TcSimplify.lhs 69.1 KB
Newer Older
1
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
2 3 4 5 6 7 8
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

9
module TcSimplify( 
10
       simplifyInfer, simplifyAmbiguityCheck,
11
       simplifyDefault, simplifyDeriv, 
12 13
       simplifyRule, simplifyTop, simplifyInteractive
  ) where
14

15
#include "HsVersions.h"
16

17
import TcRnMonad
18
import TcErrors
19
import TcMType
20 21
import TcType 
import TcSMonad 
22
import TcInteract 
23
import Inst
24
import Unify	( niFixTvSubst, niSubstTvSet )
25
import Type     ( classifyPredType, PredTree(..), isIPPred_maybe )
26
import Var
27
import Unique
28
import VarSet
29
import VarEnv 
30
import TcEvidence
31
import TypeRep
32
import Name
33
import Bag
34 35
import ListSetOps
import Util
36 37 38
import PrelInfo
import PrelNames
import Class		( classKey )
39
import BasicTypes       ( RuleName )
40
import Control.Monad    ( when )
41
import Outputable
42
import FastString
dimitris's avatar
dimitris committed
43
import TrieMap () -- DV: for now
44
import DynFlags
45
import Data.Maybe ( mapMaybe )
46 47 48
\end{code}


49 50 51 52 53
*********************************************************************************
*                                                                               * 
*                           External interface                                  *
*                                                                               *
*********************************************************************************
54

55

56
\begin{code}
57 58


59 60
simplifyTop :: WantedConstraints -> TcM (Bag EvBind)
-- Simplify top-level constraints
61 62 63
-- Usually these will be implications,
-- but when there is nothing to quantify we don't wrap
-- in a degenerate implication, so we do that here instead
64
simplifyTop wanteds 
65 66 67
  = do { ev_binds_var <- newTcEvBinds
                         
       ; zonked_wanteds <- zonkWC wanteds
68
       ; wc_first_go <- solveWantedsWithEvBinds ev_binds_var zonked_wanteds
69 70 71 72 73 74 75 76 77 78 79 80 81
       ; cts <- applyTyVarDefaulting wc_first_go 
                -- See Note [Top-level Defaulting Plan]
                
       ; let wc_for_loop = wc_first_go { wc_flat = wc_flat wc_first_go `unionBags` cts }
                           
       ; traceTc "simpl_top_loop {" $ text "zonked_wc =" <+> ppr zonked_wanteds
       ; simpl_top_loop ev_binds_var wc_for_loop }
    
  where simpl_top_loop ev_binds_var wc
          | isEmptyWC wc 
          = do { traceTc "simpl_top_loop }" empty
               ; TcRnMonad.getTcEvBinds ev_binds_var }
          | otherwise
82
          = do { wc_residual <- solveWantedsWithEvBinds ev_binds_var wc
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
               ; let wc_flat_approximate = approximateWC wc_residual
               ; (dflt_eqs,_unused_bind) <- runTcS $
                                            applyDefaultingRules wc_flat_approximate
                                            -- See Note [Top-level Defaulting Plan]
               ; if isEmptyBag dflt_eqs then 
                   do { traceTc "simpl_top_loop }" empty
                      ; report_and_finish ev_binds_var wc_residual }
                 else
                   simpl_top_loop ev_binds_var $ 
                   wc_residual { wc_flat = wc_flat wc_residual `unionBags` dflt_eqs } }

        report_and_finish ev_binds_var wc_residual 
          = do { eb1 <- TcRnMonad.getTcEvBinds ev_binds_var
               ; traceTc "reportUnsolved {" empty
                   -- See Note [Deferring coercion errors to runtime]
               ; runtimeCoercionErrors <- doptM Opt_DeferTypeErrors
               ; eb2 <- reportUnsolved runtimeCoercionErrors wc_residual
               ; traceTc "reportUnsolved }" empty
               ; return (eb1 `unionBags` eb2) }
\end{code}

Note [Top-level Defaulting Plan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We have considered two design choices for where/when to apply defaulting.   
   (i) Do it in SimplCheck mode only /whenever/ you try to solve some 
       flat constraints, maybe deep inside the context of implications.
       This used to be the case in GHC 7.4.1.
   (ii) Do it in a tight loop at simplifyTop, once all other constraint has 
        finished. This is the current story.

Option (i) had many disadvantages: 
   a) First it was deep inside the actual solver, 
   b) Second it was dependent on the context (Infer a type signature, 
      or Check a type signature, or Interactive) since we did not want 
      to always start defaulting when inferring (though there is an exception to  
      this see Note [Default while Inferring])
   c) It plainly did not work. Consider typecheck/should_compile/DfltProb2.hs:
          f :: Int -> Bool
          f x = const True (\y -> let w :: a -> a
                                      w a = const a (y+1)
                                  in w y)
      We will get an implication constraint (for beta the type of y):
               [untch=beta] forall a. 0 => Num beta
      which we really cannot default /while solving/ the implication, since beta is
      untouchable.

