a function
	    // *only* (stack checks in case alternatives are
	    // propagated to the enclosing function).
927
	    StgWord stk_words_reqd = BCO_GET_LARGE_ARG + 1;
928
	    if (Sp - stk_words_reqd < SpLim) {
929 930 931
		Sp -= 2; 
		Sp[1] = (W_)obj; 
		Sp[0] = (W_)&stg_apply_interp_info;
932
		RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
933 934
	    } else {
		goto nextInsn;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	    }
	}

	case bci_PUSH_L: {
	    int o1 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp--;
	    goto nextInsn;
	}

	case bci_PUSH_LL: {
	    int o1 = BCO_NEXT;
	    int o2 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp[-2] = Sp[o2];
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_LLL: {
	    int o1 = BCO_NEXT;
	    int o2 = BCO_NEXT;
	    int o3 = BCO_NEXT;
	    Sp[-1] = Sp[o1];
	    Sp[-2] = Sp[o2];
	    Sp[-3] = Sp[o3];
	    Sp -= 3;
	    goto nextInsn;
	}

	case bci_PUSH_G: {
	    int o1 = BCO_NEXT;
	    Sp[-1] = BCO_PTR(o1);
	    Sp -= 1;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS: {
	    int o_bco  = BCO_NEXT;
974
	    Sp[-2] = (W_)&stg_ctoi_R1p_info;
975 976 977 978 979 980 981
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_P: {
	    int o_bco  = BCO_NEXT;
982
	    Sp[-2] = (W_)&stg_ctoi_R1unpt_info;
983 984 985 986 987 988 989
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_N: {
	    int o_bco  = BCO_NEXT;
990
	    Sp[-2] = (W_)&stg_ctoi_R1n_info;
991 992 993 994 995 996 997
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_F: {
	    int o_bco  = BCO_NEXT;
998
	    Sp[-2] = (W_)&stg_ctoi_F1_info;
999 1000 1001 1002 1003 1004 1005
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_D: {
	    int o_bco  = BCO_NEXT;
1006
	    Sp[-2] = (W_)&stg_ctoi_D1_info;
1007 1008 1009 1010 1011 1012 1013
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_L: {
	    int o_bco  = BCO_NEXT;
1014
	    Sp[-2] = (W_)&stg_ctoi_L1_info;
1015 1016 1017 1018 1019 1020 1021
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_ALTS_V: {
	    int o_bco  = BCO_NEXT;
1022
	    Sp[-2] = (W_)&stg_ctoi_V_info;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	    Sp[-1] = BCO_PTR(o_bco);
	    Sp -= 2;
	    goto nextInsn;
	}

	case bci_PUSH_APPLY_N:
	    Sp--; Sp[0] = (W_)&stg_ap_n_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_V:
	    Sp--; Sp[0] = (W_)&stg_ap_v_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_F:
	    Sp--; Sp[0] = (W_)&stg_ap_f_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_D:
	    Sp--; Sp[0] = (W_)&stg_ap_d_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_L:
	    Sp--; Sp[0] = (W_)&stg_ap_l_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_P:
	    Sp--; Sp[0] = (W_)&stg_ap_p_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PP:
	    Sp--; Sp[0] = (W_)&stg_ap_pp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPP:
	    Sp--; Sp[0] = (W_)&stg_ap_ppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_pppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_ppppp_info;
	    goto nextInsn;
	case bci_PUSH_APPLY_PPPPPP:
	    Sp--; Sp[0] = (W_)&stg_ap_pppppp_info;
	    goto nextInsn;
	    
	case bci_PUSH_UBX: {
	    int i;
	    int o_lits = BCO_NEXT;
	    int n_words = BCO_NEXT;
	    Sp -= n_words;
	    for (i = 0; i < n_words; i++) {
1068
		Sp[i] = (W_)BCO_LIT(o_lits+i);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	    }
	    goto nextInsn;
	}

	case bci_SLIDE: {
	    int n  = BCO_NEXT;
	    int by = BCO_NEXT;
	    /* a_1, .. a_n, b_1, .. b_by, s => a_1, .. a_n, s */
	    while(--n >= 0) {
		Sp[n+by] = Sp[n];
	    }
	    Sp += by;
	    INTERP_TICK(it_slides);
	    goto nextInsn;
	}

	case bci_ALLOC_AP: {
	    StgAP* ap; 
sof's avatar
sof committed
1087
	    int n_payload = BCO_NEXT;
1088
	    ap = (StgAP*)allocate(cap, AP_sizeW(n_payload));
1089 1090 1091 1092 1093 1094 1095
	    Sp[-1] = (W_)ap;
	    ap->n_args = n_payload;
	    SET_HDR(ap, &stg_AP_info, CCS_SYSTEM/*ToDo*/)
	    Sp --;
	    goto nextInsn;
	}