Instead our new defaulting story is to pull defaulting out of the solver loop and
go with option (i), implemented at SimplifyTop. Namely:
     - First have a go at solving the residual constraint of the whole program
     - Try to approximate it with a flat constraint
     - Figure out derived defaulting equations for that flat constraint
     - Go round the loop again if you did manage to get some equations

Now, that has to do with class defaulting. However there exists type variable /kind/
defaulting. Again this is done at the top-level and the plan is:
     - At the top-level, once you had a go at solving the constraint, do 
       figure out /all/ the touchable unification variables of the wanted contraints.
     - Apply defaulting to their kinds

More details in Note [DefaultTyVar].

\begin{code}
146

147 148 149
------------------
simplifyAmbiguityCheck :: Name -> WantedConstraints -> TcM (Bag EvBind)
simplifyAmbiguityCheck name wanteds
150 151
  = traceTc "simplifyAmbiguityCheck" (text "name =" <+> ppr name) >> 
    simplifyCheck wanteds
152
 
153 154 155
------------------
simplifyInteractive :: WantedConstraints -> TcM (Bag EvBind)
simplifyInteractive wanteds 
156 157
  = traceTc "simplifyInteractive" empty >>
    simplifyTop wanteds 
158 159 160 161 162

------------------
simplifyDefault :: ThetaType	-- Wanted; has no type variables in it
                -> TcM ()	-- Succeeds iff the constraint is soluble
simplifyDefault theta
163 164 165
  = do { traceTc "simplifyInteractive" empty
       ; wanted <- newFlatWanteds DefaultOrigin theta
       ; _ignored_ev_binds <- simplifyCheck (mkFlatWC wanted)
166 167
       ; return () }
\end{code}
168

169

170
***********************************************************************************
171
*                                                                                 * 
172
*                            Deriving                                             *
173 174
*                                                                                 *
***********************************************************************************
175

176 177
\begin{code}
simplifyDeriv :: CtOrigin
178 179 180 181
              -> PredType
	      -> [TyVar]	
	      -> ThetaType		-- Wanted
	      -> TcM ThetaType	-- Needed
182 183
-- Given  instance (wanted) => C inst_ty 
-- Simplify 'wanted' as much as possibles
184
-- Fail if not possible
185
simplifyDeriv orig pred tvs theta 
186
  = do { (skol_subst, tvs_skols) <- tcInstSkolTyVars tvs -- Skolemize
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
187 188 189 190
      	 	-- The constraint solving machinery 
		-- expects *TcTyVars* not TyVars.  
		-- We use *non-overlappable* (vanilla) skolems
		-- See Note [Overlap and deriving]
191

192
       ; let subst_skol = zipTopTvSubst tvs_skols $ map mkTyVarTy tvs
193
             skol_set   = mkVarSet tvs_skols
194
	     doc = ptext (sLit "deriving") <+> parens (ppr pred)
195 196 197

       ; wanted <- newFlatWanteds orig (substTheta skol_subst theta)

198 199
       ; traceTc "simplifyDeriv" $ 
         vcat [ pprTvBndrs tvs $$ ppr theta $$ ppr wanted, doc ]
200
       ; (residual_wanted, _ev_binds1)
201
             <- solveWanteds (mkFlatWC wanted)
202

203 204
       ; let (good, bad) = partitionBagWith get_good (wc_flat residual_wanted)
                         -- See Note [Exotic derived instance contexts]
205
             get_good :: Ct -> Either PredType Ct
206 207 208 209 210 211
             get_good ct | validDerivPred skol_set p 
                         , isWantedCt ct  = Left p 
                         -- NB: residual_wanted may contain unsolved
                         -- Derived and we stick them into the bad set
                         -- so that reportUnsolved may decide what to do with them
                         | otherwise = Right ct
212
                         where p = ctPred ct
213

214 215 216
       -- We never want to defer these errors because they are errors in the
       -- compiler! Hence the `False` below
       ; _ev_binds2 <- reportUnsolved False (residual_wanted { wc_flat = bad })
217

218 219
       ; let min_theta = mkMinimalBySCs (bagToList good)
       ; return (substTheta subst_skol min_theta) }
220
\end{code}
221

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
  data Show a => Show [a] where ..
  data Show [Char] where ...

Now a data type with deriving:
  data T a = MkT [a] deriving( Show )

We want to get the derived instance
  instance Show [a] => Show (T a) where...
and NOT
  instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing

It's very like the situation when we're inferring the type
of a function
   f x = show [x]
and we want to infer
   f :: Show [a] => a -> String

BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
             the context for the derived instance. 
	     Hence tcInstSkolTyVars not tcInstSuperSkolTyVars

247 248 249 250 251 252 253
Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context.  It's a
bit unclear what rules we should apply for this; the Haskell report is
silent.  Obviously, constraints like (Eq a) are fine, but what about
	data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint.  That's probably fine too.
254

255 256 257
One could go further: consider
	data T a b c = MkT (Foo a b c) deriving( Eq )
	instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)
258

259 260
Notice that this instance (just) satisfies the Paterson termination 
conditions.  Then we *could* derive an instance decl like this:
261

262 263 264 265
	instance (C Int a, Eq b, Eq c) => Eq (T a b c) 
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.  
266

267 268 269
However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.
270

271 272
So for now we simply require that the derived instance context
should have only type-variable constraints.
273

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
Here is another example:
	data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
	instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!

NB: if you want to lift this condition, make sure you still meet the
termination conditions!  If not, the deriving mechanism generates
larger and larger constraints.  Example:
  data Succ a = S a
  data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show

Note the lack of a Show instance for Succ.  First we'll generate
  instance (Show (Succ a), Show a) => Show (Seq a)
and then
  instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on.  Instead we want to complain of no instance for (Show (Succ a)).

The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.

*********************************************************************************
*                                                                                 * 
*                            Inference
*                                                                                 *
***********************************************************************************
303

dreixel's avatar
dreixel committed
304 305 306 307 308 309 310 311 312 313 314 315
Note [Which variables to quantify]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose the inferred type of a function is
   T kappa (alpha:kappa) -> Int
where alpha is a type unification variable and 
      kappa is a kind unification variable
Then we want to quantify over *both* alpha and kappa.  But notice that
kappa appears "at top level" of the type, as well as inside the kind
of alpha.  So it should be fine to just look for the "top level"
kind/type variables of the type, without looking transitively into the
kinds of those type variables.

316
\begin{code}
317
simplifyInfer :: Bool
318 319 320
              -> Bool                  -- Apply monomorphism restriction
              -> [(Name, TcTauType)]   -- Variables to be generalised,
                                       -- and their tau-types
321
              -> (Untouchables, WantedConstraints)
322 323
              -> TcM ([TcTyVar],    -- Quantify over these type variables
                      [EvVar],      -- ... and these constraints
324 325 326
		      Bool,	    -- The monomorphism restriction did something
		      		    --   so the results type is not as general as
				    --   it could be
327
                      TcEvBinds)    -- ... binding these evidence variables
328
simplifyInfer _top_lvl apply_mr name_taus (untch,wanteds)
329 330 331
  | isEmptyWC wanteds
  = do { gbl_tvs     <- tcGetGlobalTyVars            -- Already zonked
       ; zonked_taus <- zonkTcTypes (map snd name_taus)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
332
       ; let tvs_to_quantify = varSetElems (tyVarsOfTypes zonked_taus `minusVarSet` gbl_tvs)
dreixel's avatar
dreixel committed
333 334 335
       	     		       -- tvs_to_quantify can contain both kind and type vars
       	                       -- See Note [Which variables to quantify]
       ; qtvs <- zonkQuantifiedTyVars tvs_to_quantify
336
       ; return (qtvs, [], False, emptyTcEvBinds) }
337

338
  | otherwise
339
  = do { runtimeCoercionErrors <- doptM Opt_DeferTypeErrors
340
       ; gbl_tvs        <- tcGetGlobalTyVars
341
       ; zonked_tau_tvs <- zonkTyVarsAndFV (tyVarsOfTypes (map snd name_taus))
342
       ; zonked_wanteds <- zonkWC wanteds
343

344
       ; traceTc "simplifyInfer {"  $ vcat
345
             [ ptext (sLit "names =") <+> ppr (map fst name_taus)
346 347
             , ptext (sLit "taus =") <+> ppr (map snd name_taus)
             , ptext (sLit "tau_tvs (zonked) =") <+> ppr zonked_tau_tvs
348 349 350
             , ptext (sLit "gbl_tvs =") <+> ppr gbl_tvs
             , ptext (sLit "closed =") <+> ppr _top_lvl
             , ptext (sLit "apply_mr =") <+> ppr apply_mr
351
             , ptext (sLit "untch =") <+> ppr untch
352
             , ptext (sLit "wanted =") <+> ppr zonked_wanteds
353 354
             ]

355 356 357 358 359
              -- Historical note: Before step 2 we used to have a
              -- HORRIBLE HACK described in Note [Avoid unecessary
              -- constraint simplification] but, as described in Trac
              -- #4361, we have taken in out now.  That's why we start
              -- with step 2!
360

361 362 363 364 365 366 367 368
              -- Step 2) First try full-blown solving 

              -- NB: we must gather up all the bindings from doing
              -- this solving; hence (runTcSWithEvBinds ev_binds_var).
              -- And note that since there are nested implications,
              -- calling solveWanteds will side-effect their evidence
              -- bindings, so we can't just revert to the input
              -- constraint.
369
       ; ev_binds_var <- newTcEvBinds
370
       ; wanted_transformed <- solveWantedsWithEvBinds ev_binds_var zonked_wanteds
371 372

              -- Step 3) Fail fast if there is an insoluble constraint,
373 374 375
              -- unless we are deferring errors to runtime
       ; when (not runtimeCoercionErrors && insolubleWC wanted_transformed) $ 
         do { _ev_binds <- reportUnsolved False wanted_transformed; failM }
376 377

              -- Step 4) Candidates for quantification are an approximation of wanted_transformed
378 379 380 381
       ; let quant_candidates = approximateWC wanted_transformed               
              -- NB: Already the fixpoint of any unifications that may have happened                                
              -- NB: We do not do any defaulting when inferring a type, this can lead
              -- to less polymorphic types, see Note [Default while Inferring]
382 383
              -- NB: quant_candidates here are wanted or derived, we filter the wanteds later, anyway
 
384
              -- Step 5) Minimize the quantification candidates                             
385
       ; (quant_candidates_transformed, _extra_binds)   
386 387 388
             <- solveWanteds $ WC { wc_flat  = quant_candidates
                                  , wc_impl  = emptyBag
                                  , wc_insol = emptyBag }
389 390

              -- Step 6) Final candidates for quantification                
391 392 393 394 395 396
       ; let final_quant_candidates :: Bag PredType
             final_quant_candidates = mapBag ctPred $ 
                                      keepWanted (wc_flat quant_candidates_transformed)
             -- NB: Already the fixpoint of any unifications that may have happened
                  
       ; gbl_tvs        <- tcGetGlobalTyVars -- TODO: can we just use untch instead of gbl_tvs?
397
       ; zonked_tau_tvs <- zonkTyVarsAndFV zonked_tau_tvs
398 399 400 401 402 403
       
       ; traceTc "simplifyWithApprox" $
         vcat [ ptext (sLit "final_quant_candidates =") <+> ppr final_quant_candidates
              , ptext (sLit "gbl_tvs=") <+> ppr gbl_tvs
              , ptext (sLit "zonked_tau_tvs=") <+> ppr zonked_tau_tvs ]
         