1096 1097 1098
	case bci_ALLOC_AP_NOUPD: {
	    StgAP* ap; 
	    int n_payload = BCO_NEXT;
1099
	    ap = (StgAP*)allocate(cap, AP_sizeW(n_payload));
1100 1101 1102 1103 1104 1105 1106
	    Sp[-1] = (W_)ap;
	    ap->n_args = n_payload;
	    SET_HDR(ap, &stg_AP_NOUPD_info, CCS_SYSTEM/*ToDo*/)
	    Sp --;
	    goto nextInsn;
	}

1107 1108 1109
	case bci_ALLOC_PAP: {
	    StgPAP* pap; 
	    int arity = BCO_NEXT;
sof's avatar
sof committed
1110
	    int n_payload = BCO_NEXT;
1111
	    pap = (StgPAP*)allocate(cap, PAP_sizeW(n_payload));
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	    Sp[-1] = (W_)pap;
	    pap->n_args = n_payload;
	    pap->arity = arity;
	    SET_HDR(pap, &stg_PAP_info, CCS_SYSTEM/*ToDo*/)
	    Sp --;
	    goto nextInsn;
	}

	case bci_MKAP: {
	    int i;
	    int stkoff = BCO_NEXT;
sof's avatar
sof committed
1123
	    int n_payload = BCO_NEXT;
1124 1125 1126
	    StgAP* ap = (StgAP*)Sp[stkoff];
	    ASSERT((int)ap->n_args == n_payload);
	    ap->fun = (StgClosure*)Sp[0];
1127
	    
1128 1129 1130
	    // The function should be a BCO, and its bitmap should
	    // cover the payload of the AP correctly.
	    ASSERT(get_itbl(ap->fun)->type == BCO
1131 1132
		   && BCO_BITMAP_SIZE(ap->fun) == ap->n_args);
	    
1133 1134 1135 1136
	    for (i = 0; i < n_payload; i++)
		ap->payload[i] = (StgClosure*)Sp[i+1];
	    Sp += n_payload+1;
	    IF_DEBUG(interpreter,
1137
		     debugBelch("\tBuilt "); 
1138 1139 1140 1141 1142
		     printObj((StgClosure*)ap);
		);
	    goto nextInsn;
	}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	case bci_MKPAP: {
	    int i;
	    int stkoff = BCO_NEXT;
	    int n_payload = BCO_NEXT;
	    StgPAP* pap = (StgPAP*)Sp[stkoff];
	    ASSERT((int)pap->n_args == n_payload);
	    pap->fun = (StgClosure*)Sp[0];
	    
	    // The function should be a BCO
	    ASSERT(get_itbl(pap->fun)->type == BCO);
	    
	    for (i = 0; i < n_payload; i++)
		pap->payload[i] = (StgClosure*)Sp[i+1];
	    Sp += n_payload+1;
	    IF_DEBUG(interpreter,
		     debugBelch("\tBuilt "); 
		     printObj((StgClosure*)pap);
		);
	    goto nextInsn;
	}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	case bci_UNPACK: {
	    /* Unpack N ptr words from t.o.s constructor */
	    int i;
	    int n_words = BCO_NEXT;
	    StgClosure* con = (StgClosure*)Sp[0];
	    Sp -= n_words;
	    for (i = 0; i < n_words; i++) {
		Sp[i] = (W_)con->payload[i];
	    }
	    goto nextInsn;
	}

	case bci_PACK: {
	    int i;
	    int o_itbl         = BCO_NEXT;
	    int n_words        = BCO_NEXT;
1180
	    StgInfoTable* itbl = INFO_PTR_TO_STRUCT(BCO_LIT(o_itbl));
1181 1182
	    int request        = CONSTR_sizeW( itbl->layout.payload.ptrs, 
					       itbl->layout.payload.nptrs );
1183
	    StgClosure* con = (StgClosure*)allocate_NONUPD(cap,request);
1184
	    ASSERT( itbl->layout.payload.ptrs + itbl->layout.payload.nptrs > 0);
1185
	    SET_HDR(con, (StgInfoTable*)BCO_LIT(o_itbl), CCS_SYSTEM/*ToDo*/);
1186 1187 1188 1189 1190 1191 1192
	    for (i = 0; i < n_words; i++) {
		con->payload[i] = (StgClosure*)Sp[i];
	    }
	    Sp += n_words;
	    Sp --;
	    Sp[0] = (W_)con;
	    IF_DEBUG(interpreter,
1193
		     debugBelch("\tBuilt "); 
1194 1195 1196 1197 1198 1199
		     printObj((StgClosure*)con);
		);
	    goto nextInsn;
	}