404
       ; let init_tvs 	     = zonked_tau_tvs `minusVarSet` gbl_tvs
405 406 407 408 409 410 411
             poly_qtvs       = growPreds gbl_tvs id final_quant_candidates init_tvs
             
             pbound          = filterBag (quantifyMe poly_qtvs id) final_quant_candidates
             
       ; traceTc "simplifyWithApprox" $
         vcat [ ptext (sLit "pbound =") <+> ppr pbound ]
         
412
	     -- Monomorphism restriction
413 414
       ; let mr_qtvs  	     = init_tvs `minusVarSet` constrained_tvs
             constrained_tvs = tyVarsOfBag tyVarsOfType final_quant_candidates
415 416
	     mr_bites        = apply_mr && not (isEmptyBag pbound)

417 418 419 420
             (qtvs, bound)
                | mr_bites  = (mr_qtvs,   emptyBag)
                | otherwise = (poly_qtvs, pbound)
             
421

422
       ; if isEmptyVarSet qtvs && isEmptyBag bound
423 424 425 426
         then do { traceTc "} simplifyInfer/no quantification" empty                   
                 ; emitConstraints wanted_transformed
                    -- Includes insolubles (if -fdefer-type-errors)
                    -- as well as flats and implications
427
                 ; return ([], [], mr_bites, TcEvBinds ev_binds_var) }
428 429
         else do

430 431 432
       { traceTc "simplifyApprox" $ 
         ptext (sLit "bound are =") <+> ppr bound 
         
433
            -- Step 4, zonk quantified variables 
434
       ; let minimal_flat_preds = mkMinimalBySCs $ bagToList bound
435 436
             skol_info = InferSkol [ (name, mkSigmaTy [] minimal_flat_preds ty)
                                   | (name, ty) <- name_taus ]
437 438 439 440
                        -- Don't add the quantified variables here, because
                        -- they are also bound in ic_skols and we want them to be
                        -- tidied uniformly

Simon Peyton Jones's avatar
Simon Peyton Jones committed
441
       ; qtvs_to_return <- zonkQuantifiedTyVars (varSetElems qtvs)
442

443
            -- Step 7) Emit an implication
444 445
       ; minimal_bound_ev_vars <- mapM TcMType.newEvVar minimal_flat_preds
       ; lcl_env <- getLclTypeEnv
dreixel's avatar
dreixel committed
446
       ; gloc <- getCtLoc skol_info
447
       ; let implic = Implic { ic_untch    = untch 
448
                             , ic_env      = lcl_env
449
                             , ic_skols    = qtvs_to_return
450
                             , ic_given    = minimal_bound_ev_vars
451
                             , ic_wanted   = wanted_transformed 
452 453 454 455
                             , ic_insol    = False
                             , ic_binds    = ev_binds_var
                             , ic_loc      = gloc }
       ; emitImplication implic
456
         
457 458 459
       ; traceTc "} simplifyInfer/produced residual implication for quantification" $
             vcat [ ptext (sLit "implic =") <+> ppr implic
                       -- ic_skols, ic_given give rest of result
460
                  , ptext (sLit "qtvs =") <+> ppr qtvs_to_return
461
                  , ptext (sLit "spb =") <+> ppr final_quant_candidates
462 463
                  , ptext (sLit "bound =") <+> ppr bound ]

464 465
       ; return ( qtvs_to_return, minimal_bound_ev_vars
                , mr_bites,  TcEvBinds ev_binds_var) } }
466
    where 
467
\end{code}
468 469


470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
Note [Note [Default while Inferring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Our current plan is that defaulting only happens at simplifyTop and
not simplifyInfer.  This may lead to some insoluble deferred constraints
Example:

instance D g => C g Int b 

constraint inferred = (forall b. 0 => C gamma alpha b) /\ Num alpha
type inferred       = gamma -> gamma 

Now, if we try to default (alpha := Int) we will be able to refine the implication to 
  (forall b. 0 => C gamma Int b) 
which can then be simplified further to 
  (forall b. 0 => D gamma)
Finally we /can/ approximate this implication with (D gamma) and infer the quantified
type:  forall g. D g => g -> g

Instead what will currently happen is that we will get a quantified type 
(forall g. g -> g) and an implication:
       forall g. 0 => (forall b. 0 => C g alpha b) /\ Num alpha

which, even if the simplifyTop defaults (alpha := Int) we will still be left with an 
unsolvable implication:
       forall g. 0 => (forall b. 0 => D g)

The concrete example would be: 
       h :: C g a s => g -> a -> ST s a
       f (x::gamma) = (\_ -> x) (runST (h x (undefined::alpha)) + 1)

But it is quite tedious to do defaulting and resolve the implication constraints and
we have not observed code breaking because of the lack of defaulting in inference so 
we don't do it for now.



506 507
Note [Minimize by Superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
508

509 510 511 512 513 514 515
When we quantify over a constraint, in simplifyInfer we need to
quantify over a constraint that is minimal in some sense: For
instance, if the final wanted constraint is (Eq alpha, Ord alpha),
we'd like to quantify over Ord alpha, because we can just get Eq alpha
from superclass selection from Ord alpha. This minimization is what
mkMinimalBySCs does. Then, simplifyInfer uses the minimal constraint
to check the original wanted.
516

517

518
\begin{code}
519

520

521
approximateWC :: WantedConstraints -> Cts
522
-- Postcondition: Wanted or Derived Cts 
523
approximateWC wc = float_wc emptyVarSet wc
524
  where 
525 526 527 528 529 530
    float_wc :: TcTyVarSet -> WantedConstraints -> Cts
    float_wc skols (WC { wc_flat = flat, wc_impl = implic }) = floats1 `unionBags` floats2
      where floats1 = do_bag (float_flat skols) flat
            floats2 = do_bag (float_implic skols) implic
                                 
    float_implic :: TcTyVarSet -> Implication -> Cts
531
    float_implic skols imp
532 533 534 535 536
      = float_wc (skols `extendVarSetList` ic_skols imp) (ic_wanted imp)
            
    float_flat :: TcTyVarSet -> Ct -> Cts
    float_flat skols ct
      | tyVarsOfCt ct `disjointVarSet` skols 
537
      = singleCt ct
538 539 540 541
      | otherwise = emptyCts
        
    do_bag :: (a -> Bag c) -> Bag a -> Bag c
    do_bag f = foldrBag (unionBags.f) emptyBag
542 543


544
\end{code}
545

546
\begin{code}
547 548 549
growPreds :: TyVarSet -> (a -> PredType) -> Bag a -> TyVarSet -> TyVarSet
growPreds gbl_tvs get_pred items tvs
  = foldrBag extend tvs items
550
  where
551 552
    extend item tvs = tvs `unionVarSet`
                      (growPredTyVars (get_pred item) tvs `minusVarSet` gbl_tvs)
553 554 555

--------------------
quantifyMe :: TyVarSet      -- Quantifying over these
556 557 558
	   -> (a -> PredType)
	   -> a -> Bool	    -- True <=> quantify over this wanted
quantifyMe qtvs toPred ct
559
  | isIPPred pred = True  -- Note [Inheriting implicit parameters]
batterseapower's avatar
batterseapower committed
560
  | otherwise	  = tyVarsOfType pred `intersectsVarSet` qtvs
561
  where
562
    pred = toPred ct
563
\end{code}
564

565 566
Note [Avoid unecessary constraint simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
567 568 569 570
    -------- NB NB NB (Jun 12) ------------- 
    This note not longer applies; see the notes with Trac #4361.
    But I'm leaving it in here so we remember the issue.)
    ----------------------------------------
571
When inferring the type of a let-binding, with simplifyInfer,
572
try to avoid unnecessarily simplifying class constraints.
573 574
Doing so aids sharing, but it also helps with delicate 
situations like
575

576
   instance C t => C [t] where ..
577

578 579 580 581 582 583 584 585 586 587 588
   f :: C [t] => ....
   f x = let g y = ...(constraint C [t])... 
         in ...
When inferring a type for 'g', we don't want to apply the
instance decl, because then we can't satisfy (C t).  So we
just notice that g isn't quantified over 't' and partition
the contraints before simplifying.

This only half-works, but then let-generalisation only half-works.


589 590
Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
591 592 593
Consider this:

	f x = (x::Int) + ?y
594

595 596 597
where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:
598

599 600 601
	f :: Int -> Int

(so we get ?y from the context of f's definition), or
602 603 604

	f :: (?y::Int) => Int -> Int

605 606 607 608 609 610
At first you might think the first was better, becuase then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site.  But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.

611 612
BOTTOM LINE: when *inferring types* you *must* quantify 
over implicit parameters. See the predicate isFreeWhenInferring.
613

614

615 616 617 618 619
*********************************************************************************
*                                                                                 * 
*                             RULES                                               *
*                                                                                 *
***********************************************************************************
620

621
See note [Simplifying RULE consraints] in TcRule
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636
Note [RULE quanfification over equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Decideing which equalities to quantify over is tricky:
 * We do not want to quantify over insoluble equalities (Int ~ Bool)
    (a) because we prefer to report a LHS type error
    (b) because if such things end up in 'givens' we get a bogus
        "inaccessible code" error

 * But we do want to quantify over things like (a ~ F b), where
   F is a type function.

The difficulty is that it's hard to tell what is insoluble!
So we see whether the simplificaiotn step yielded any type errors,
and if so refrain from quantifying over *any* equalites.
637 638

\begin{code}
639 640 641
simplifyRule :: RuleName 
             -> WantedConstraints	-- Constraints from LHS
             -> WantedConstraints	-- Constraints from RHS
642 643 644 645 646
             -> TcM ([EvVar], WantedConstraints)   -- LHS evidence varaibles
-- See Note [Simplifying RULE constraints] in TcRule
simplifyRule name lhs_wanted rhs_wanted
  = do { zonked_all <- zonkWC (lhs_wanted `andWC` rhs_wanted)
       ; let doc = ptext (sLit "LHS of rule") <+> doubleQuotes (ftext name)
647
             
648
             	 -- We allow ourselves to unify environment 
649
		 -- variables: runTcS runs with NoUntouchables
650
       ; (resid_wanted, _) <- solveWanteds zonked_all
651

652 653
       ; zonked_lhs <- zonkWC lhs_wanted

654 655 656 657 658 659 660 661 662 663 664 665 666
       ; let (q_cts, non_q_cts) = partitionBag quantify_me (wc_flat zonked_lhs)
             quantify_me  -- Note [RULE quantification over equalities]
               | insolubleWC resid_wanted = quantify_insol
               | otherwise                = quantify_normal

             quantify_insol ct = not (isEqPred (ctPred ct))

             quantify_normal ct
               | EqPred t1 t2 <- classifyPredType (ctPred ct)
               = not (t1 `eqType` t2)
               | otherwise
               = True
             
667
       ; traceTc "simplifyRule" $
668 669
         vcat [ doc
              , text "zonked_lhs" <+> ppr zonked_lhs 
670 671
              , text "q_cts"      <+> ppr q_cts ]

672 673
       ; return ( map (ctEvId . ctEvidence) (bagToList q_cts)
                , zonked_lhs { wc_flat = non_q_cts }) }
674 675 676
\end{code}