	case bci_TESTLT_P: {
1200
	    unsigned int discr  = BCO_NEXT;
1201
	    int failto = BCO_GET_LARGE_ARG;
1202
	    StgClosure* con = (StgClosure*)Sp[0];
1203
	    if (GET_TAG(con) >= discr) {
1204 1205 1206 1207 1208 1209
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_P: {
1210
	    unsigned int discr  = BCO_NEXT;
1211
	    int failto = BCO_GET_LARGE_ARG;
1212
	    StgClosure* con = (StgClosure*)Sp[0];
1213
	    if (GET_TAG(con) != discr) {
1214 1215 1216 1217 1218 1219 1220 1221
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTLT_I: {
	    // There should be an Int at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
1222
	    int failto  = BCO_GET_LARGE_ARG;
1223 1224 1225 1226 1227 1228 1229 1230 1231
	    I_ stackInt = (I_)Sp[1];
	    if (stackInt >= (I_)BCO_LIT(discr))
		bciPtr = failto;
	    goto nextInsn;
	}

	case bci_TESTEQ_I: {
	    // There should be an Int at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
1232
	    int failto  = BCO_GET_LARGE_ARG;
1233 1234 1235 1236 1237 1238 1239
	    I_ stackInt = (I_)Sp[1];
	    if (stackInt != (I_)BCO_LIT(discr)) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	case bci_TESTLT_W: {
	    // There should be an Int at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_GET_LARGE_ARG;
	    W_ stackWord = (W_)Sp[1];
	    if (stackWord >= (W_)BCO_LIT(discr))
		bciPtr = failto;
	    goto nextInsn;
	}

	case bci_TESTEQ_W: {
	    // There should be an Int at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
	    int failto  = BCO_GET_LARGE_ARG;
	    W_ stackWord = (W_)Sp[1];
	    if (stackWord != (W_)BCO_LIT(discr)) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

1261 1262 1263
	case bci_TESTLT_D: {
	    // There should be a Double at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
1264
	    int failto  = BCO_GET_LARGE_ARG;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	    StgDouble stackDbl, discrDbl;
	    stackDbl = PK_DBL( & Sp[1] );
	    discrDbl = PK_DBL( & BCO_LIT(discr) );
	    if (stackDbl >= discrDbl) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_D: {
	    // There should be a Double at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
1277
	    int failto  = BCO_GET_LARGE_ARG;
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	    StgDouble stackDbl, discrDbl;
	    stackDbl = PK_DBL( & Sp[1] );
	    discrDbl = PK_DBL( & BCO_LIT(discr) );
	    if (stackDbl != discrDbl) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTLT_F: {
	    // There should be a Float at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
1290
	    int failto  = BCO_GET_LARGE_ARG;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	    StgFloat stackFlt, discrFlt;
	    stackFlt = PK_FLT( & Sp[1] );
	    discrFlt = PK_FLT( & BCO_LIT(discr) );
	    if (stackFlt >= discrFlt) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	case bci_TESTEQ_F: {
	    // There should be a Float at Sp[1], and an info table at Sp[0].
	    int discr   = BCO_NEXT;
1303
	    int failto  = BCO_GET_LARGE_ARG;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	    StgFloat stackFlt, discrFlt;
	    stackFlt = PK_FLT( & Sp[1] );
	    discrFlt = PK_FLT( & BCO_LIT(discr) );
	    if (stackFlt != discrFlt) {
		bciPtr = failto;
	    }
	    goto nextInsn;
	}

	// Control-flow ish things
	case bci_ENTER:
	    // Context-switch check.  We put it here to ensure that
	    // the interpreter has done at least *some* work before
	    // context switching: sometimes the scheduler can invoke
	    // the interpreter with context_switch == 1, particularly
	    // if the -C0 flag has been given on the cmd line.
1320
	    if (cap->r.rHpLim == NULL) {
1321 1322 1323 1324 1325 1326
		Sp--; Sp[0] = (W_)&stg_enter_info;
		RETURN_TO_SCHEDULER(ThreadInterpret, ThreadYielding);
	    }
	    goto eval;

	case bci_RETURN:
1327
	    tagged_obj = (StgClosure *)Sp[0];
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	    Sp++;
	    goto do_return;

	case bci_RETURN_P:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_unpt_r1_info;
	    goto do_return_unboxed;
	case bci_RETURN_N:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_unbx_r1_info;
	    goto do_return_unboxed;
	case bci_RETURN_F:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_f1_info;
	    goto do_return_unboxed;
	case bci_RETURN_D:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_d1_info;
	    goto do_return_unboxed;
	case bci_RETURN_L:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_l1_info;
	    goto do_return_unboxed;
	case bci_RETURN_V:
	    Sp--;
	    Sp[0] = (W_)&stg_gc_void_info;
	    goto do_return_unboxed;