677 678 679 680 681
*********************************************************************************
*                                                                                 * 
*                                 Main Simplifier                                 *
*                                                                                 *
***********************************************************************************
682 683

\begin{code}
684
simplifyCheck :: WantedConstraints	-- Wanted
685 686 687 688 689 690 691 692 693 694 695 696 697
              -> TcM (Bag EvBind)
-- Solve a single, top-level implication constraint
-- e.g. typically one created from a top-level type signature
-- 	    f :: forall a. [a] -> [a]
--          f x = rhs
-- We do this even if the function has no polymorphism:
--    	    g :: Int -> Int

--          g y = rhs
-- (whereas for *nested* bindings we would not create
--  an implication constraint for g at all.)
--
-- Fails if can't solve something in the input wanteds
698
simplifyCheck wanteds
699
  = do { wanteds <- zonkWC wanteds
700 701 702 703

       ; traceTc "simplifyCheck {" (vcat
             [ ptext (sLit "wanted =") <+> ppr wanteds ])

704
       ; (unsolved, eb1) <- solveWanteds wanteds
705 706 707

       ; traceTc "simplifyCheck }" $ ptext (sLit "unsolved =") <+> ppr unsolved

dimitris's avatar
dimitris committed
708
       ; traceTc "reportUnsolved {" empty
709 710 711
       -- See Note [Deferring coercion errors to runtime]
       ; runtimeCoercionErrors <- doptM Opt_DeferTypeErrors
       ; eb2 <- reportUnsolved runtimeCoercionErrors unsolved 
dimitris's avatar
dimitris committed
712 713
       ; traceTc "reportUnsolved }" empty

714 715 716 717 718 719 720 721 722 723
       ; return (eb1 `unionBags` eb2) }
\end{code}

Note [Deferring coercion errors to runtime]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

While developing, sometimes it is desirable to allow compilation to succeed even
if there are type errors in the code. Consider the following case:

  module Main where
724

725 726
  a :: Int
  a = 'a'
727

728
  main = print "b"
729

730 731
Even though `a` is ill-typed, it is not used in the end, so if all that we're
interested in is `main` it is handy to be able to ignore the problems in `a`.
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
Since we treat type equalities as evidence, this is relatively simple. Whenever
we run into a type mismatch in TcUnify, we normally just emit an error. But it
is always safe to defer the mismatch to the main constraint solver. If we do
that, `a` will get transformed into

  co :: Int ~ Char
  co = ...

  a :: Int
  a = 'a' `cast` co

The constraint solver would realize that `co` is an insoluble constraint, and
emit an error with `reportUnsolved`. But we can also replace the right-hand side
of `co` with `error "Deferred type error: Int ~ Char"`. This allows the program
to compile, and it will run fine unless we evaluate `a`. This is what
`deferErrorsToRuntime` does.

It does this by keeping track of which errors correspond to which coercion
in TcErrors (with ErrEnv). TcErrors.reportTidyWanteds does not print the errors
and does not fail if -fwarn-type-errors is on, so that we can continue
compilation. The errors are turned into warnings in `reportUnsolved`.

\begin{code}
756 757 758 759 760 761 762 763 764 765 766 767 768

solveWanteds :: WantedConstraints -> TcM (WantedConstraints, Bag EvBind)
-- Return the evidence binds in the BagEvBinds result
solveWanteds wanted = runTcS $ solve_wanteds wanted 

solveWantedsWithEvBinds :: EvBindsVar -> WantedConstraints -> TcM WantedConstraints
-- Side-effect the EvBindsVar argument to add new bindings from solving
solveWantedsWithEvBinds ev_binds_var wanted
  = runTcSWithEvBinds ev_binds_var $ solve_wanteds wanted


solve_wanteds :: WantedConstraints -> TcS WantedConstraints 
-- NB: wc_flats may be wanted /or/ derived now
769
solve_wanteds wanted@(WC { wc_flat = flats, wc_impl = implics, wc_insol = insols }) 
770 771
  = do { traceTcS "solveWanteds {" (ppr wanted)

772 773 774 775
         -- Try the flat bit, including insolubles. Solving insolubles a 
         -- second time round is a bit of a waste but the code is simple 
         -- and the program is wrong anyway. 
         -- Why keepWanted insols? See Note [KeepWanted in SolveWanteds] 
776
       ; let all_flats = flats `unionBags` keepWanted insols
777
             -- DV: Used to be 'keepWanted insols' but just insols is
778
                         
779
       ; impls_from_flats <- solveInteractCts $ bagToList all_flats
780

781 782
       -- solve_wanteds iterates when it is able to float equalities 
       -- out of one or more of the implications. 
783
       ; unsolved_implics <- simpl_loop 1 (implics `unionBags` impls_from_flats)
784

785 786 787
       ; is <- getTcSInerts 
       ; let insoluble_flats = getInertInsols is
             unsolved_flats  = getInertUnsolved is
788 789

       ; bb <- getTcEvBindsMap
790
       ; tb <- getTcSTyBindsMap
791

792
       ; traceTcS "solveWanteds }" $
793
                 vcat [ text "unsolved_flats   =" <+> ppr unsolved_flats
794
                      , text "unsolved_implics =" <+> ppr unsolved_implics
795
                      , text "current evbinds  =" <+> ppr (evBindMapBinds bb)
796 797 798
                      , text "current tybinds  =" <+> vcat (map ppr (varEnvElts tb))
                      ]

799 800 801 802
       ; let wc =  WC { wc_flat  = unsolved_flats
                      , wc_impl  = unsolved_implics
                      , wc_insol = insoluble_flats }

803

804
       ; traceTcS "solveWanteds finished with" $
805 806 807 808
                 vcat [ text "wc (unflattened) =" <+> ppr wc ]

       ; unFlattenWC wc }

809

810 811 812 813 814 815 816 817 818

simpl_loop :: Int
           -> Bag Implication
           -> TcS (Bag Implication)
simpl_loop n implics
  | n > 10 
  = traceTcS "solveWanteds: loop!" empty >> return implics
  | otherwise 
  = do { (implic_eqs, unsolved_implics) <- solveNestedImplications implics
819

820 821 822 823
       ; let improve_eqs = implic_eqs
             -- NB: improve_eqs used to contain defaulting equations HERE but 
             -- defaulting now happens only at simplifyTop and not deep inside 
             -- simpl_loop! See Note [Top-level Defaulting Plan]
824 825

       ; unsolved_flats <- getTcSInerts >>= (return . getInertUnsolved) 
826 827 828 829
       ; traceTcS "solveWanteds: simpl_loop end" $
             vcat [ text "improve_eqs      =" <+> ppr improve_eqs
                  , text "unsolved_flats   =" <+> ppr unsolved_flats
                  , text "unsolved_implics =" <+> ppr unsolved_implics ]
830

831

832
       ; if isEmptyBag improve_eqs then return unsolved_implics 
833 834 835
         else do { impls_from_eqs <- solveInteractCts $ bagToList improve_eqs
                 ; simpl_loop (n+1) (unsolved_implics `unionBags` 
                                                 impls_from_eqs)} }
836

837

838 839 840 841 842 843 844 845 846
solveNestedImplications :: Bag Implication
                        -> TcS (Cts, Bag Implication)
-- Precondition: the TcS inerts may contain unsolved flats which have 
-- to be converted to givens before we go inside a nested implication.
solveNestedImplications implics
  | isEmptyBag implics
  = return (emptyBag, emptyBag)
  | otherwise 
  = do { inerts <- getTcSInerts
847 848 849
       ; traceTcS "solveNestedImplications starting, inerts are:" $ ppr inerts         
       ; let (pushed_givens, thinner_inerts) = splitInertsForImplications inerts
  
850
       ; traceTcS "solveNestedImplications starting, more info:" $ 
851 852
         vcat [ text "original inerts = " <+> ppr inerts
              , text "pushed_givens   = " <+> ppr pushed_givens
853 854
              , text "thinner_inerts  = " <+> ppr thinner_inerts ]
         
855 856
       ; (implic_eqs, unsolved_implics)
           <- doWithInert thinner_inerts $ 
857
              do { let tcs_untouchables 
858 859 860 861 862 863
                         = foldr (unionVarSet . tyVarsOfCt) emptyVarSet pushed_givens
                                          -- Typically pushed_givens is very small, consists
                                          -- only of unsolved equalities, so no inefficiency 
                                          -- danger.
                                                                                    
                                          
864 865 866 867
                 -- See Note [Preparing inert set for implications]
	         -- Push the unsolved wanteds inwards, but as givens
                 ; traceTcS "solveWanteds: preparing inerts for implications {" $ 
                   vcat [ppr tcs_untouchables, ppr pushed_givens]
868 869
                 ; impls_from_givens <- solveInteractCts pushed_givens
                                        
870
                 ; MASSERT (isEmptyBag impls_from_givens)
871 872 873 874
                       -- impls_from_givens must be empty, since we are reacting givens
                       -- with givens, and they can never generate extra implications 
                       -- from decomposition of ForAll types. (Whereas wanteds can, see
                       -- TcCanonical, canEq ForAll-ForAll case)
875
                   
876 877 878 879 880 881
                 ; traceTcS "solveWanteds: } now doing nested implications {" empty
                 ; flatMapBagPairM (solveImplication tcs_untouchables) implics }

       -- ... and we are back in the original TcS inerts 
       -- Notice that the original includes the _insoluble_flats so it was safe to ignore
       -- them in the beginning of this function.
882 883 884 885 886 887
       ; traceTcS "solveWanteds: done nested implications }" $
                  vcat [ text "implic_eqs ="       <+> ppr implic_eqs
                       , text "unsolved_implics =" <+> ppr unsolved_implics ]

       ; return (implic_eqs, unsolved_implics) }

888 889 890 891 892 893 894 895
solveImplication :: TcTyVarSet     -- Untouchable TcS unification variables
                 -> Implication    -- Wanted
                 -> TcS (Cts,      -- All wanted or derived floated equalities: var = type
                         Bag Implication) -- Unsolved rest (always empty or singleton)
-- Precondition: The TcS monad contains an empty worklist and given-only inerts 
-- which after trying to solve this implication we must restore to their original value
solveImplication tcs_untouchables
     imp@(Implic { ic_untch  = untch
896 897 898
                 , ic_binds  = ev_binds
                 , ic_skols  = skols 
                 , ic_given  = givens
899
                 , ic_wanted = wanteds
900
                 , ic_loc    = loc })
901 902
  = shadowIPs givens $    -- See Note [Shadowing of Implicit Parameters]
    nestImplicTcS ev_binds (untch, tcs_untouchables) $
903 904
    recoverTcS (return (emptyBag, emptyBag)) $
       -- Recover from nested failures.  Even the top level is
905
       -- just a bunch of implications, so failing at the first one is bad
906 907 908
    do { traceTcS "solveImplication {" (ppr imp) 

         -- Solve flat givens
909 910 911
       ; impls_from_givens <- solveInteractGiven loc givens 
       ; MASSERT (isEmptyBag impls_from_givens)
         