	case bci_SWIZZLE: {
	    int stkoff = BCO_NEXT;
	    signed short n = (signed short)(BCO_NEXT);
	    Sp[stkoff] += (W_)n;
	    goto nextInsn;
	}

	case bci_CCALL: {
1364
	    void *tok;
1365 1366 1367
	    int stk_offset            = BCO_NEXT;
	    int o_itbl                = BCO_NEXT;
	    void(*marshall_fn)(void*) = (void (*)(void*))BCO_LIT(o_itbl);
1368 1369 1370
	    int ret_dyn_size = 
		RET_DYN_BITMAP_SIZE + RET_DYN_NONPTR_REGS_SIZE
		+ sizeofW(StgRetDyn);
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
            /* the stack looks like this:
               
               |             |  <- Sp + stk_offset
               +-------------+  
               |             |
               |    args     |
               |             |  <- Sp + ret_size + 1
               +-------------+
               |    C fun    |  <- Sp + ret_size
               +-------------+
               |     ret     |  <- Sp
               +-------------+

               ret is a placeholder for the return address, and may be
               up to 2 words.

               We need to copy the args out of the TSO, because when
               we call suspendThread() we no longer own the TSO stack,
               and it may move at any time - indeed suspendThread()
               itself may do stack squeezing and move our args.
               So we make a copy of the argument block.
            */

#define ROUND_UP_WDS(p)  ((((StgWord)(p)) + sizeof(W_)-1)/sizeof(W_))

            ffi_cif *cif = (ffi_cif *)marshall_fn;
            nat nargs = cif->nargs;
            nat ret_size;
            nat i;
            StgPtr p;
            W_ ret[2];                  // max needed
	    W_ *arguments[stk_offset];  // max needed
            void *argptrs[nargs];
            void (*fn)(void);

            if (cif->rtype->type == FFI_TYPE_VOID) {
                // necessary because cif->rtype->size == 1 for void,
                // but the bytecode generator has not pushed a
                // placeholder in this case.
                ret_size = 0;
            } else {
                ret_size = ROUND_UP_WDS(cif->rtype->size);
            }

	    memcpy(arguments, Sp+ret_size+1, 
                   sizeof(W_) * (stk_offset-1-ret_size));
            
            // libffi expects the args as an array of pointers to
            // values, so we have to construct this array before making
            // the call.
            p = (StgPtr)arguments;
            for (i = 0; i < nargs; i++) {
                argptrs[i] = (void *)p;
                // get the size from the cif
                p += ROUND_UP_WDS(cif->arg_types[i]->size);
            }
1428

1429 1430
            // this is the function we're going to call
            fn = (void(*)(void))Sp[ret_size];
1431

1432 1433 1434
	    // Restore the Haskell thread's current value of errno
	    errno = cap->r.rCurrentTSO->saved_errno;

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	    // There are a bunch of non-ptr words on the stack (the
	    // ccall args, the ccall fun address and space for the
	    // result), which we need to cover with an info table
	    // since we might GC during this call.
	    //
	    // We know how many (non-ptr) words there are before the
	    // next valid stack frame: it is the stk_offset arg to the
	    // CCALL instruction.   So we build a RET_DYN stack frame
	    // on the stack frame to describe this chunk of stack.
	    //
1445
	    Sp -= ret_dyn_size;
1446
	    ((StgRetDyn *)Sp)->liveness = R1_PTR | N_NONPTRS(stk_offset);
1447 1448
	    ((StgRetDyn *)Sp)->info = (StgInfoTable *)&stg_gc_gen_info;

1449 1450 1451 1452 1453
            // save obj (pointer to the current BCO), since this
            // might move during the call.  We use the R1 slot in the
            // RET_DYN frame for this, hence R1_PTR above.
            ((StgRetDyn *)Sp)->payload[0] = (StgClosure *)obj;

1454
	    SAVE_STACK_POINTERS;
1455
	    tok = suspendThread(&cap->r);
1456

1457
	    // We already made a copy of the arguments above.
1458
            ffi_call(cif, fn, ret, argptrs);
1459

1460
	    // And restart the thread again, popping the RET_DYN frame.
Ian Lynagh's avatar
Ian Lynagh committed
1461
	    cap = (Capability *)((void *)((unsigned char*)resumeThread(tok) - STG_FIELD_OFFSET(Capability,r)));
1462
	    LOAD_STACK_POINTERS;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

            // Re-load the pointer to the BCO from the RET_DYN frame,
            // it might have moved during the call.  Also reload the
            // pointers to the components of the BCO.
            obj        = ((StgRetDyn *)Sp)->payload[0];
            bco        = (StgBCO*)obj;
            instrs     = (StgWord16*)(bco->instrs->payload);
            literals   = (StgWord*)(&bco->literals->payload[0]);
            ptrs       = (StgPtr*)(&bco->ptrs->payload[0]);

simonmar's avatar