912
         -- Simplify the wanteds
913 914 915
       ; WC { wc_flat = unsolved_flats
            , wc_impl = unsolved_implics
            , wc_insol = insols } <- solve_wanteds wanteds
916 917 918

       ; let (res_flat_free, res_flat_bound)
                 = floatEqualities skols givens unsolved_flats
919

920 921 922 923
       ; let res_wanted = WC { wc_flat  = keepWanted $ res_flat_bound
                               -- I think this keepWanted must eventually go away, but it is
                               -- a real code-breaking change. 
                               -- See Note [KeepWanted in SolveImplication]
924
                             , wc_impl  = unsolved_implics
925
                             , wc_insol = insols }
926

927 928 929
             res_implic = unitImplication $
                          imp { ic_wanted = res_wanted
                              , ic_insol  = insolubleWC res_wanted }
930

931 932
       ; evbinds <- getTcEvBindsMap

933 934
       ; traceTcS "solveImplication end }" $ vcat
             [ text "res_flat_free =" <+> ppr res_flat_free
935
             , text "implication evbinds = " <+> ppr (evBindMapBinds evbinds)
936
             , text "res_implic =" <+> ppr res_implic ]
937

938
       ; return (res_flat_free, res_implic) }
939
    -- and we are back to the original inerts
940

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
\end{code}

Note [KeepWanted in SolveWanteds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Why do we have:
   let all_flats = flats `unionBags` keepWanted insols
instead of the simpler:
   let all_flats = flats `unionBags` insols
in solve_wanteds?

Assume a top-level class and instance declaration:

  class D a b | a -> b 
  instance D [a] [a] 

Assume we have started with an implication:

  forall c. Eq c => { wc_flat = D [c] c [W] }

which we have simplified to:

  forall c. Eq c => { wc_flat = D [c] c [W]
                    , wc_insols = (c ~ [c]) [D] }

For some reason, e.g. because we floated an equality somewhere else,
we might try to re-solve this implication. If we do not do a
keepWanted, then we will end up trying to solve the following
constraints the second time:

  (D [c] c) [W]
  (c ~ [c]) [D]

which will result in two Deriveds to end up in the insoluble set:

  wc_flat   = D [c] c [W]
  wc_insols = (c ~ [c]) [D], (c ~ [c]) [D]

which can result in reporting the same error twice.  

So, do we /lose/ some potentially useful information by doing this? 

No, because the insoluble Derived/Given are going to be equalities, 
which are going to be derivable anyway from the rest of the flat 
constraints. 


Note [KeepWanted in SolveImplication]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here is a real example, 
stripped off from libraries/utf8-string/Codec/Binary/UTF8/Generic.hs

  class C a b | a -> b
  g :: C a b => a -> b -> () 
  f :: C a b => a -> b -> () 
  f xa xb = 
      let loop = g xa 
      in loop xb

We will first try to infer a type for loop, and we will succeed:
    C a b' => b' -> ()
Subsequently, we will type check (loop xb) and all is good. But, 
recall that we have to solve a final implication constraint: 
    C a b => (C a b' => .... cts from body of loop .... )) 
And now we have a problem as we will generate an equality b ~ b' and fail to 
solve it. 

I actually think this is a legitimate behaviour (to fail). After all, if we had 
given the inferred signature to foo we would have failed as well, but we have to 
find a workaround because library code breaks.

For now I keep the 'keepWanted' though it seems problematic e.g. we might discard 
a useful Derived!

\begin{code}

1017

1018
floatEqualities :: [TcTyVar] -> [EvVar] -> Cts -> (Cts, Cts)
1019 1020 1021 1022
-- Post: The returned FlavoredEvVar's are only Wanted or Derived
-- and come from the input wanted ev vars or deriveds 
floatEqualities skols can_given wantders
  | hasEqualities can_given = (emptyBag, wantders)
1023
          -- Note [Float Equalities out of Implications]
1024
  | otherwise = partitionBag is_floatable wantders
1025 1026
  where skol_set = mkVarSet skols
        is_floatable :: Ct -> Bool
1027
        is_floatable ct
1028
          | ct_predty <- ctPred ct
1029
          , isEqPred ct_predty
1030
          = skol_set `disjointVarSet` tvs_under_fsks ct_predty
1031
        is_floatable _ct = False
1032 1033 1034 1035 1036 1037 1038 1039

        tvs_under_fsks :: Type -> TyVarSet
        -- ^ NB: for type synonyms tvs_under_fsks does /not/ expand the synonym
        tvs_under_fsks (TyVarTy tv)     
          | not (isTcTyVar tv)               = unitVarSet tv
          | FlatSkol ty <- tcTyVarDetails tv = tvs_under_fsks ty
          | otherwise                        = unitVarSet tv
        tvs_under_fsks (TyConApp _ tys) = unionVarSets (map tvs_under_fsks tys)
1040
        tvs_under_fsks (LitTy {})       = emptyVarSet
1041 1042 1043
        tvs_under_fsks (FunTy arg res)  = tvs_under_fsks arg `unionVarSet` tvs_under_fsks res
        tvs_under_fsks (AppTy fun arg)  = tvs_under_fsks fun `unionVarSet` tvs_under_fsks arg
        tvs_under_fsks (ForAllTy tv ty) -- The kind of a coercion binder 
1044
        	     	       	        -- can mention type variables!
1045 1046 1047 1048 1049
          | isTyVar tv		      = inner_tvs `delVarSet` tv
          | otherwise  {- Coercion -} = -- ASSERT( not (tv `elemVarSet` inner_tvs) )
                                        inner_tvs `unionVarSet` tvs_under_fsks (tyVarKind tv)
          where
            inner_tvs = tvs_under_fsks ty
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068